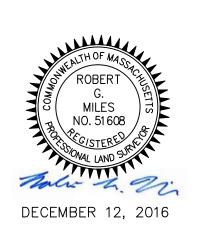

APPENDICES K1-K7



www.nitscheng.com

2 Center Plaza, Suite 430 Boston, MA 02108

- T: (617) 338-0063 F: (617) 338-6472
- Civil Engineering
 Land Surveying
 Transportation Engineering
 Structural Engineering
 Green Infrastructure

- ► Planning ► GIS

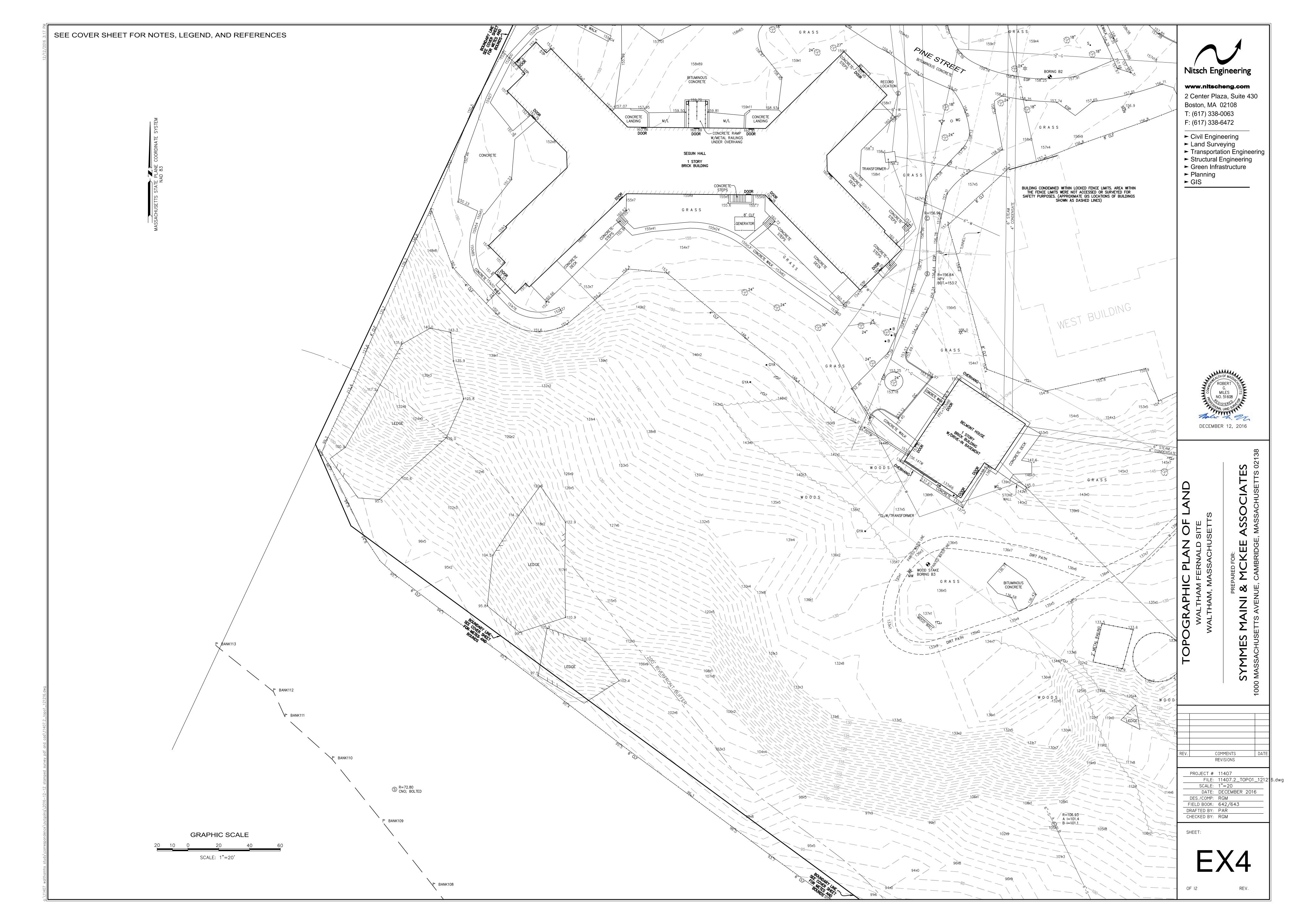
TOPOGRAPHIC PLAN OF LAND WALTHAM FERNALD SITE WALTHAM, MASSACHUSETTS

COMMENTS REVISIONS

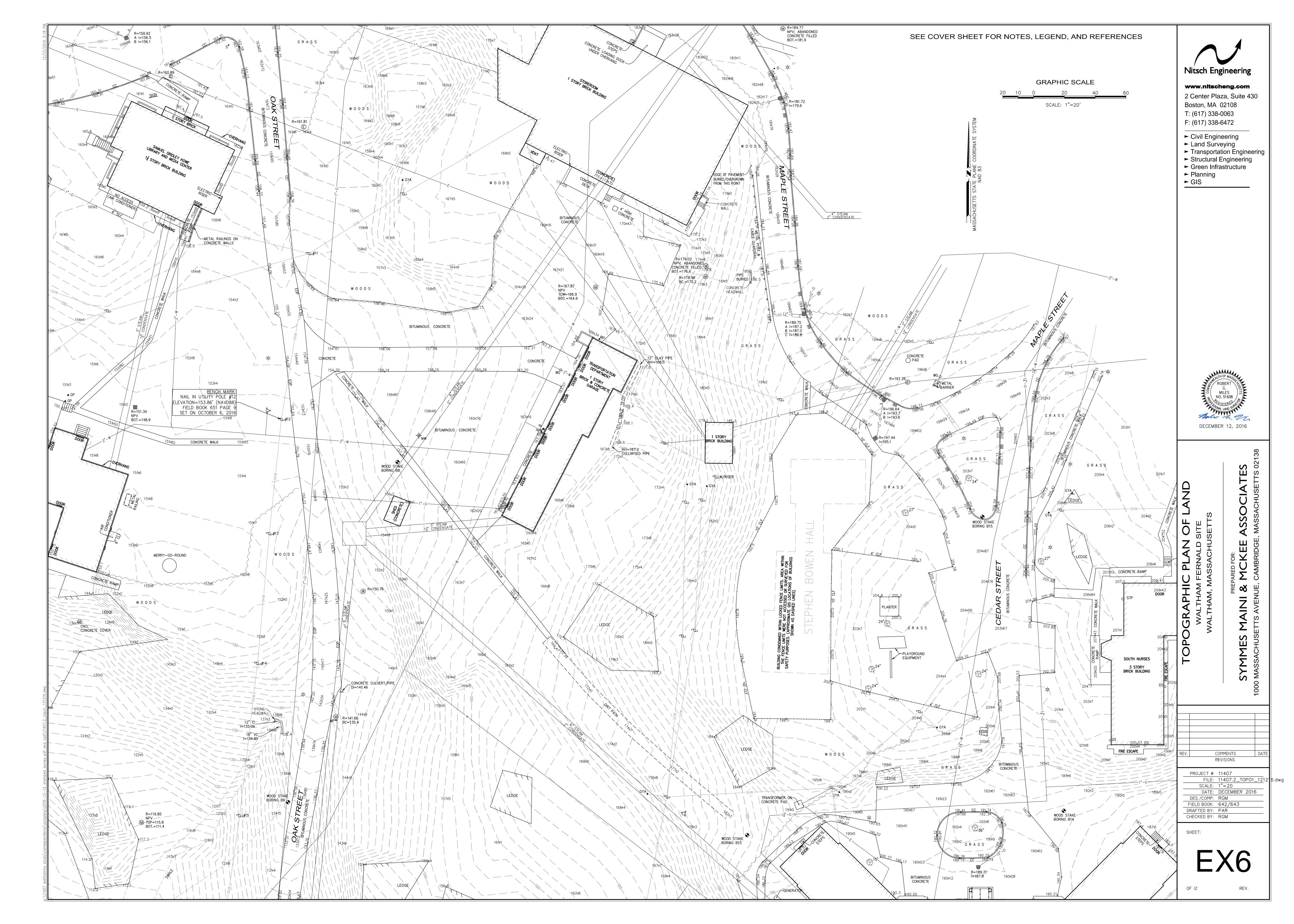
PROJECT # 11407

FILE: 11407.2_TOP01_121216.dwg

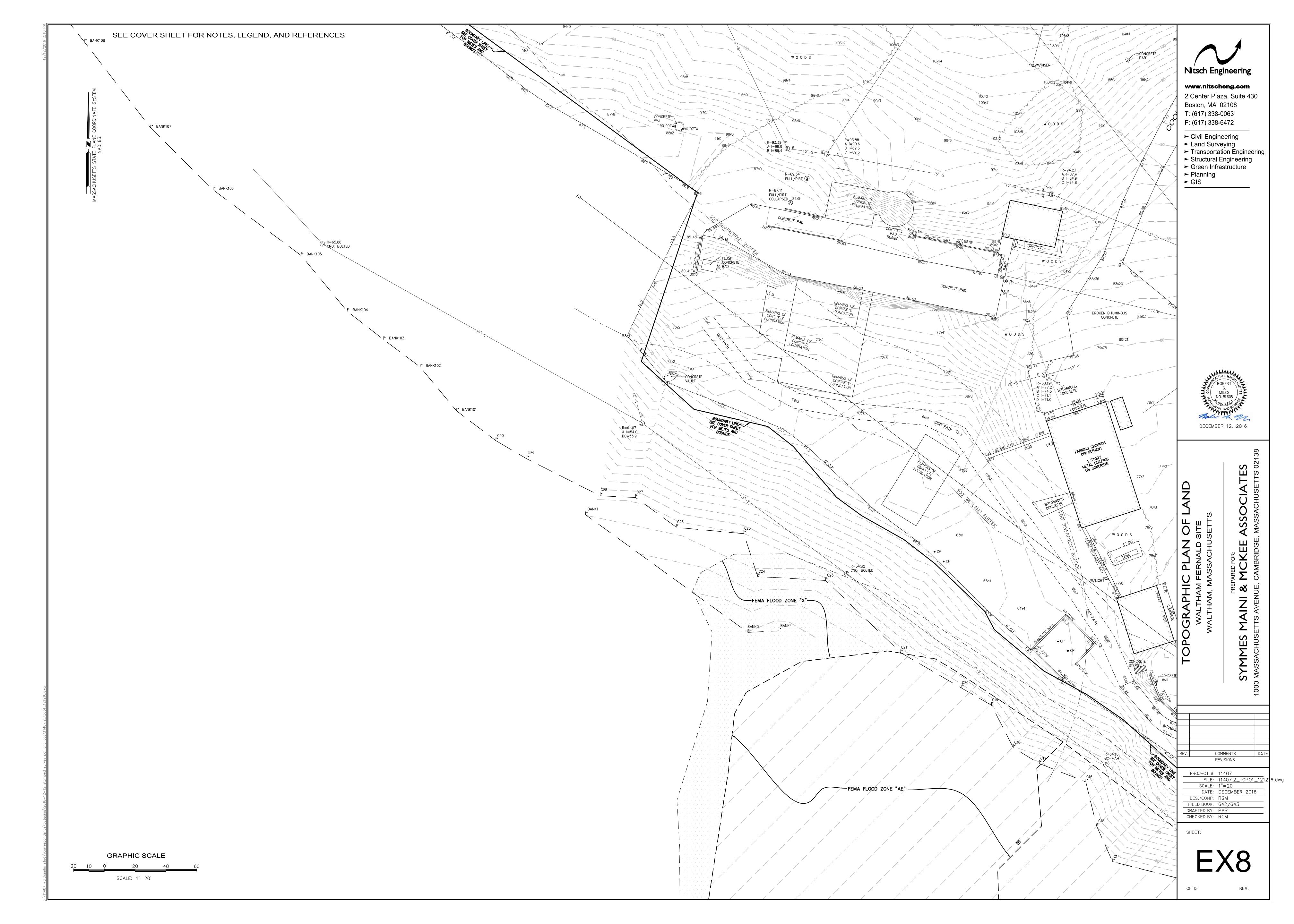
SCALE: 1"=20

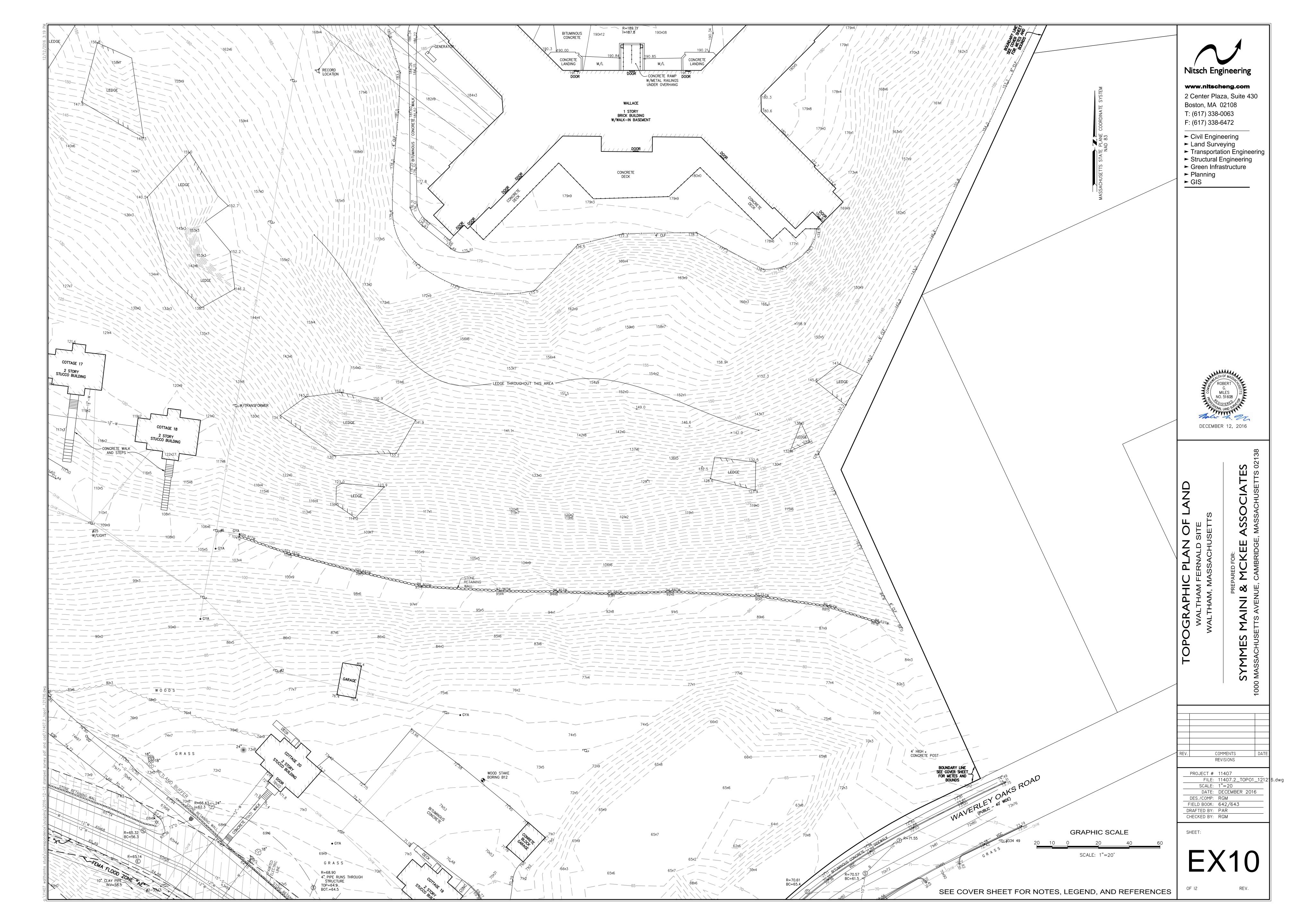

DATE: DECEMBER 2016

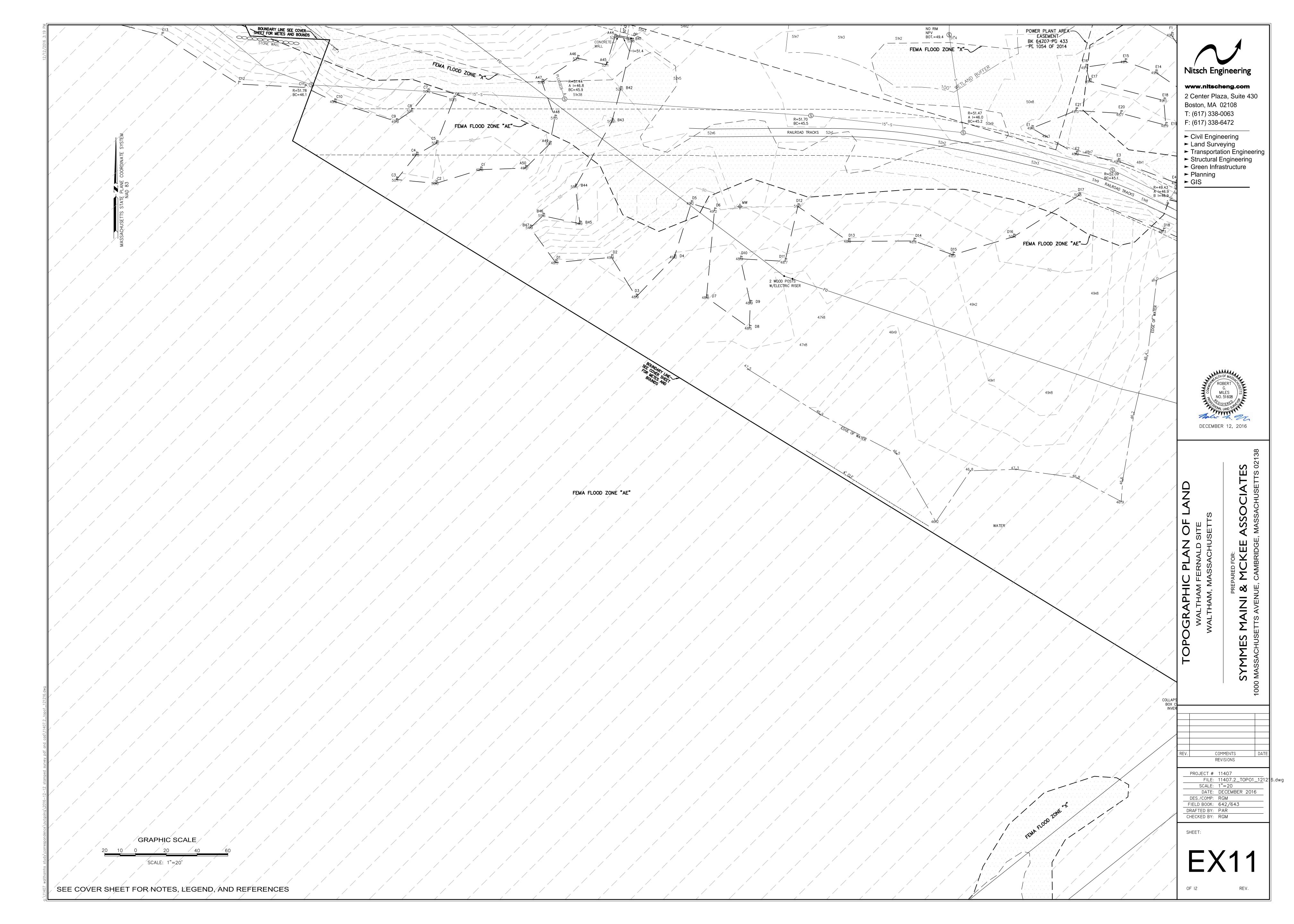
DES./COMP: RGM

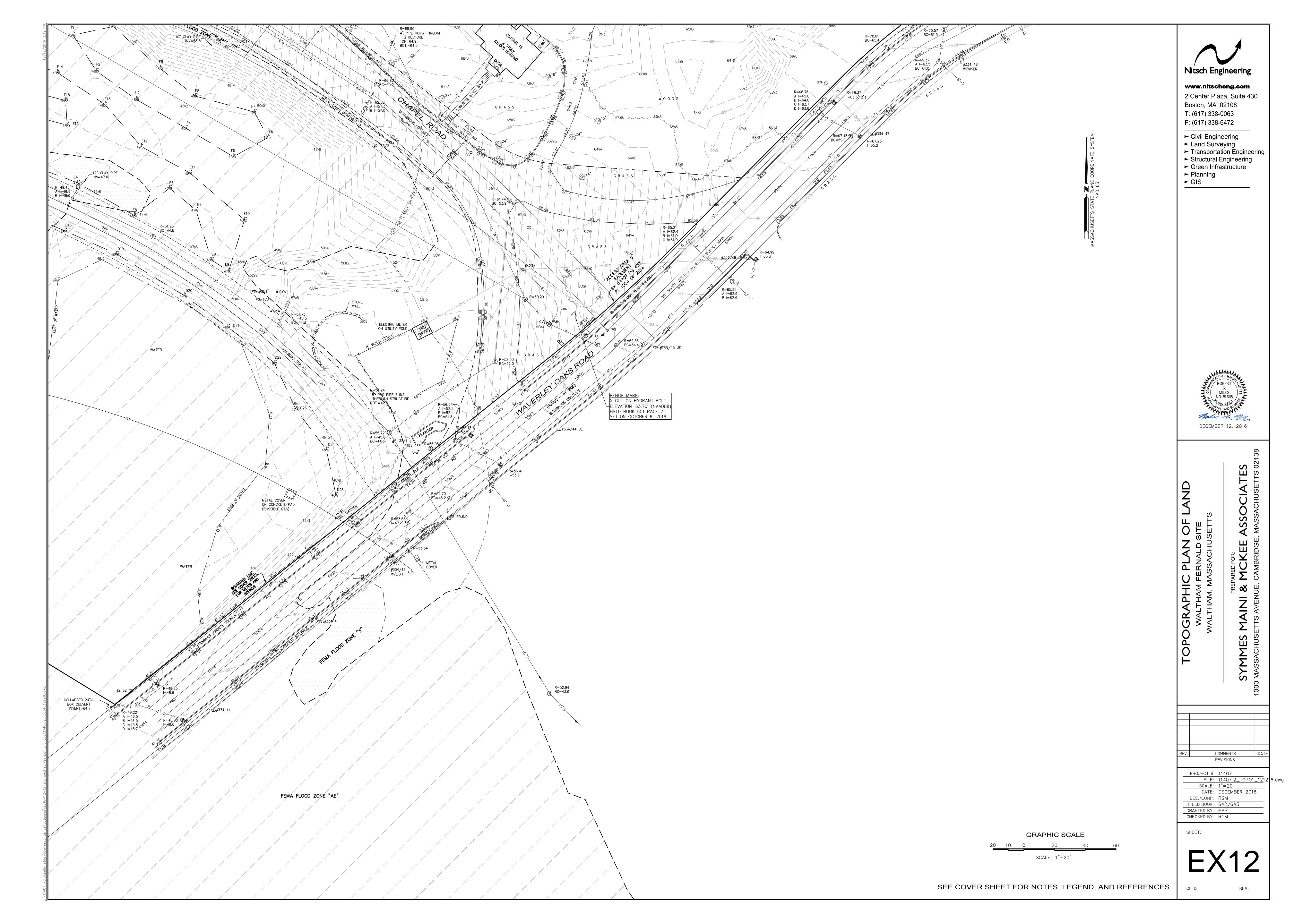

FIELD BOOK: 642/643

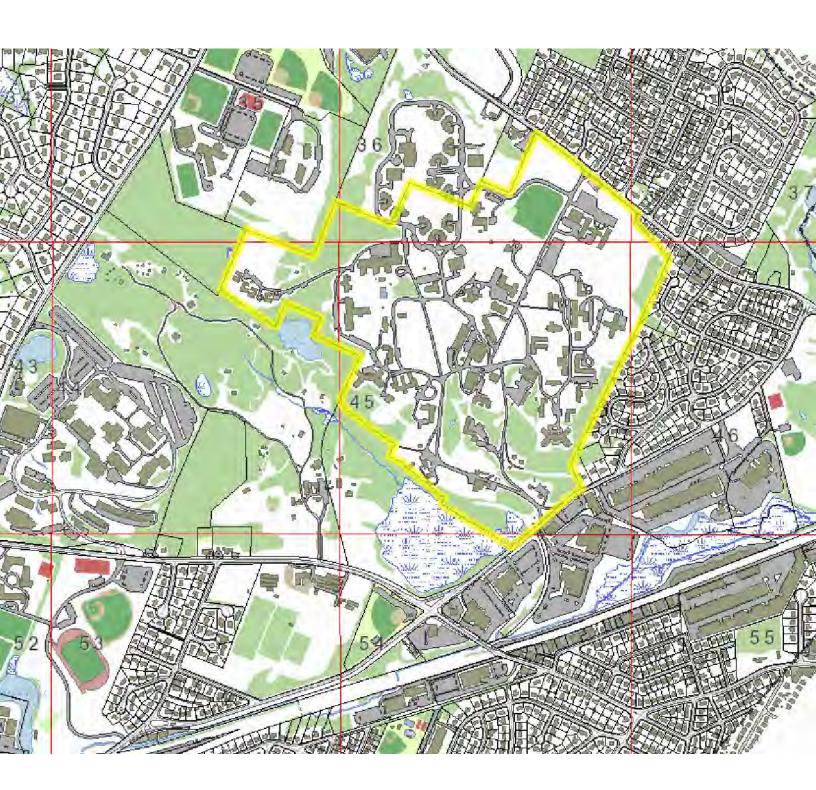
DRAFTED BY: PAR
CHECKED BY: RGM

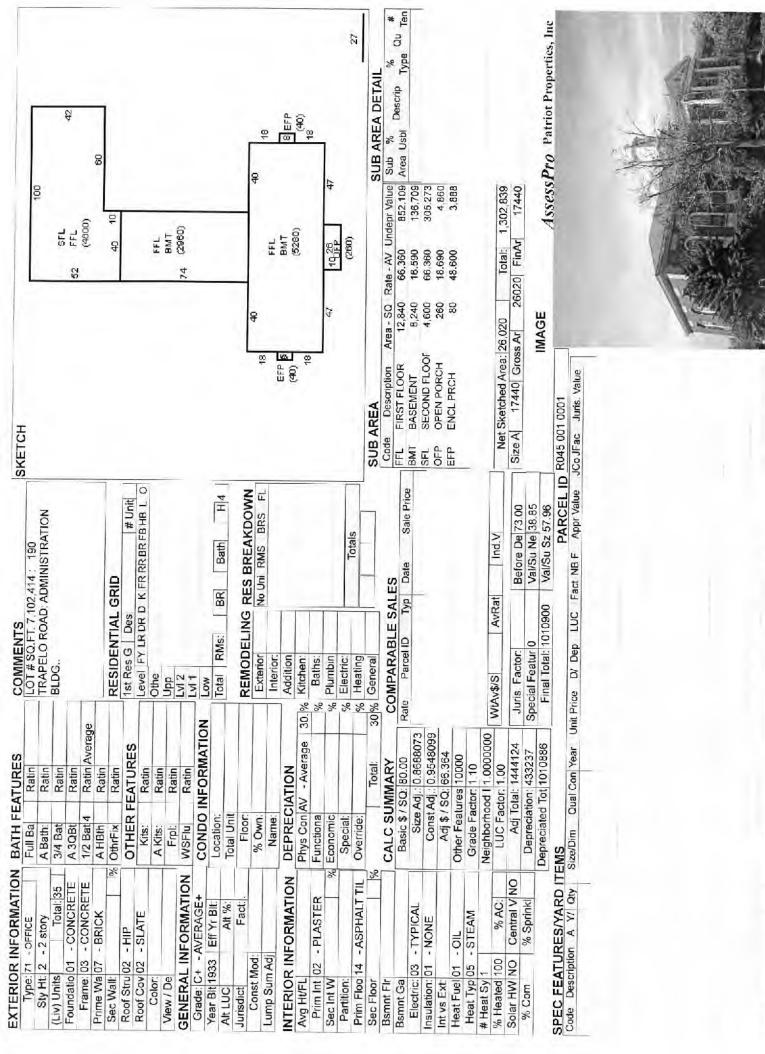

OF 12









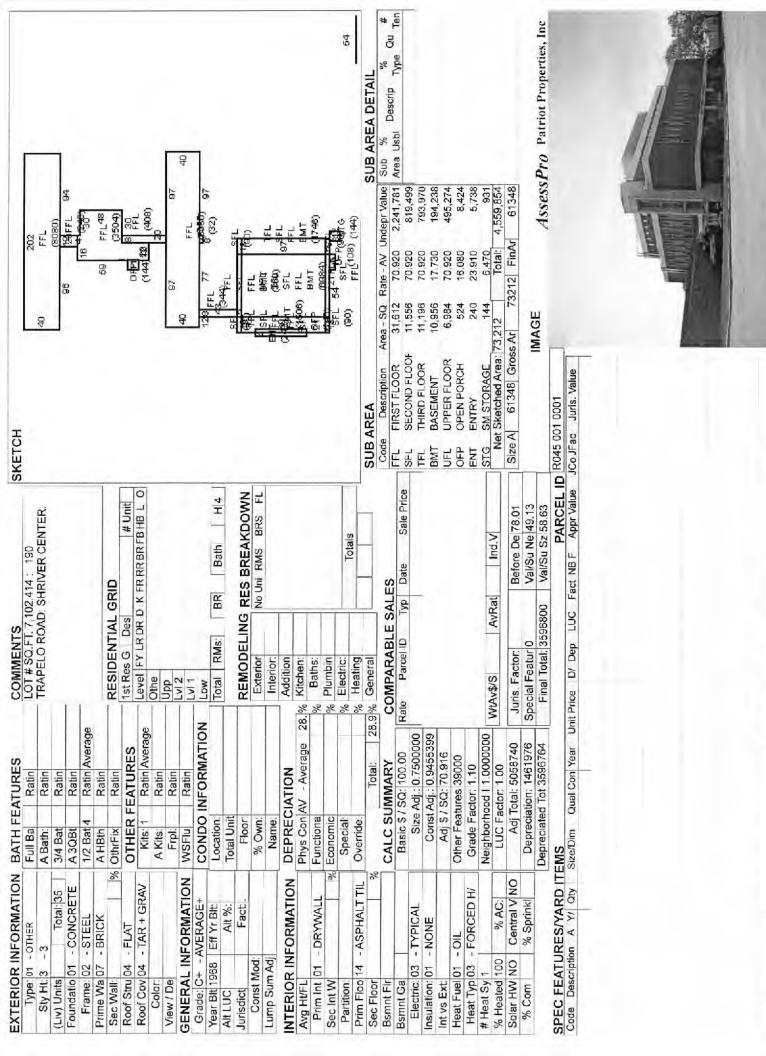


APPENDIX A

Assessor's Map & Card

Properties Inc. **USER DEFINED** Vatrioi Notes Name LandReas Year BIdReason ASR Map Prior Id# Prior Id# Prior Id# Prior Id # Prior Id# Prior Id # Prior Id# Prior Id# Reval Dis Prior Id# Fact Dist 1,539,400.983 55,843,400 Fact Use Value B 08/05/1 11:12:5 14:03:2 Date Time User Acct Insp Date GIS Ref GIS Ref 112899 112899 TOTAL ASSESSED: ACTIVITY INFORMATION LAST R apro 05/04/1 Date PRINT Land Code Notes Result 1112899! Spec 12/13/2013 12/16/2015 11/25/2014 12/22/2014 12/12/2012 12/17/2010 12/20/2011 12/3/2009 Legal Description PAT ACCT. % **Entered Lot Size** Class ¥ Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Sign Total Land: Land Unit Type: 1,539,378 Appraised Value Parcel ID R045 001 0001 Notes 55,552,700 Year End Roll 55,552,700 Year End Roll 55,552,700 Year End Roll 52,041,500 Year End Roll 55,555,000 Year End 55,843,400 year end 52,041,500 year end 52,041,500 year end Comment 8 1 of 66 COMMERCIAL Infl 3 /Parc 63.3 2,550,300 2,550,300 55,843,400 Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value 12/23/2014/INVOLVED GV 3,700,000 No No 10/29/1937 8 Amount C/O Last Visit Fed Cod F. Descrip Infl 2 306,821,496.5 1,539,40055,843,400 300,821,496.5 1,539.40055,552,700 306,821,496.5 1,539.40055,555,000 306,821,496.5 1,539,40055,552 700 3007,102,458. 1,602,80052,041,500 3007,102,458. 1,602,80052,041,500 308,821,496.5 1,539,40055,552,700 3007,102,458. 1,602,80052,041,500 1,539,400 1,539,400 1,539,400 Source Market Adj Co Total Value per SQ unit /Card 146.23 Land Value CARD % Sale Code III 1 TAX DISTRIC 6821496.500 156.600 156.600 POR DOR Land Size Influ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 Use Code Building Value Yard Items Typ 150,000 0 10,000. 0.983 NA PREVIOUS ASSESSMENT Legal Ref 54,303,700 54,013.000 54,013,000 54,013,000 COMM. OF MASS, 64707-427 Number Descrip 54,015,300 50,438,400 50,438,400 50,438,400 COMMONWEALTH (5600-550 SALES INFORMATION Units PriceUnits Unit Type Land Type Facto Value Price 1,010,900 1,010,900 54,303,700 BUILDING PERMITS Chit Base Tax Yr Use Cat 3 1 $\tilde{\Xi}$ 3 Grantor 9/1/1988 591 903 2010 914 Total Parcel 914 914 914 914 5 914 otal Card Date 2013 2012 2016 2015 2015 2014 2011 ACRES RESIDUAL 903 0001 Lot Descrip Baths, 4 HalfBaths, 0 3/4 Baths, 0 Rooms Total, and Building Built about 1933, Having Primarily BRICK Exterior and SLATE Roof Cover, with 0 Units, 0 Com. Int Owner FERNALD, WALTER STATE SCHOOL mainly classified as MUNICPL with a(n) OFFICE TRAPELO RD, WALTHAM Own Oc Direction/Street/City his Parcel contains 6,821,497 SQ. FT. of land Type AND SECTION (First 7 lines only) Item Cod Unit # Stree 41 Block Topo 001 xmpt Traffi NARRATIVE DESCRIPTION Amount Street 200 TRAPELO ROAD 156.6 Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION PROPERTY FACTORS Chtr Owner COMM. OF MASS Cut PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 FWn/Cit WALTHAM Twn/Cit WALTHAM Use Description LUC Code Description Fact Descrip/No Alt No R045 OWNERSHIP Map Postal: 02452 Pest 903 MUNICPL St/Prov MA St/Prov MA Census: Flood Haz. 190 Owner Street Owner 0 0

Total Special Featue


Total:

Total Yard Item

More N

CARD CIT SAL SUMMAR Yard Items Land Size Land Value Total Value 0.000 3,59 300 158,600 1,539,400 55,84 Total Value per SQ unit /Card 58,63 /Parc 1 TAX DISTRIC Parcel TAX DISTRIC Parce	CARD Cit	City of Waltham	Legal Description User Acct		Entered Lot Size	Total Land:	Land Unit Type:	R045 001 0001	Notes Date	TNIGG	Time	14.03.5	$\neg \sim$	Time	11:13:4	66	Tst Verif Assoc PCL Value Notes Fact Dist.	Reval Dis	Year	LandReas	BldReason		ACTIVITY INFORMATION Commont Parts Desuit By Name	Date Result oy			C	/ ußis	Annealizable Onco 1
	Log Compiler of the Compiler o	CARD	id Size Land Value Tota	0.000	0.000	300 156.600 1,539,400	Total Value per SQ unit /Card 58.63	LVII	1 0								Legal Ref Typ Date Sale Code Sale Price V						oria Amount CIO Last Vieth End Cad E Dacoria	Descrip Amount ord Last visit hed cod 1: Descrip					7

Iotal AC/H 0.00000 Total 3	Total SF/S 0.00	Parcel LU 903 MUNICPL	Prime NB D N4		Total.	Spl Cre	Tot
7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	The second second second						
Discipliner I his information is believed to be correct but	ved to be correct	ct but is subject to change and is not	warranteed. Databa	ase: AssessPro		apro	

Total

Total Special Featue

Total Yard Item

More N

Properties Inc. Datriot USER DEFINED Notes Name Year LandReas BldReason Prior Id# Prior Id# ASR Map Fact Dist. Reval Dis Prior Id# 55,843,400 Fact Use Value BY 08/05/1 11:13:4 Time Time 05/04/1 14:04:1 Insp Date User Acct GIS Ref GIS Ref 112899 112899 TOTAL ASSESSED: ACTIVITY INFORMATION apro AST R Date Date PRINT Land Code Notes Result Spec Legal Description Date PAT ACCT. % Entered Lot Size Class ¥ Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Sign Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 Infl 3 /Parc 63.3 2 of 66 RESIDENTIAL 3.596,800 3,596,800 55,843,400 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value % Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 58.63 % CARD Infl 1 Sale Code TAX DISTRIC Land Size 0.000 Influ eigh 156,600 Neigh Date IN PROCESS APPRAISAL SUMMAR
Use Code Building Value Yard Items Lan Adj Neigh 300 0. 0.000 N4 Legal Ref Typ Descrip Source: Market Adj Co SALES INFORMATION Price Unit 3,596,800 54,303,700 BUILDING PERMITS Unit Base Value Number Grantor Depth / LT Price Unit Type Land Type Facto Total Parcel Total Card Date SITE 0001 ř Building Built about 1968, Having Primarily BRICK Exterior and TAR + GRAVEL Roof Cover, with 0 Units, 0 Baths, 4 HalfBaths, 0 3/4 Baths, 0 Rooms T Item Cod Descrip Com. Int NARRATIVE DESCRIPTION
This Parcel contains 6,821,497 SQ, FT, of land mainly classified as MUNICPL with a(n) OTHER SO. FT Direction/Street/City Own Oc TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only) Topo Stree 41 Unit # Block xmpt Traffi 001 Amount OTHER ASSESSMENTS Owner CITY OF WALTHAM PROPERTY LOCATION Units Nool Cutr Cntr PROPERTY FACTORS PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Use Description LUC Twn/Cit WALTHAM Descrip/No Alt No R045 OWNERSHIP test Map 903 MUNICPL St/Prov MA Census: Flood Haz: 190 Owner Street SVProv Owner Owner Twn/Cit Owner Postal ۵

2017

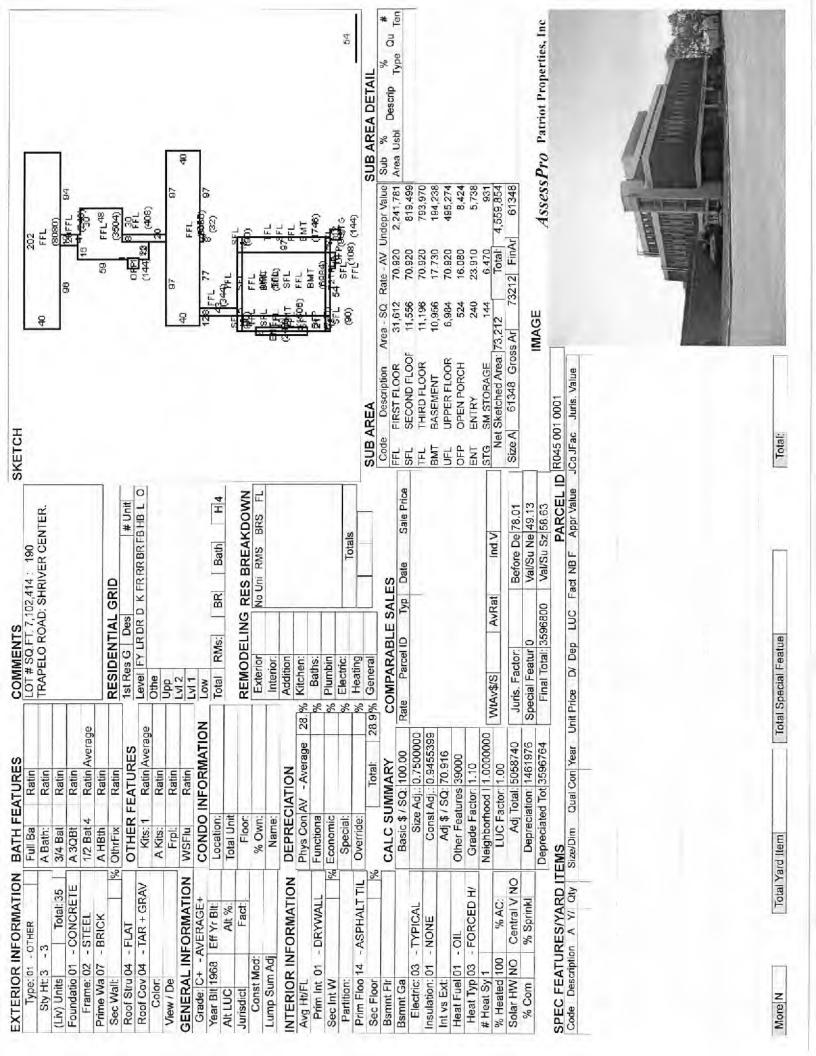
Total:

Spl Cre

Total:

apro

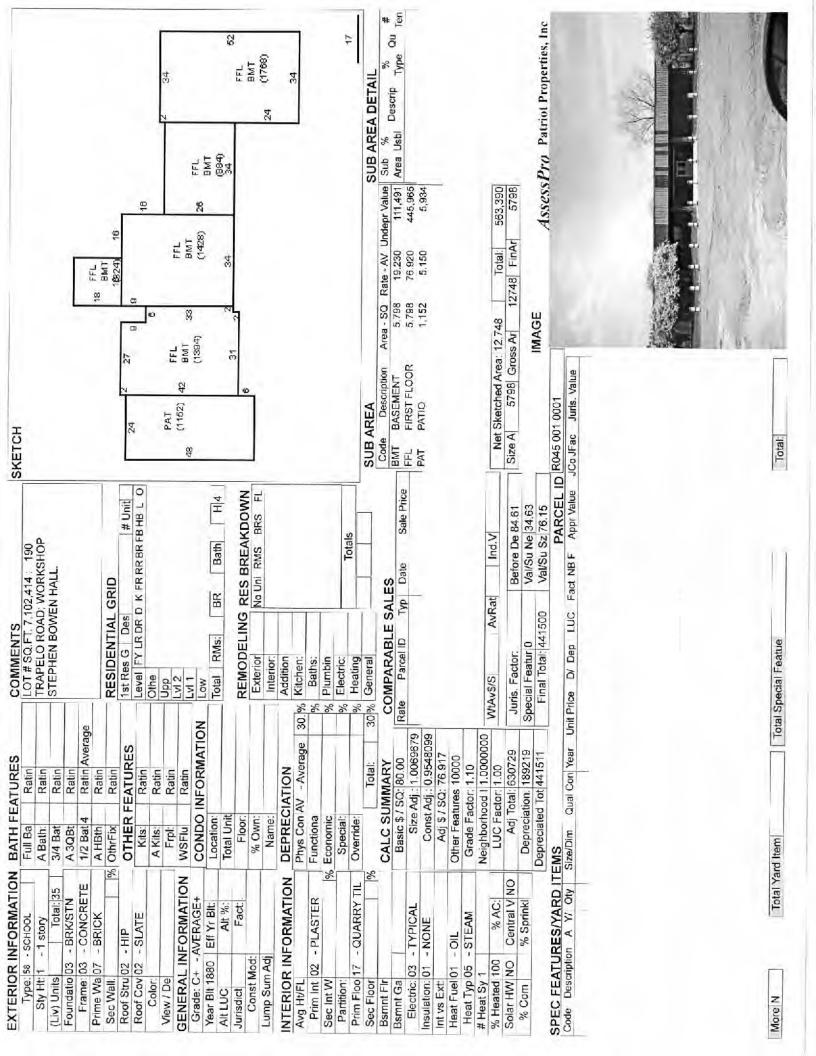
Database: AssessPro


Prime NB D N4

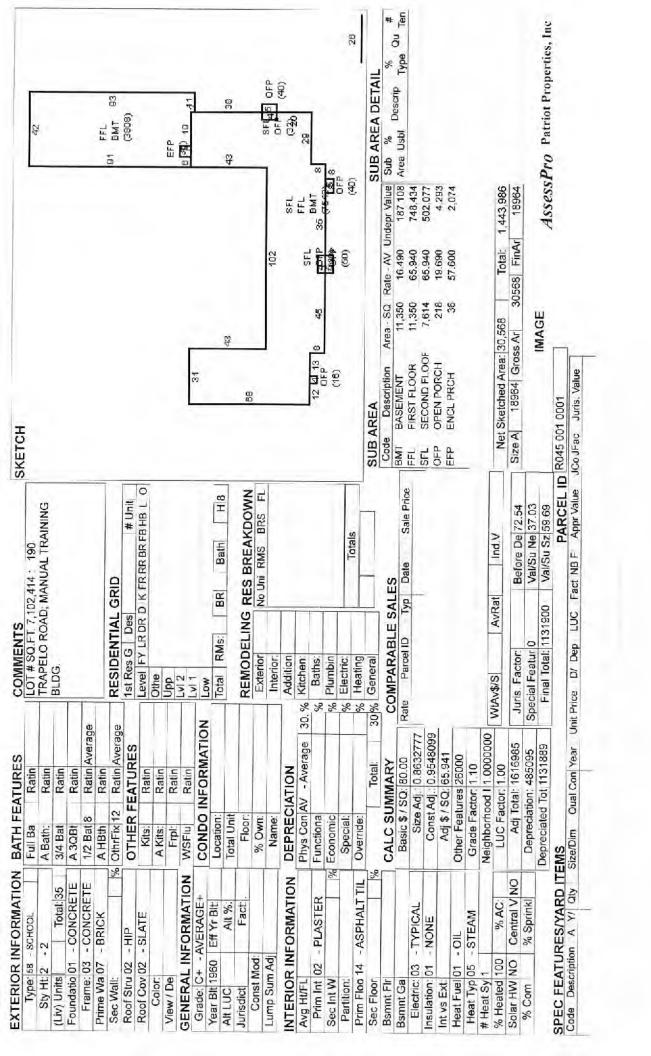
Parcel LU 903 MUNICPL

Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00


Total AC/H 0.00000

Properties Inc. Datriot JSER DEFINED Notes Name Year LandReas BldReason Prior Id# Reval Dis Prior Id# Prior Id# Prior Id# ASR Map Prior Id# Prior Id# Prior ld# Prior Id# Prior Id# Fact Dist 55,843,400 Fact Use Value By Time 08/05/1 11:13:5 05/04/1 14:04:3 Time Insp Date User Acct GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION apro AST R Date Date PRINT Land Code Notes Result Spec Date Legal Description PAT ACCT. % **Entered Lot Size** Class ¥ Sale Code Sale Price V Tst Verif Assoc PCL Value Date Sign City of Waltham Total Land: Land Unit Type: Appraised Value Parcel ID | R045 001 0001 Notes Comment % Infl 3 3 of 66 COMMERCIAL /Parc 63.3 441,500 55,843,400 441,500 PREVIOUS ASSESSMENT


Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value Total Value % Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 76.15 % CARD Infl 1 TAX DISTRIC Influ eigh Land Size 0.000 156.600 Neigh Legal Ref Typ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh Use Code Building Value Yard Items 903 441,500 300 0. 0.000 N4 Number Descrip Price SALES INFORMATION Source: Market Adj Co SPIL 441,500 54,303,700 BUILDING PERMITS Value Unit Base Grantor Facto 5 Total Parcel Total Card Date Depth / Unit Type Land Type SITE 0001 Lot Baths, 4 HalfBaths, 0 3/4 Baths, 0 Rooms Total, and Descrip Building Built about 1880. Having Primarily BRICK NARRATIVE DESCRIPTION
This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) SCHOOL Com. Int SO. FT. Exterior and SLATE Roof Cover, with 0 Units, 0 Own Oc Direction/Street/City TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only) Cod Stree 41 Item Topo Block xmpt Traffi 001 0 Amount 0 OTHER ASSESSMENTS Owner CITY OF WALTHAM No of PROPERTY LOCATION Units PROPERTY FACTORS
Ite Code Descip % Cutr Cut PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Use Description LUC Twn/Cit WALTHAM Descrip/No Alt No OWNERSHIP R045 test Map 903 MUNICPL StyProv MA Flood Haz. Census St/Prov Owner Owner Twn/Cit Postal: Owner Street Owner Code N 0 w

2017 Total: Spl Cre Total Database: AssessPro Prime NB D N4 Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

Datriot Properties Inc. JSER DEFINED Notes Name Year LandReas BldReason Prior Id# Reval Dis ASR Map Prior Id# Prior Id# Fact Dist: Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# 55,843,400 Fact Use Value B Time 03/24/1 09:55:0 Time 05/04/1 14:04:5 Insp Date User Acct GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION
Date Result AST R Date apro Date PRINT Land Code Notes 11128991 Spec Legal Description Date PAT ACCT. % Entered Lot Size Class ₹ Sale Price V Tst Verif Assoc PCL Value City of Waltham Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 1,131,900 4 of 66 COMMERCIAL 55,843,400 1,131,900 /Parc 63.3 Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value % Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 59.69 CARD 8 Sale Code Infl 1 TAX DISTRIC 0.000 eigh Land Size 0.000 156.600 Influ Neigh Date IN PROCESS APPRAISAL SUMMAR
Use Code Building Value Yard Items Lan Adj Neigh 300 0. 0.000 N4 Legal Ref Typ PREVIOUS ASSESSMENT Descrip Source: Market Adj Co SALES INFORMATION Price 1,131,900 1,131,900 Chit 54,303,700 BUILDING PERMITS
Date Number Desc 0 Base Depth / Unit Type Land Type Facto Value Grantor Total Parcel Total Card 0001 Lot Baths, 8 HalfBaths, 0 3/4 Baths, 0 Rooms Total, and Descrip Building Built about 1960, Having Primarily BRICK This Parcel contains 6,821,497 SQ FT of land mainly classified as MUNICPL with a(n) SCHOOL Com, Int Exterior and SLATE Roof Cover, with 0 Units, 0 SQ. FT. Direction/Street/City TRAPELO RD, WALTHAM Own Oc Type LAND SECTION (First 7 lines only)
Use Description LUC No of Depth | Units PriceUnits Un PROPERTY FACTORS
Ite | Code | Descip % | Item | Cod Unit# Stree 41 Block xmpt Topo Traffi 90 NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION Cutr Cut PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Alt No **OWNERSHIP** R045 Map test 903 MUNICPL St/Prov MA Census: Flood Haz: 190 St/Prov Owner Street Owner Owner Twn/Cit Street Owner Postal 0 0 Code N 0

-	20
Total:	
Spl Cre	apro
Total:	
N4	Database: AssessPro
Prime NB D	t warranteed.
Parcel LU 903 MUNICPL	but is subject to change and is no
Total SF/S 0.00	er. This Information is believed to be correct but is subject
Total AC/H 0.00000	Disclaimer: This Information

More N

Total Yard Item

Total Special Featue

Total:

TOTAL	City of Waltham	-	Total Value Legal Description User Acct	442,300	GIS Ref		Entered Lot Size	Total Land:	/Parc 63.3 Land Unit Type:	Parcel ID R045 001 0001	Notes	Notes			05/04/1 14:05:0	~	Date Time	08/05/1 11:14:4		V Tst Verif Assoc PCL Value Notes						ACTIVITY INFORMATION	Connient Date Result By						Sign	STATE OF STATE OF STATE OF	d Alt %	""" Value Class " Land Code
,	Unit CARD	SS APPRAISAL SUMMAR	building Value Yard Items Land Size Land Value	442,300			442,300	54,303,700 300 156.600 1,539,400	Source: Market Adj Co Total Value per SQ unit /Card 32.25 //	PREVIOUS ASSESSMENT	SIN I								ORMALION IAX DISTRIC	Grantor Legal Ref Typ Date Sale Code Sale Price						BUILDING PERMITS	disco								LT Base Unit Adi Neigh	Facto Value Price " Influ eigh " "
001	Map Block Lot PROPERTY OCATION IN DE	ection/Street/Ciby	AD TRAPE	HANTED NO. WALL DAW	OWNERSHIP Unit #:	Owner CITY OF WALTHAM		Street 610 MAIN ST		LTHAM	Cntr Own Oc	Postal: 02452-5552 Type	PREVIOUS OWNER	Owner	Owner	Street		St/Prov		This Parcel contains 6,821,497 SQ. FT. of land	mainly classified as MUNICPL with a(n)	WANTERCOSE Building Built about 1928, Having Primarily BRICK Exterior and TAR + GRAVEL Roof	Cover, with 0 Units, 0 Baths, 4 HalfBaths, 0 3/4 Bath	OTHER ASSESSMENTS	Code Descrip/No Amount Com. Int		DRS	Z code Descrip % Hem Cod Descrip		od Haz:	D 0 test Topo	S Stree 41	Traffi	AND SECTION (First 7 lines only)	Description LUC	Onits

2017

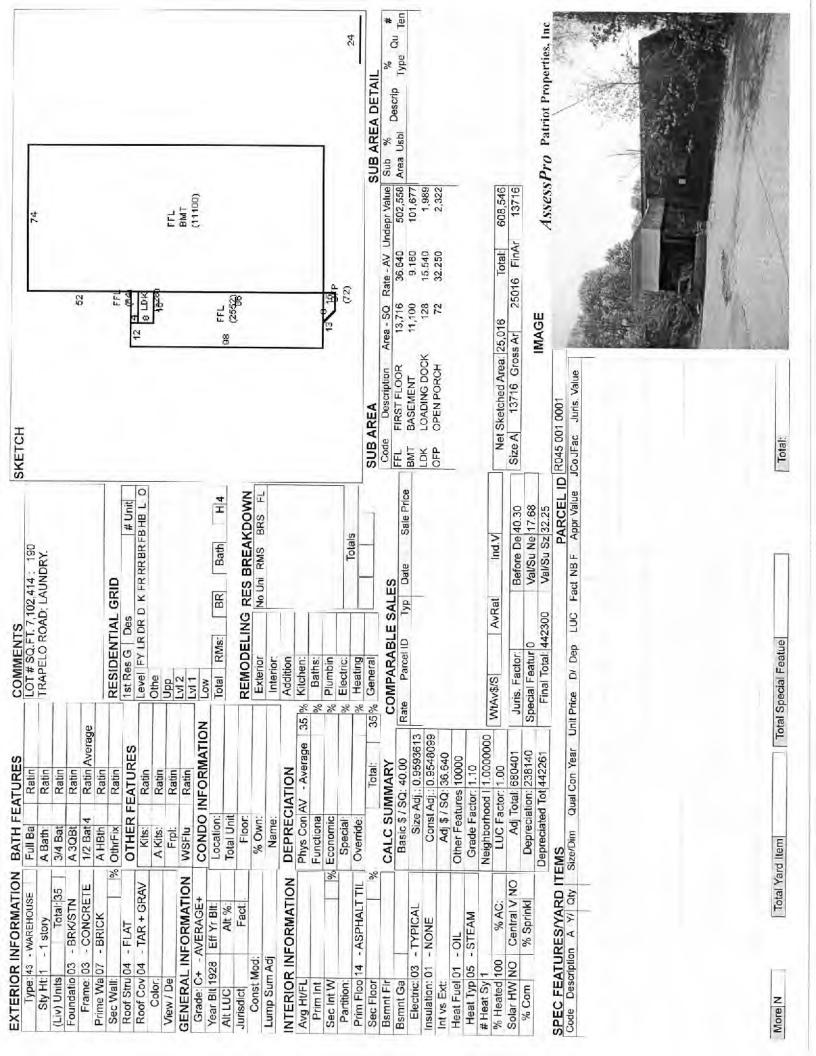
Total:

Spl Cre

Total:

Database: AssessPro

Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.


Total SF/S 0.00

Total AC/H 0.00000

Prime NB D N4

Parcel LU 903 MUNICPL

apro

Datriot Properties Inc. USER DEFINED Notes Name LandReas BidReason Year ASR Map Reval Dis Prior Id# Fact Dist Prior Id# Prior Id# Prior Id# Prior Id# Prior Id # Prior Id# Prior Id# Prior Id# 55,843,400 Fact Use Value B Time 08/05/1 11:15:0 05/04/1 14:05:2 Date Time Insp Date User Acct GIS Ref GIS Ref 112899 112899 **ACTIVITY INFORMATION** TOTAL ASSESSED: LAST R apro Date Code PRINT Notes Result 1112899! Land Spec Date Legal Description PAT ACCT. 8 **Entered Lot Size** Class Ä Sale Price V Tst Verif Assoc PCL Value Date City of Waltham Sign Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 /Parc 63.3 6 of 66 COMMERCIAL 1,214,500 1,214,500 Tax Yr Use Cat Bldg Value Yrd Ilem Land Size Land Value Total Value Asses'd Valu 55,843,400 Total Value % Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539.400 Land Size Land Value Total Value per SQ unit /Card 66.57 % CARD Sale Code nf 1 TAX DISTRIC eigh 0.000 156,600 Neigh Influ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 Use Code Building Value Yard Items 0.000 NA Typ PREVIOUS ASSESSMENT Legal Ref o Source: Market Adj Co Price SALES INFORMATION Chit 1,214,500 1,214,500 54,303,700 BUILDING PERMITS Base Value Grantor No of Depth / Unit Type Land Type Facto Total Parcel Total Card 903 SQ. FT. SITE 0001 Pot with 1 Units, 0 Baths, 8 HalfBaths, 0 3/4 Baths, 0 RoOTHER ASSESSMENTS Primarily BRICK Exterior and ASPHALT Roof Cover, Descrip Com. Int DORMITORY Building Built about 1899. Having PROPERTY LOCATION

Direction/Street/City Own Oc This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) TRAPELO RD, WALTHAM lype AND SECTION (First 7 lines only) Cod Unit # Stree 41 Block Item xmpt Topo Traff 00 Amount NARRATIVE DESCRIPTION Owner CITY OF WALTHAM No of Crit PROPERTY FACTORS
Its Code Descip % Cntr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Use Description LUC Twn/Cit WALTHAM Descrip/No R045 OWNERSHIP Map test 903 MUNICPL St/Prov MA Census: Flood Haz: SVProv Twn/Cit Street Owner Owner Owner Owner Street Postal Code 0 0

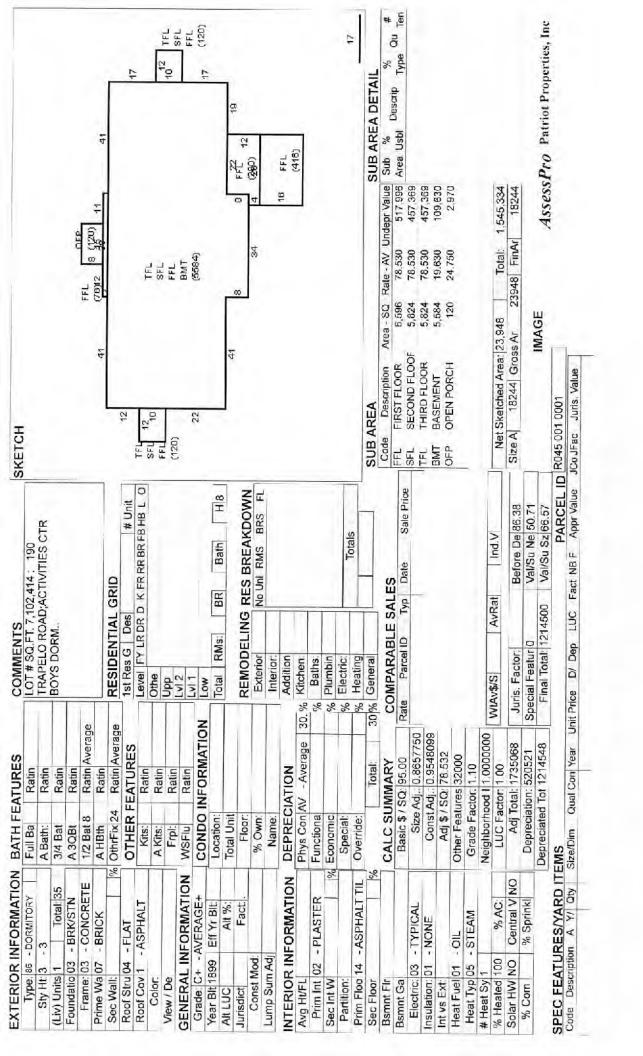
2017

Total:

Spl Cre

Total:

Database: AssessPro


Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total AC/H 0.00000

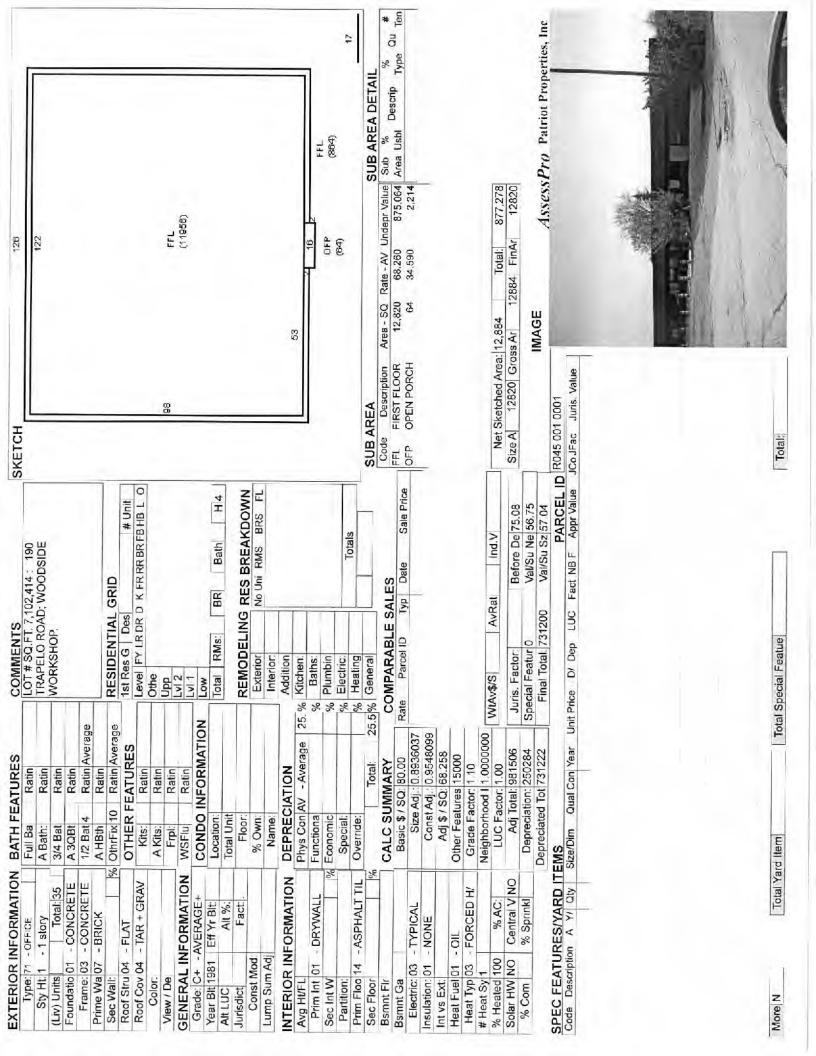
Total Yard Item

Total Special Featue

Total:

More N

Datriot Properties Inc. USER DEFINED Notes Name BldReason Year LandReas Prior Id# Prior Id# ASR Map Reval Dis Prior Id# Fact Dist 55,843,400 Fact Use Value By 14:05:3 Time 08/05/1 11:15:2 Time Insp Date User Acct GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION AST R apro Date 05/04/1 Date PRINT Land Code Notes Result 11128991 Date Legal Description PAT ACCT. % Entered Lot Size Class A Sale Price V Tst Verif Assoc PCL Value City of Waltham Sign Date Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes 8 Comment Infl 3 7 of 66 COMMERCIAL 731,200 55,843,400 731,200 /Parc 63.3 Tax Yr Use Cal Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value % Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Total Value per SQ unit /Card 57 04 Land Value % CARD Infl 1 Sale Code TAX DISTRIC 0.000 Influ eigh 0.000 156.600 Land Size Neigh IN PROCESS APPRAISAL SUMMAR
Use Code Building Value Yard Items Lan Legal Ref Typ Date Adj Neigh 300 0.0000 N4 PREVIOUS ASSESSMENT Source: Market Adj Co SALES INFORMATION Price ij 731,200 731,200 54,303,700 **BUILDING PERMITS** o Base Chit Value Grantor Depth / Unit Type Land Type Facto Total Parcel **Fotal Card** Date SITE 0001 Lot Descrip Jnits, 0 Baths, 4 HalfBaths, 0 3/4 Baths, 0 Rooms T Building Built about 1981, Having Primarily BRICK Com. Int This Parcel contains 6.821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) OFFICE Exterior and TAR + GRAVEL Roof Cover, with 0 SQ. FT. PROPERTY LOCATION


Direction/Street/City Own Oc TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only) Item Cod Unit # Stree 41 Block xmpt Topo Traffi 001 NARRATIVE DESCRIPTION Amount OTHER ASSESSMENTS Owner CITY OF WALTHAM No of Units Cutr PROPERTY FACTORS Cut PREVIOUS OWNER Descip Street 610 MAIN ST Postal: 02452-5552 Use Description Fact Twn/Cit WALTHAM Descrip/No OWNERSHIP R045 Map est 903 MUNICPL SVProv MA Census. Flood Haz. 190 StyProv Owner Street Owner Twn/Cit Postal Owner Owner Street ۵ 0

lotal AC/H	0.0000.0	Total SF/S 0.00	Parcel LU 903 MUNICPL	Prime NB D N4	Total	Spl Cre	Total	
Disclaimer. This	. This Information is believe	d to be corr	ect but is subject to change and is no	t warranteed. Database: AssessPro		apro		

Total SF/S 0.00

Total AC/H 0.00000

2017

Properties Inc. Datriot USER DEFINED Notes Name LandReas BldReason Year ASR Map Prior Id# Prior Id# Reval Dis Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Fact Dist Prior Id# Prior Id# 55,843,400 Fact Use Value By Time Time 14:05:4 10:14:3 Insp Date User Acct GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION
Date Result AST R apro 05/04/1 Date 08/21/1 Date PRINT Land Code Notes 1112899! Spec Date Legal Description PAT ACCT % **Entered Lot Size** Class ¥ Sale Price V Tst Verif Assoc PCL Value City of Waltham Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 Infl 3 55,843,400 /Parc|63.3 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value 301,300 8 of 66 INDUSTRIAL Total Value % BUILDING PERMITS
Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 35.72 % CARD Sale Code Infl 1 TAX DISTRIC Use Code Building Value Yard Items Land Size 903 0.000 Influ eigh 156,600 Neigh Legal Ref Typ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 0. 0.000 N4 SALES INFORMATION Source: Market Adj Co Price Unit 54,303,700 0 Unit Base Value Grantor PriceUnits Unit Type Land Type Facto 5 Total Parcel Total Card 0001 SQ. FT. SITE STOŘAGE Building Built about 1925, Having Primarily BRICK Exterior and TAR + GRAVEL Roof Cover, with 0 Units, 0 Baths, 3 HalfBaths, 0 3/4 Bath Item Cod Descrip Com. Int NARRATIVE DESCRIPTION
This Parcel contains 6.821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) COLD Direction/Street/City Own Oc TRAPELO RD, WALTHAM lype AND SECTION (First 7 lines only)
Jse Proceedings on the Section of Depth 7 # tion Stree 41 Block odo Traffi xmpt 001 Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION Cutr Units Cutr PROPERTY FACTORS
Its Code Descip % PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Fwn/Cit WALTHAM Use Description LUC Descrip/No Alt No OWNERSHIP R045 Map test 903 MUNICPL St/Prov MA Flood Haz: Census St/Prov Street Owner Owner Owner Street Owner Twn/Cit Postal 0 0

2017

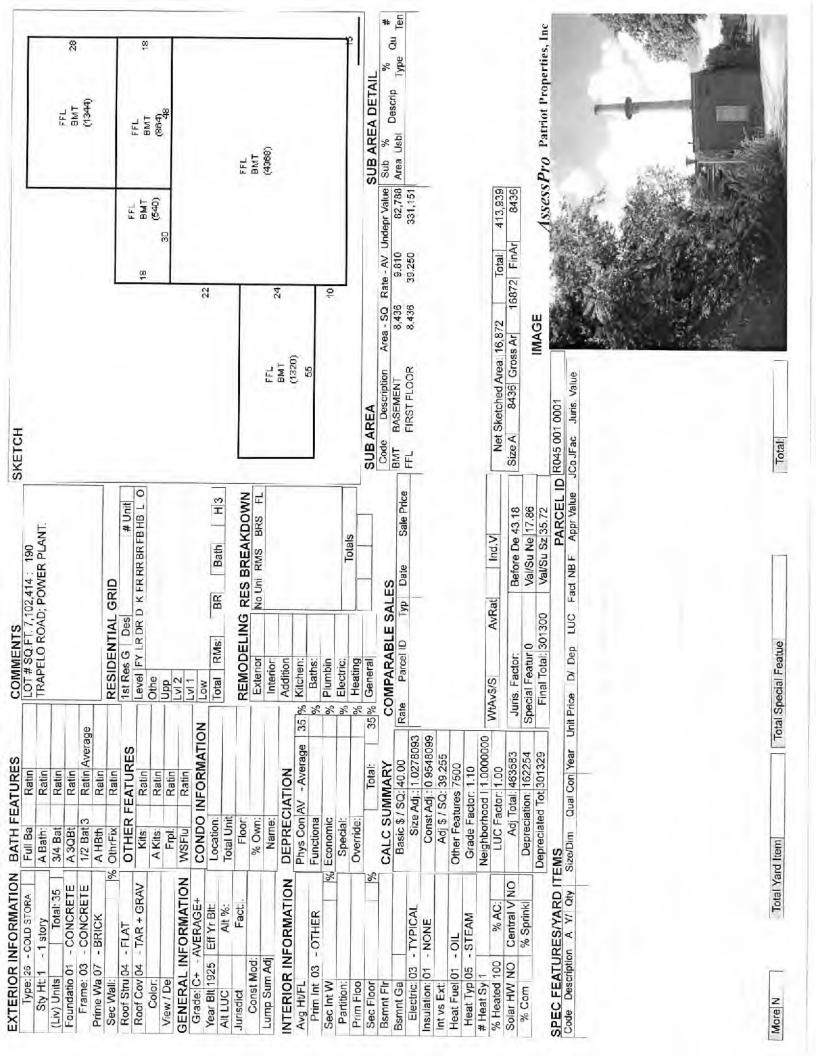
Total

Spl Cre

Total:

Database: AssessPro

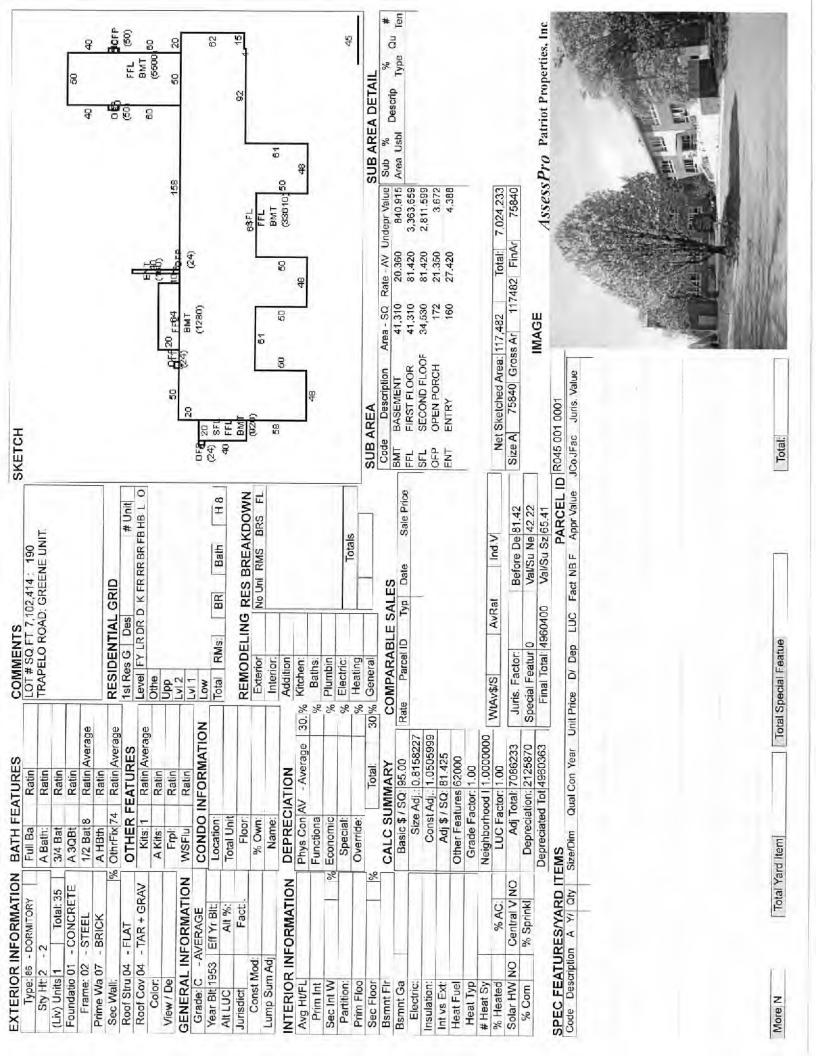
Prime NB D N4


Parcel LU 903 MUNICPL

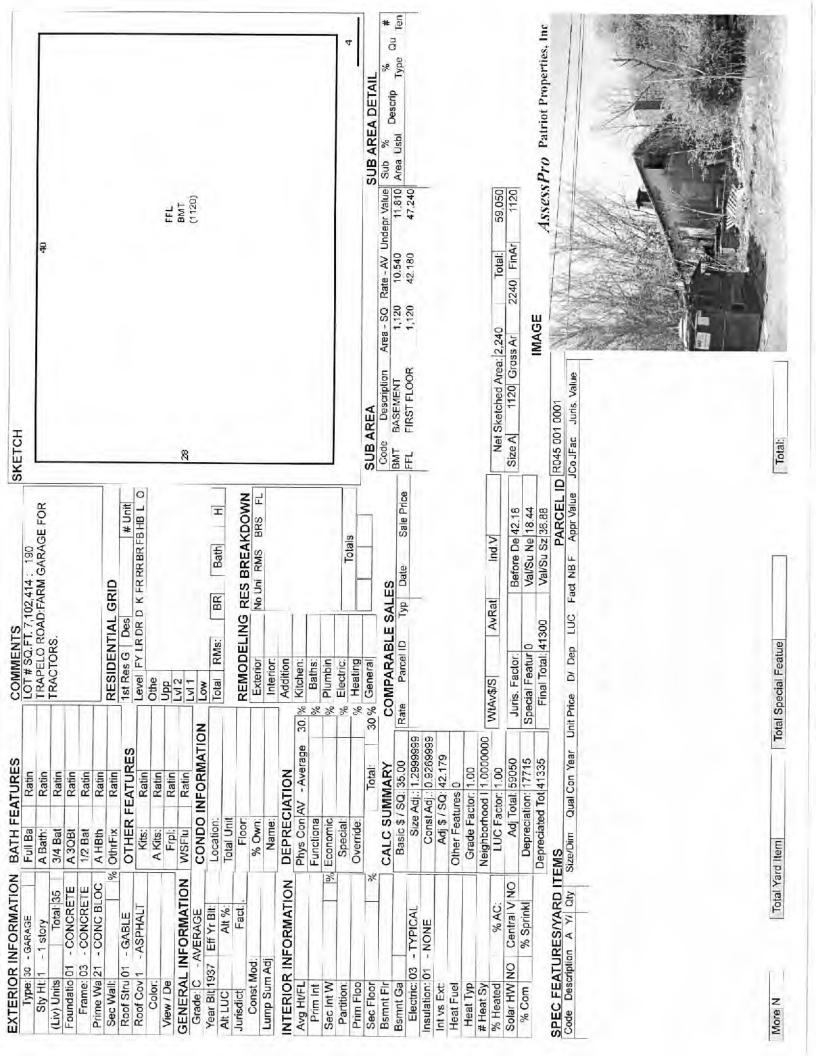
Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total AC/H 0.00000


apro

Datriot Properties Inc. USER DEFINED Notes Name LandReas BldReason ASR Map Reval Dis Prior 1d# Prior Id# Fact Dist: 55,843,400 Fact Use Value B Time 05/04/1 14:06:0 Time 11.16.0 User Acct Insp Date 112899 GIS Ref GIS Ref 112899 TOTAL ASSESSED: **ACTIVITY INFORMATION** apro LASTR Date Date 08/05/1 PRINT Land Code Notes 11128991 Spec Legal Description Date PAT ACCT. % Entered Lot Size Class A Sale Code Sale Price V Tst Verif Assoc PCL Value City of Waltham Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 Infl 3 9 of 66 COMMERCIAL 4,960,400 55,843,400 4,960,400 /Parc 63.3 PREVIOUS ASSESSMENT

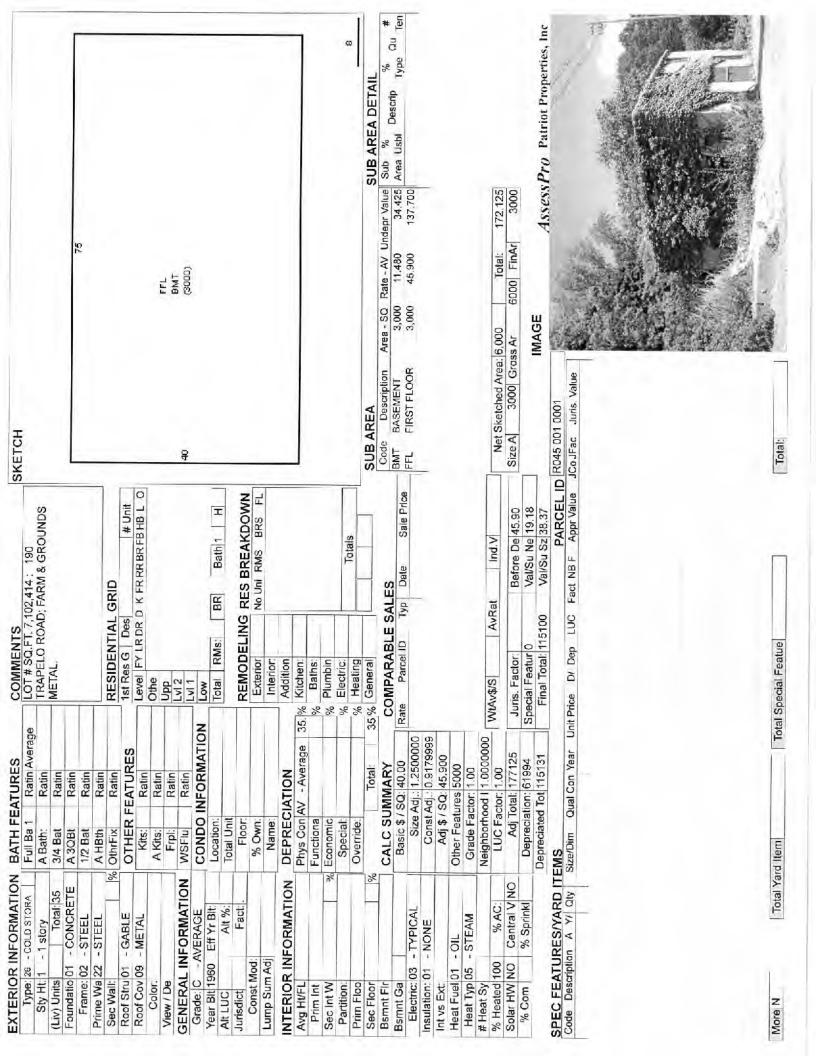

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value Total Value 8 Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Size Land Value Source: Market Adj Co Total Value per SQ unit /Card 65.41 8 CARD Infl 1 TAX DISTRIC 0.000 0.000 156,600 Influ eigh Neigh Legal Ref Typ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh Use Code Building Value Yard Items 300 0. 0.000 NA SALES INFORMATION Price 4,960,400 Unit 4,960,400 54,303,700 BUILDING PERMITS
Date Number Desc 0 Unit Base Value Grantor Depth / Unit Type Land Type Facto Total Parcel Total Card 0001 Fot DORMITORY Building Built about 1953. Having Primarily BRICK Exterior and TAR + GRAVEL Roof Cover. with 1 Units, 0 Baths, 8 HalfBaths, 0 3/4 Bath Descrip Com. Int SO. FT. Own Oc Direction/Street/City TRAPELO RD, WALTHAM This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) Type AND SECTION (First 7 lines only) Cod Unit # Topo Stree 41 Block Item Traffi xmpt 001 NARRATIVE DESCRIPTION Amount OTHER ASSESSMENTS Owner CITY OF WALTHAM PROPERTY LOCATION No of PROPERTY FACTORS Units Cutr Cut PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Use Description Fact Descrip/No Alt No OWNERSHIP R045 Map test 903 MUNICPL SVProv MA Census Flood Haz 190 St/Prov Street Twn/Cit Owner Street Owner Owner Postal Owner 0 0 Code o

2017 Total Spl Cre apro Total: Database: AssessPro Prime NB D N4 Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

Datriot Properties Inc. USER DEFINED Notes Name LandReas BidReason ASR Map Prior Id# Prior Id# Reval Dis Prior Id# Prior Id# Fact Dist: Prior Id# Prior Id# Prior Id# Prior Id# Prior Id # 55,843,400 Fact Use Value By Time Time 11:16:2 05/04/1 | 14:06:1 Insp Date User Acct GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION LASTR apro Date Date 08/05/1 PRINT Land Code Notes 1112899! Spec Date Legal Description PAT ACCT. % Entered Lot Size Class Sale Code Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 三里3 10 of 66 COMMERCIAL 41,300 41,300 55,843,400 /Parc 63.3 Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value 8 Amount C/O Last Visit Fed Cod F. Descrip Inf 2 1,539,400 Land Value Total Value per SQ unit /Card 36.88 CARD % Inf 1 TAX DISTRIC 0.000 Land Size Influ eigh 156.600 Neigh Date IN PROCESS APPRAISAL SUMMAR Adj Neigh Use Code Building Value Yard Items 300 0. 0.000 N4 Legal Ref Typ PREVIOUS ASSESSMENT Descrip SALES INFORMATION Price Source: Market Adj Co Ē 54,303,700 BUILDING PERMITS 0 Chit Base Value Number Grantor No of Depth / Unit Type Land Type Facto Total Parcel Total Card Date 0001 Lot Building Built about 1937, Having Primarily CONC BLOCK Exterior and ASPHALT Roof Cover, with 0 Units, 0 Baths, 0 HalfBaths, 0 3/4 Baths, 0 Rooms T Descrip mainly classified as MUNICPL with a(n) GARAGE Com. Int SQ. FT. Own Oc This Parcel contains 6.821,497 SQ. FT. of land Direction/Street/City TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only) Cod # HUN Topo Stree 41 Block tem Traffi xmpt 001 NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION PROPERTY FACTORS Cutr Contr REVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Use Description LUC Descrip/No Alt No OWNERSHIP R045 Map test 903 MUNICPL SVProv MA Census Flood Haz. 190 St/Prov Street Twn/Cit Postal Owner Street Owner Owner Owner 0 o

2017 Total Spl Cre apro Total Database: AssessPro Prime NB D N4 Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

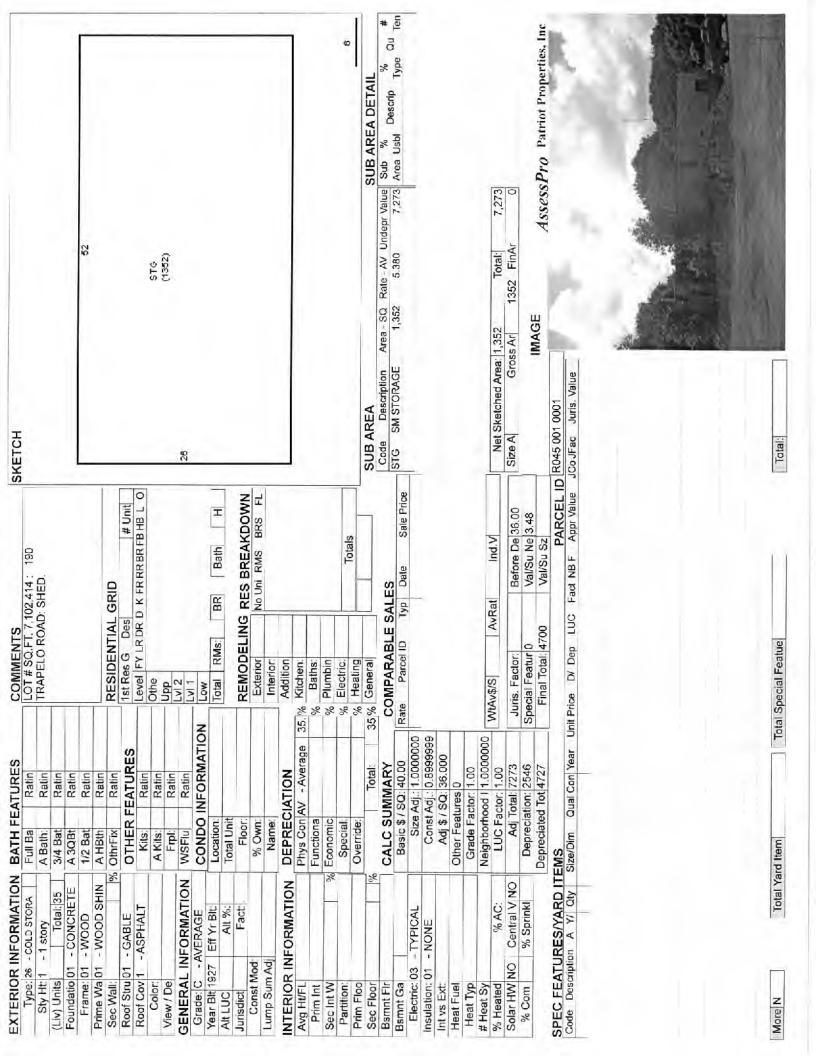
Datriot Properties Inc. USER DEFINED Notes Name LandReas Year BldReason Reval Dis ASR Map Prior Id# Prior Id# Prior 1d# Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Fact Dist: Prior Id# 55,843,400 Fact Use Value A Time 14:06:2 10:16:3 Time Insp Date User Acct GIS Ref GIS Ref 112899 112899 TOTAL ASSESSED: **ACTIVITY INFORMATION** LASTR apro 05/04/1 Date 08/21/1 Date PRINT Land Code Notes Result 1112899! Spec Legal Description Date PAT ACCT. % **Entered Lot Size** Class Ħ Sale Code Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 115,100 55,843,400 /Parc 63.3 PREVIOUS ASSESSMENT


Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value 115,100 11 of 66 INDUSTRIAL Total Value % Amount C/O Last Visit Fed Cod F. Descrip infl 2 1,539,400 Land Value Total Value per SQ unit /Card 38.37 % CARD Infl 1 TAX DISTRIC 0.000 0.000 Influ eigh 156.600 Land Size Adj Neigh Neigh Typ Date IN PROCESS APPRAISAL SUMMAR 300 Use Code Building Value Yard Items 0. 0.000 N4 Legal Ref Descrip SALES INFORMATION Price Source: Market Adj Co 115,100 Unit 54,303,700 BUILDING PERMITS
Date Number Desc Unit Base Value Grantor Facto 5 Total Parcel Total Card PriceUnits Unit Type Land Type with 0 Units, 1 Baths, 0 HalfBaths, 0 3/4 Baths, 0 Ro Descrip Com. Int STORAGE Building Built about 1960, Having Primarily STEEL Exterior and METAL Roof Cover, SO. FT. Own Oc This Parcel contains 6.821,497 SQ, FT, of land mainly classified as MUNICPL with a(n) COLD Direction/Street/City TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only)
Jse LUC No of Depth Cod Unit #: Stree 41 Block Traffi llem xmpt Lopo NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION Units Cutr Crit PROPERTY FACTORS PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Use Description Fact Twn/Cit WALTHAM Descrip/No Alt No OWNERSHIP Map test. 903 MUNICPL St/Prov MA Census: Flood Haz: St/Prov Owner Street Owner Owner Street Twn/Cit Postal Owner ٥ 0

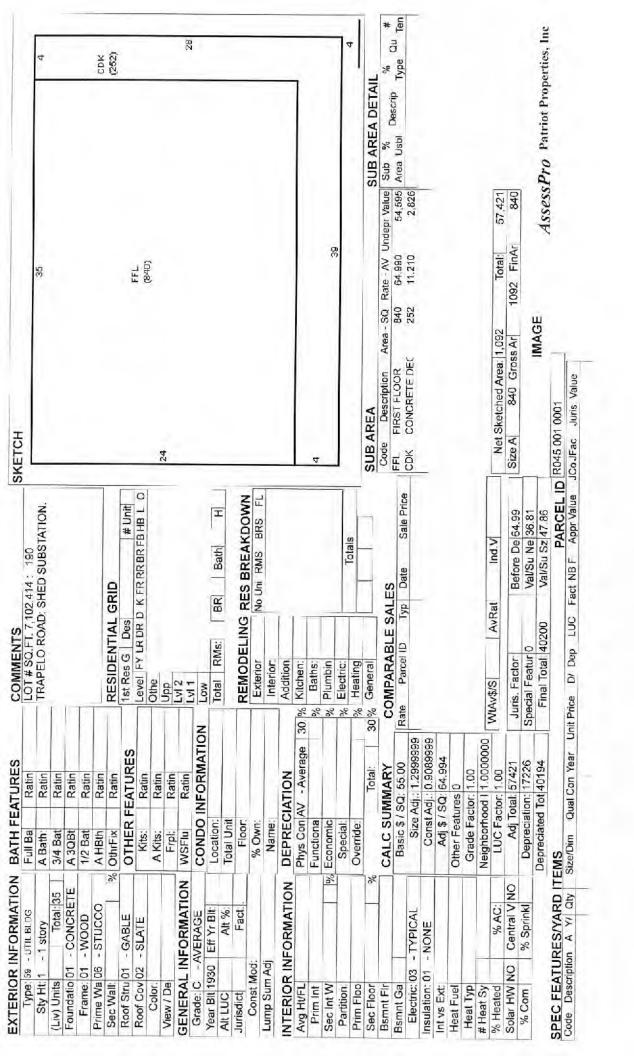
0001

001

R045


2017 Total: Spl Cre apro Total: Database; AssessPro Prime NB D N4 Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0 00000

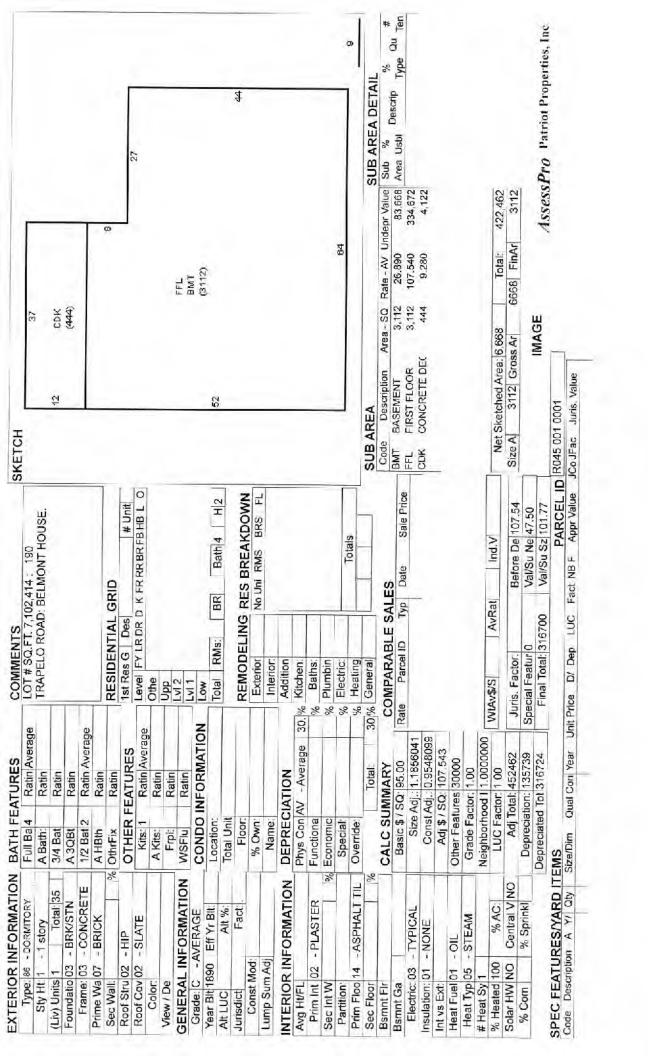
Properties Inc. Datriot USER DEFINED Notes Name Year LandReas BldReason Prior Id# Prior Id# Prior Id# ASR Map Fact Dist. Reval Dis Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Prior Id # 55,843,400 Code Fact Use Value B Time 08/21/1 10:16:0 Time 05/04/1 14:06:4 User Acct Insp Date GIS Ref GIS Ref 112899 112899 TOTAL ASSESSED: ACTIVITY INFORMATION LAST R apro Date Date PRINT Notes Result 1112899! Spec Date Legal Description PAT ACCT % Entered Lot Size Class ₹ Sale Code Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Sign Total Land: /Parc 63.3 Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 Infl 3 4,700 4,700 55,843,400 12 of 66 INDUSTRIAL Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value % Number Descrip Amount C/O Last Visit Fed God F. Descrip Infl 2 1,539,400 Land Value % CARD Total Value per SQ unit /Card N/A Infl 1 TAX DISTRIC Adj Neigh Influ eigh 0.000 156.600 Land Size Date IN PROCESS APPRAISAL SUMMAR Use Code Building Value Yard Items 300 0. 0.000 N4 Legal Ref Typ PREVIOUS ASSESSMENT Source: Market Adj Co SALES INFORMATION Price 4,700 4,700 Ē 54,303,700 BUILDING PERMITS 0 Chit Value Base Grantor PriceUnits Unit Type Land Type Facto Total Parcel 5 Total Card Date 0001 SITE Lot Roof Cover, with 0 Units, 0 Baths, 0 HalfBaths, 0 3/4 Descrip Com. Int SQ. FT. STORAGE Building Built about 1927, Having Primarily WOOD SHING Exterior and ASPHALT Own Oc This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) COLD Direction/Street/City TRAPELO RD, WALTHAM Type Item Cod AND SECTION (First 7 lines only)


Ise LUC No of Depth Unit #. Stree 41 Block Topo Traffi xmpt 00 NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION Units PROPERTY FACTORS Cutr Cutr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 wn/Cit WALTHAM Use Description LUC Descrip/No Alt No R045 OWNERSHIP Map tes: 903 MUNICPL SVProv MA Census Flood Haz 190 St/Prov Street Iwn/Cit Postal: Street Owner Owner Owner Owner 0 0 _

Total A Call o cocco	4					
וטומו אכיהן טיטטטט	lotal SF/S 0,00	Parcel LU 903 MUNICPL	Prime NB D N4	Total	Spl Cre	Tota
Disclaimer: This Information	n is believed to be correct	but is subject to change and is not	warranteed. Database: AssessPro		apro	

Datriot Properties Inc. USER DEFINED Notes Name Year LandReas BidReason Prior Id# Prior Id# Prior Id# ASR Map Fact Dist Reval Dis Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# 55,843,400 Fact Use Value By 05/04/1 14:06:5 Time Time 08/05/1 11:17:2 User Acct Insp Date GIS Ref GIS Ref 112899 112899 ACTIVITY INFORMATION TOTAL ASSESSED: LAST R apro Date Date PRINT Land Code Notes Result 112899 Spec Date Legal Description PAT ACCT. % **Entered Lot Size** Class ¥ Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Total Land: /Parc 63.3 Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 Infl 3 3 of 66COMMERCIAL 40,200 40,200 55,843,400 Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value 8 Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 47.86 % CARD Sale Code Infl 1 TAX DISTRIC Influ eigh 0.000 156.600 Use Code Building Value Yard Items Land Size Neigh IN PROCESS APPRAISAL SUMMAR Date Adj Neigh 300 0. 0.000 NA Legal Ref Typ PREVIOUS ASSESSMENT SALES INFORMATION Source: Market Adj Co. Unit Price 40,200 54,303,700 BUILDING PERMITS
Date Number Desc Base Value Grantor Units PriceUnits Unit Type Land Type Facto 5 Total Parcel Total Card 903 0001 Pot Tot Building Built about 1930, Having Primarily STUCCO Exterior and SLATE Roof Cover, with 0 Units, 0 Baths, 0 HalfBaths, 0 3/4 Baths, 0 Rooms T This Parcel contains 6,821,497 SQ, FT, of land mainly classified as MUNICPL with a(n) UTIL BLDG Descrip Com. Int SO. FT. Own Oc Direction/Street/City TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only)
Use LUC No of Deptin/ Cod Cuit # Stree 41 Block tem Traff xmpt Topo 001 NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION Cut Cut PROPERTY FACTORS
Ite Code Descip % PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 fwn/Cit WALTHAM Use Description LUC Descrip/No Alt No R045 OWNERSHIP Map test 903 MUNICPL St/Prov MA Census: Flood Haz: St/Prov Owner Street Street Twn/Cit Owner Postal: Owner Owner 0 0

2017 Total: Spl Cre apro Total: Database: AssessPro Prime NB D N4 Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000



Total Yard Item

Total Special Featue

Datriot Properties Inc. **JSER DEFINED** Notes Name LandReas BldReason Year Prior Id # Prior Id# ASR Map Fact Dist: Reval Dis Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Prior Id # Prior Id# 55,843,400 Fact Use Value B Time 08/05/1 11:17:4 05/04/1 14:07:0 Time Insp Date User Acct GIS Ref GIS Ref 112899 112899 ACTIVITY INFORMATION TOTAL ASSESSED: LAST R apro Date Date PRINT Land Code Notes Result Spec Legal Description Date PAT ACCT. % **Entered Lot Size** Class ₹ Sale Code Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Sign Total Land: Land Unit Type: Appraised Value Parcel ID | R045 001 0001 Notes Comment 8 Infl 3 /Parc 63.3 14 of 66COMMERCIAL 316,700 316,700 55,843,400 Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value % Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Total Value per SQ unit /Card 101.77 Land Value 8 Infl 1 TAX DISTRIC Influ eigh 0.000 0.000 156.600 Building Value Yard Items Land Size Neigh Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 0. 0.000 N4 Legal Ref Typ PREVIOUS ASSESSMENT Descrip Source. Market Adj Co SALES INFORMATION Price 316,700 Ē 54,303,700 BUILDING PERMITS
Date Number Desc 0 Unit Value Base Grantor PriceUnits Unit Type Land Type Facto Use Code 5 Total Parcel Total Card 903 SITE 0001 Ę DORMITORY Building Built about 1890. Having Primarily BRICK Exterior and SLATE Roof Cover, with 1 Units, 4 Baths, 2 HalfBaths, 0 3/4 Baths, 0 Ro Descrip Com. Int SQ. FT. Own Oc his Parcel contains 6,821,497 SQ. FT. of land Direction/Street/City TRAPELO RD WALTHAM Type LAND SECTION (First 7 lines only)
Use Description LUC No of Depth / Ur
Code Description Fact Units PriceUnits Ur So mainly classified as MUNICPL with a(n) ##=0 Stree 41 Block Item Traffi xmpl Topo 001 NARRATIVE DESCRIPTION Amount Code Descrip/No Amc Owner CITY OF WALTHAM PROPERTY LOCATION Cut PROPERTY FACTORS
Its Code Descip % Cntr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 FWN/Cit WALTHAM Alt No R045 **OWNERSHIP** lest Map 903 MUNICPL St/Prov MA Census Flood Haz 190 SVProv Street Owner Street [wn/Cit Owner Owner Owner Postal 0 0

2017 Total: Spl Cre apro Total Database: AssessPro Prime NB D N4 Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

Total Special Featue

Total Yard Item

SSED: 55,843,400		User Acet	112899	GIS Ref	000	GIS Kei	lusp Date UdITIO	A Properties I	USER DEFINE	Prior Id #	PRINT Prior Id #	Date Time Prior 14 #	05/04/1 14:07:2 Prior Id #	AST R Prior ld #	Time	11.18.0	0.01.11	66	T	Reval Dis	Year	LandReas	BidReason			ult By Name							/ /		
City of Waltham	Walana.	Legal Description				Entered Lot Size	Total Land:	Land Unit Type:	R045 001 0001	Notes Date	PR		90	N N		800		PAT ACCT.							ACTIVITY INFO	nent Date Result						Sign	1800	d Alt	Land
CARD City of	26.0	Total Value	1,715,300			1,715,300	55,843,400	raicos:5	Parcel ID RO	ie Asses'd Valu									>							scrip Comment								Infi 2 % Infi 3	
		Yard Items Land Size Land Value	0.000			0.000	Total Value per SO upit (Cord E4 06	ממול במול במול במול במול במול במול במול	_	lax Yr Use. Cat. Bidg Value. Yrd Item Land Size Land Value Total Value. Asses'd Valu								TAX DISTRIC	Typ Date Sale Code Sale Price							Amount CO Last Visit Fed Cod F. Descrip								Adj Neigh Neigh Infl 1 % In	0.000 N4
	ESS APPRAI	Use Code Building Value Ya	0.05(1.7.1)			Total Barrel 64 202 200	Market Adi Co	-	PREVIOUS ASSESSMENT	lax Yr Use Cat Bidg Value								ORMA	Grantor Legal Ref Typ						MITS	Nambel Descrip								LT Base Unit	0 0
Block Lot	ATION Direction/Stroot/Cit.	TRAPELO RD WALTHAM		ALTHAM			_		Cotro							Cntr			This Parcel contains 6,821,497 SQ. FT of land	Building Built about 1891 Having Primarily RPICK	Exterior and TAR + GRAVEL Roof Cover, with 0	OTHER ASSESSMENTS 0 3/4 Baths, 0 Rooms T	- Contract	COLL III		House Committee	70 Hem Cod Descrip	t	-	Tono	Stree 41	Traffi	irst 7 lines only)	No of Depth / Unit Type Land Type	0 SQ. FT. SITE
Map	NO AH NO AH NO	06	OHID	Owner CITY OF WALTHAM	Owner	Owner	Street 610 MAIN ST	Two/Cit W/Al THAM	St/Prov MA	Postal: 02452-5552	PREVIOUS OWNER	Owner	Owner	Street	Twn/Cit	St/Prov	Postal:	NARRATIVE DESCRIPTION	This Parcel contains (Building Built about 18	Exterior and TAR + GI	Onits, 0 Baths, 6 Halff	Code Description	Ш		PROPERTY FACTORS	Z code pescip	0	 Flood How	D 0 test	,		AND SECTION (First 7 lines only)	Use Description LUC	903 MUNICPL

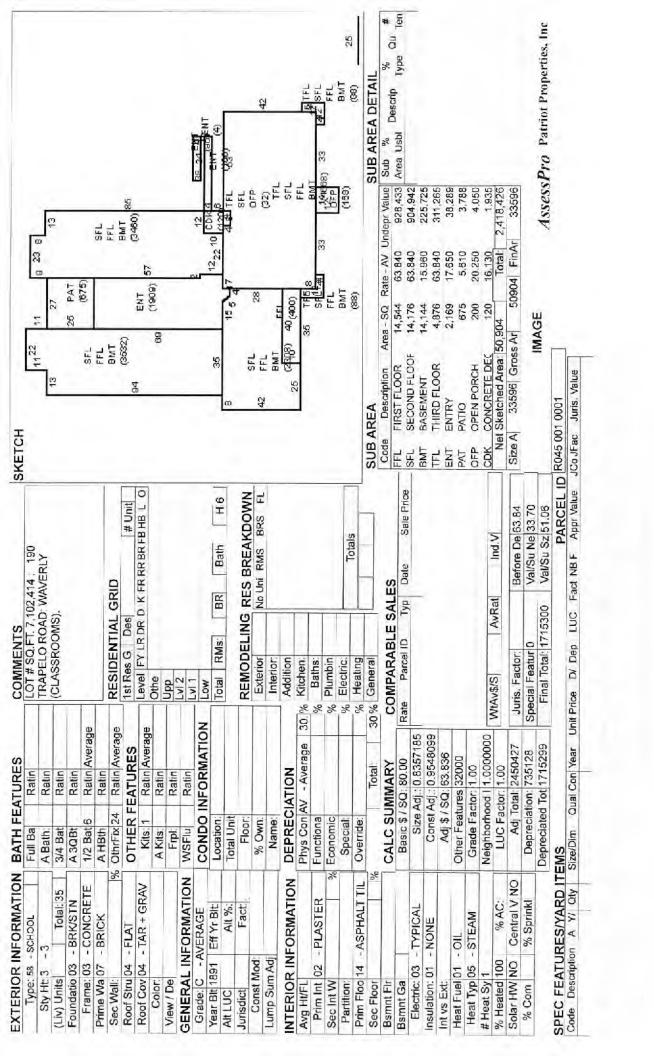
2017

Total:

Spl Cre

Total:

Prime NB D N4


Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed. Database: AssessPro

Parcel LU 903 MUNICPL

Total SF/S 0.00

Total AC/H 0.00000

apro

Total Yard Item

Total Special Featue

Total:

JSER DEFINED Datriot Properties Inc. Notes Name BidReason LandReas Prior Id# Prior Id# ASR Map Reval Dis Prior Id# Fact Dist: Prior Id# Prior Id # Prior Id# Prior Id# Prior Id # Prior Id # 55,843,400 Land Code Fact Use Value By Time 05/04/1 14:07:3 08/05/1 11:18:2 Time User Acct Insp Date 112899 GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION
Date Result LAST R apro Date Date PRINT Notes 11128991 Spec Legal Description Date PAT ACCT % Entered Lot Size Class ¥ Sale Code Sale Price V Tst Verif Assoc PCL Value City of Waltham Sign Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 16 of 66 COMMERCIAL 1,037,700 55,843,400 /Parc 63.3 1,037,700 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value 8 Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 66.00 8 Infl 1 TAX DISTRIC Building Value Yard Items Land Size Influ eigh 0.000 156,600 Neigh Legal Ref Typ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 0. 0.000 N4 Descrip SALES INFORMATION Price 1,037,700 Source: Market Adj Co Sign 1,037,700 54,303,700 BUILDING PERMITS 0 is 5 Base Value Number Grantor No of Depth / Unit Type Land Type Facto Use Code Total Parcel Total Card Date 0001 Pot Primarily BRICK Exterior and SLATE Roof Cover with 1 Units, 12 Baths, 2 HalfBaths, 0 3/4 Baths, 0 R Item Cod Descrip Com. Int SQ. FT. DORMITORY Building Built about 1898, Having PROPERTY LOCATION

Direction/Street/City TRAPELO RD, WALTHAM Own Oc This Parcel contains 6.821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) Type AND SECTION (First 7 lines only) Unit # Stree 41 Block Odo Traffi xmpt 001 VARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS Cutr Crit PROPERTY FACTORS PREVIOUS OWNER Street 610 MAIN ST Descip Postal: 02452-5552 Twn/Cit WALTHAM Use Description LUC Descrip/No R045 OWNERSHIP Map est 903 MUNICPL St/Prov MA Census Flood Haz: Street St/Prov Owner Twn/Cit Owner Owner Owner Street Postal 0 0 0 _

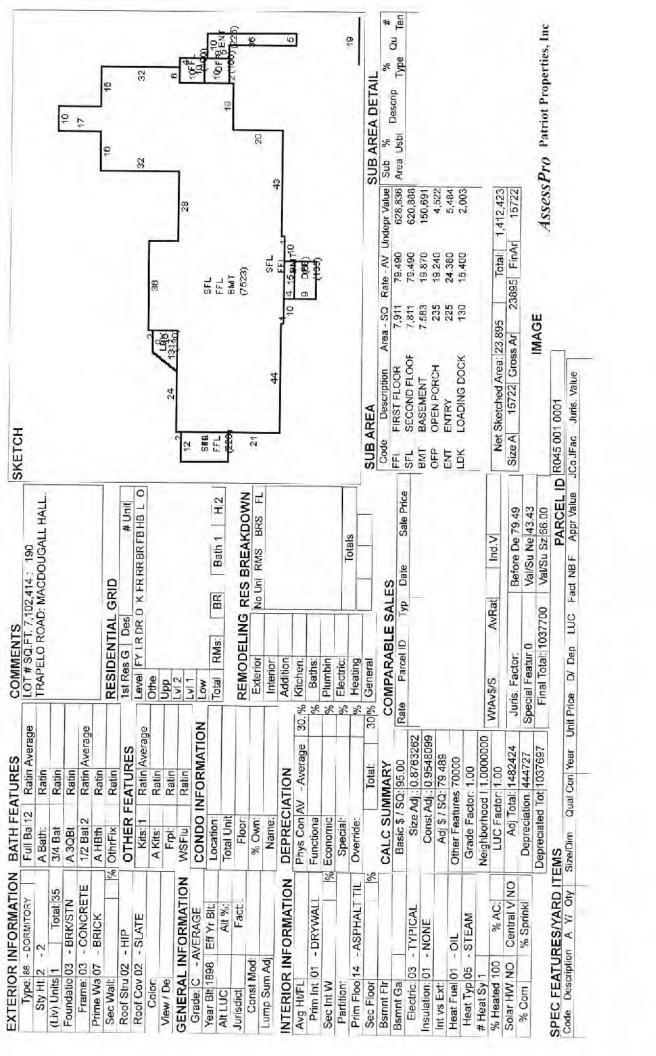
2017

Total:

Spl Cre

Total:

apro


Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

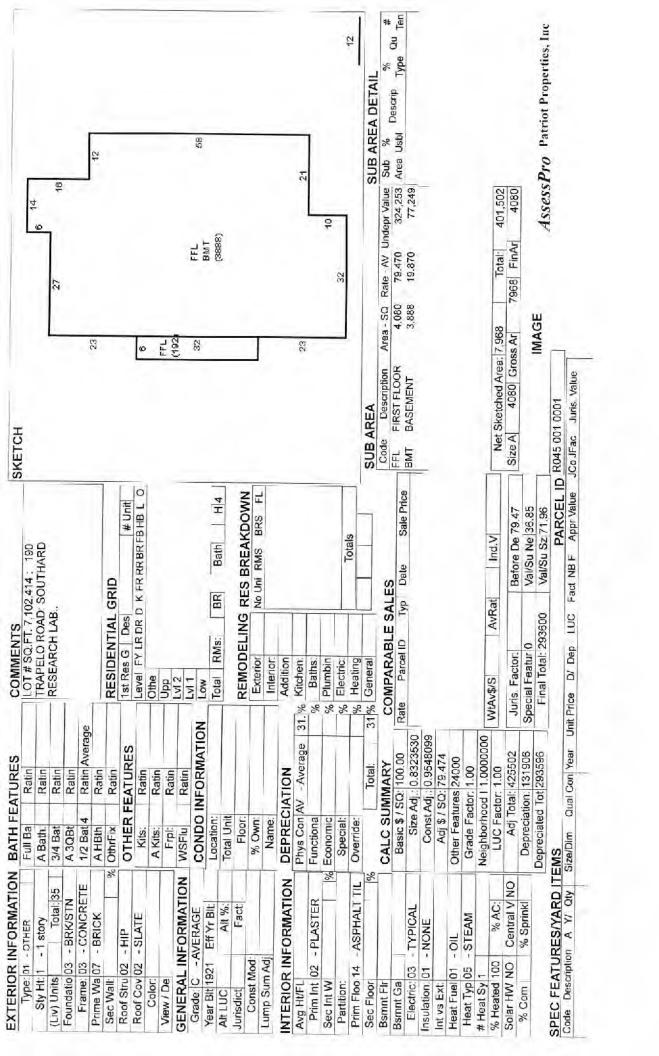
Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total

Total Special Featue

Total Yard Item


Datriot Properties Inc. USER DEFINED Notes Name LandReas BidReason ASR Map Prior Id# Reval Dis Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Fact Dist: Prior Id# Prior Id# Prior Id# 55,843,400 Fact Use Value B Time Time 14:07:4 11:18:3 User Acct Insp Date GIS Ref GIS Ref 112899 112899 TOTAL ASSESSED: ACTIVITY INFORMATION
Date Result LAST R apro 05/04/1 Date Date 08/05/1 PRINT Land Code Notes 11128991 Spec Date Legal Description PAT ACCT. % Entered Lot Size Class ¥ Sale Code Sale Price V Tst Verif Assoc PCL Value City of Waltham Sign Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 Infl 3 /Parc 63.3 17 of 66 RESIDENTIAL 293,600 55,843,400 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value 293,600 Total Value 8 Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 71.96 8 CARD Infl 1 TAX DISTRIC eigh Land Size 0.000 156,600 Influ Neigh Date IN PROCESS APPRAISAL SUMMAR
Use Code Building Value Yard Items Lan Adj Neigh 300 0. 0.000 N4 Legal Ref Typ Descrip SALES INFORMATION Price Source: Market Adj Co Chit 293,600 54,303,700 BUILDING PERMITS
Date Number Desc 0 Unit Base Value Grantor Units PriceUnits Unit Type Land Type Facto b Total Parcel Total Card 0001 Fot Exterior and SLATE Roof Cover, with 0 Units, 0 Baths, 4 HalfBaths, 0 3/4 Baths, 0 Rooms Total, and Descrip Building Built about 1921, Having Primarily BRICK Com. Int This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) OTHER SO. FT. Own Oc Direction/Street/City TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only) Cod Depth / Unit # Stree 41 Block Item Traffi xmpl lopo 001 NARRATIVE DESCRIPTION Amount PROPERTY FACTORS

Its Code Descip %

Z Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION No of Cutr Cutr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Use Description LUC Descrip/No Alt No R045 OWNERSHIP Map test 903 MUNICPL St/Prov MA Census Flood Haz St/Prov Street Twn/Cit Postal: Owner Owner Street Owner Owner 0 o

2017 Total: Spl Gre apro Total: Database: AssessPro Prime NB D N4 Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

Total:

Total Special Featue

Total Yard Item

JSER DEFINED Datriot Properties Inc. Notes Name BldReason LandReas ASR Map Prior Id# Prior ld# Prior Id# Prior Id# Reval Dis Prior Id# Fact Dist: Prior Id# Prior Id# Prior Id# Prior Id# 55,843,400 Land Code Fact Use Value B Time Time 05/04/1 14:07:5 11:18:5 Insp Date User Acct GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION
Date Result LAST R apro 08/05/1 Date Date PRINT Notes 11128991 Legal Description Date PAT ACCT. % Entered Lot Size Class A Sale Code Sale Price V Tst Verif Assoc PCL Value City of Waltham Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 548,700 18 of 66 RESIDENTIAL 55,843,400 548,700 /Parc 63.3 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value Total Value % Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 70.26 8 CARD Infl 1 TAX DISTRIC Use Code Building Value Yard Items Land Size 0000 156.600 Influ eigh Neigh Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 Legal Ref Typ 0. 0.000 NA Descrip Source: Market Adj Co SALES INFORMATION Price 548.700 Unit 54,303,700 BUILDING PERMITS 0 Zit C Base Value Number Grantor PriceUnits Unit Type Land Type Facto Total Parcel Total Card Date 0001 Lot Exterior and SLATE Roof Cover, with 0 Units, 0 Baths, 4 HalfBaths, 0 3/4 Baths, 0 Rooms Total, and Item Cod Descrip Building Built about 1921, Having Primarily BRICK Com, Int mainly classified as MUNICPL with a(n) OTHER SQ. FT. PROPERTY LOCATION

Direction/Street/City TRAPELO RD, WALTHAM Own Oc This Parcel contains 6,821,497 SQ. FT. of land Type LAND SECTION (First 7 lines only)
Use Description LUC No of Depth / Units PriceUnits Units PriceUnits Unit # Stree 41 Block Traffi xmpt Lopo 001 VARRATIVE DESCRIPTION Amount OTHER ASSESSMENTS Owner CITY OF WALTHAM PROPERTY FACTORS
Ite Code Descip % Cutr Cntr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Descrip/No OWNERSHIP R045 Map test 903 MUNICPL St/Prov MA Census: Flood Haz. St/Prov Owner **Iwn/Cit** Owner Street Owner Street Postal Owner 0 Code _ 0

2017

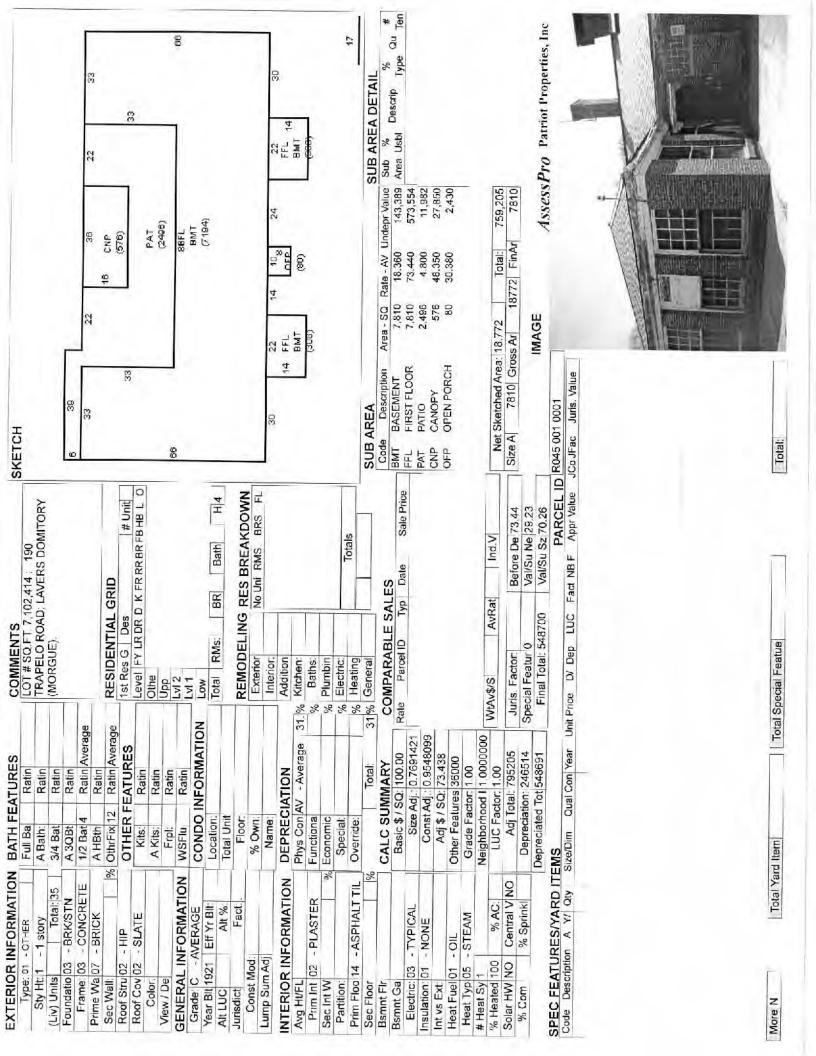
Total:

Spl Cre

Total:

Database: AssessPro

Prime NB D N4

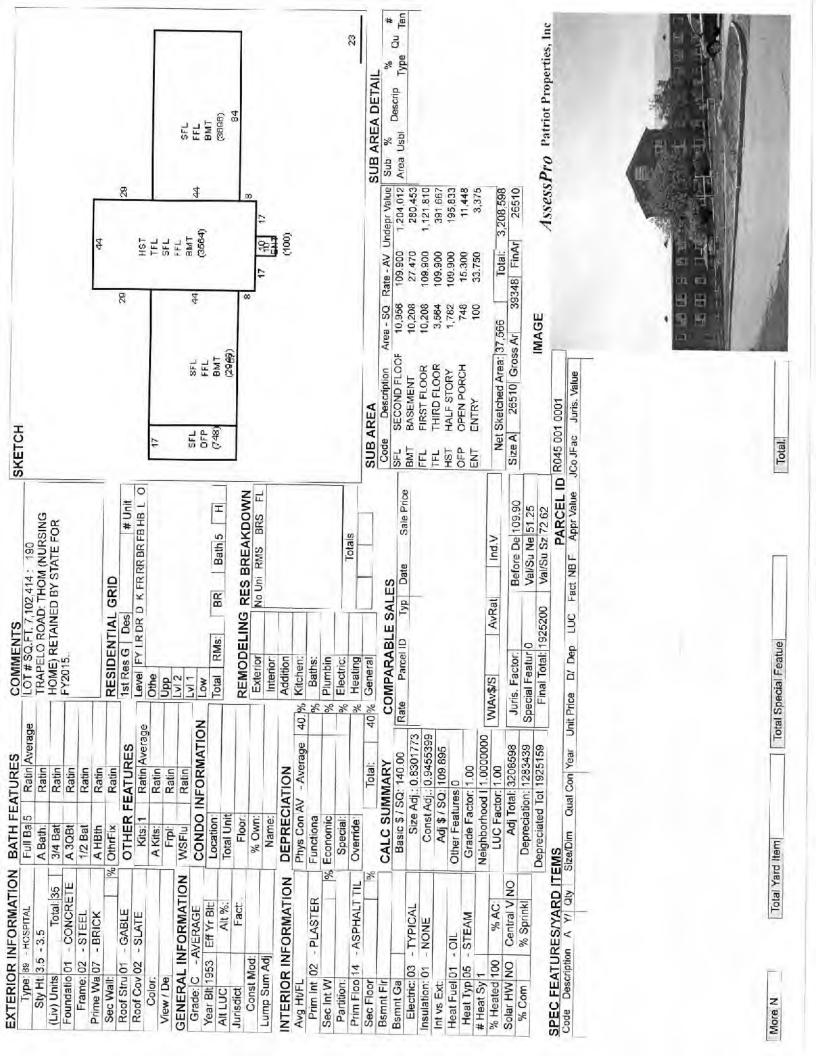

Parcel LU 903 MUNICPL

Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total AC/H 0.00000

apro

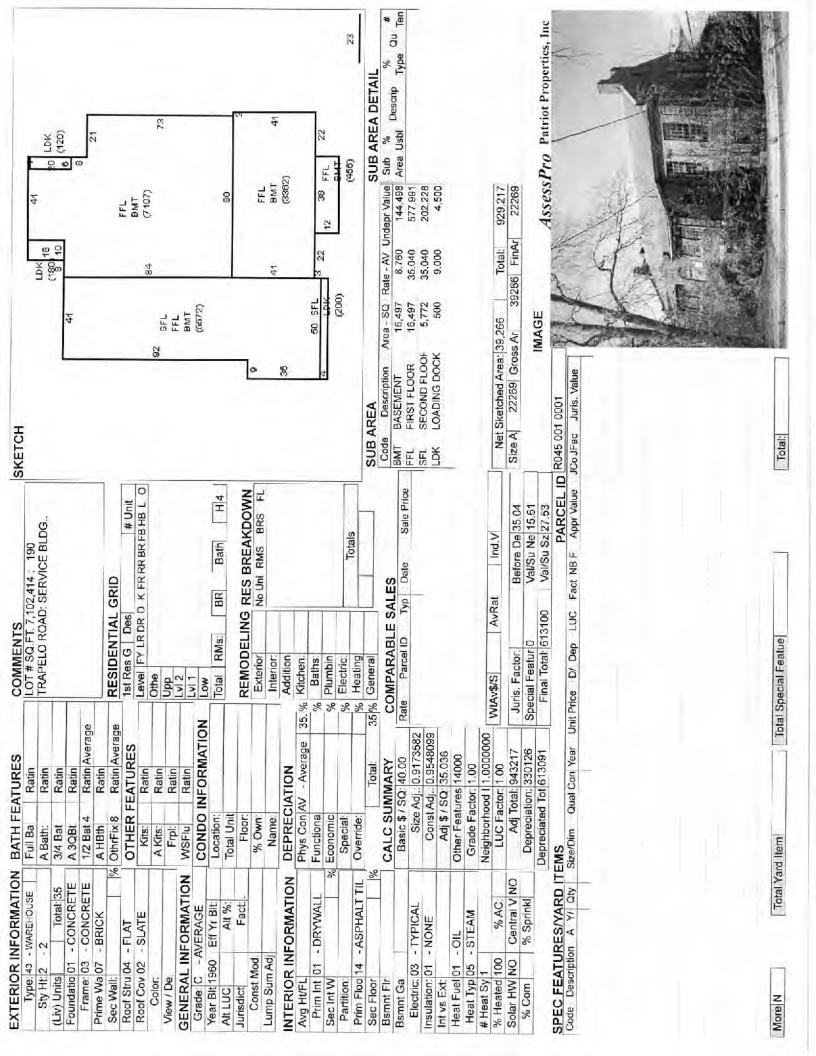


Properties Inc. Datriot JSER DEFINED Notes Name Year. LandReas BIdReason Prior Id# ASR Map Reval Dis Prior Id# Prior Id# Prior Id# Prior Id# Prior Id # Prior Id# Prior Id# Prior Id# Fact Dist 55,843,400 Fact Use Value By Time Date Time 08/05/1 11:19:1 05/04/1 | 14:08:1 User Acct Insp Date GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION LAST R apro Date PRINT Land Code Notes 11128991 Spec Legal Description Date PAT ACCT. % **Entered Lot Size** Class ¥ Sale Code Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 Infl 3 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value 1,925,200 55,843,400 /Parc 63.3 1,925,200 19 of 66 APARTMENT Total Value % Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 72.62 % Infi 1 TAX DISTRIC 0.000 0.000 156.600 Influ eigh Use Code Building Value Yard Items Land Size Neigh Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 0. 0.000 N4 Legal Ref Typ Number Descrip Source: Market Adj Co SALES INFORMATION Price 1,925,200 Chit 1,925.200 54,303,700 BUILDING PERMITS
Date Number Desc o Chit Base Value Grantor AND SECTION (First 7 lines only)
Jse
LUC No of Depth / Unit Type Land Type Late
ode Description Fact Units PriceUnits Total Parcel Total Card 0001 SITE Ę Exterior and SLATE Roof Cover, with 0 Units, 5 Baths, 0 HalfBaths, 0 3/4 Baths, 0 Rooms Total, and Item Cod Descrip This Parcel contains 6,821,497 SQ. FT. of land mainly dassified as MUNICPL with a(n) HOSPITAL Building Built about 1953, Having Primarily BRICK Com. Int SO. FT. Direction/Street/City TRAPELO RD, WALTHAM Own Oc Type Unit # Stree 41 Block odo Traffi xmpt 001 NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION Cutr PROPERTY FACTORS
Ite Code Descip %
Z Crit PREVIOUS OWNER Street 610 MAIN ST Use Code Description Fact 903 MUNICPL Postal: 02452-5552 Twn/Cit WALTHAM Descrip/No Alt No R045 OWNERSHIP Map test StyProv MA Flood Haz. Census: 190 Street Street Twn/Cit St/Prov Owner Owner Owner Owner Postal: 0 Code 0

Total	lola
Total	on order
D N4	Database: AssessPro
PL Prime NB	is not warranteed.
Parcel LU 903 MUNICI	but is subject to change and
Total SF/S 0.00	ation is believed to be correct
Total AC/H 0.00000	Disclaimer This Informatio

2017


Datriot Properties Inc. JSER DEFINED Notes Name LandReas BldReason Reval Dis ASR Map Prior Id# Fact Dist: 55,843,400 Fact Use Value è Time 14:08:2 Date Time 08/05/1 11:19:3 User Acct Insp Date GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION LAST R apro Date Spec J Land Code 05/04/1 PRINT Notes Result Legal Description Date PAT ACCT. 8 Entered Lot Size Class ¥ Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Sign Total Land: /Parc 63.3 Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes 8 Comment 613,100 infl 3 613,100 55,843,400 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value 20 of 66 INDUSTRIAL Total Value 8 BUILDING PERMITS

Date Number Descrip Amount C/O Last Visit Fed Cod F Descrip Infl 2 1,539,400 Land Value Source: Market Adj Co | Total Value per SQ unit /Card 27.53 % Sale Code Infl 1 TAX DISTRIC 0.000 156.600 Influ eigh Use Code Building Value Yard Items Land Size Neigh Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 Legal Ref Typ 0.0000 N4 SALES INFORMATION Price 613,100 613.100 54,303,700 Chit Chit Value Base Grantor Facto Total Parcel 5 **Fotal Card** Price Unit Type Land Type 0001 Ę with 0 Units, 0 Baths, 4 HalfBaths, 0 3/4 Baths, 0 Ro Descrip Com. Int WAREHOUSE Building Built about 1960, Having Primarily BRICK Exterior and SLATE Roof Cover, SQ. FT. PROPERTY LOCATION

Direction/Street/City Own Oc TRAPELO RD, WALTHAM This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) Type Item Cod AND SECTION (First 7 lines only) Unit #: Stree 41 Block Traffi xmpt lopo 001 NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS Cntr Cut Units PROPERTY FACTORS
Its Code Descip % PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Descrip/No Use Description LUC R045 **OWNERSHIP** Map test St/Prov MA 903 MUNICPI Flood Haz: Census: St/Prov Street Street Owner Owner Owner Owner Twn/Cit Postal 0 0

2017 Total: Spl Cre Total. Database: AssessPro Prime NB D N4 Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

Datriot Properties Inc. JSER DEFINED Notes Name Year. LandReas BIdReason ASR Map Reval Dis Prior Id# Prior Id # Prior Id# Fact Dist 55,843,400 Fact Use Value B Time 08/05/1 11:19:4 Time 05/04/1 14:08:3 User Acct Insp Date GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION AST R apro Date Date PRINT Land Code Notes 1112899! Spec Legal Description Date PAT ACCT. % Entered Lot Size Class ₹ Sale Price V Tst Verif Assoc PCL Value City of Waltham Sign Date Total Land: /Parc 63.3 Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 21 of 66 COMMERCIAL Infl 3 59,900 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Assasd Value 55,843,400 Total Value % Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Source: Market Adj Co | Total Value per SQ unit /Card 55.46 % Infl 1 Sale Code TAX DISTRIC Building Value Yard Items Land Size 0.000 0.000 156.600 eigh Neigh Influ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 Legal Ref Typ D. 0.000 N4 SALES INFORMATION Price 59.900 59,900 Cuit 54,303,700 BUILDING PERMITS

Date Number Desc Chit Value Base Grantor Facto Use Code 5 **Fotal Parcel** Total Card Depth / Unit Type Land Type 0001 Lot Building Built about 1940, Having Primarily CONC BLOCK Exterior and TAR + GRAVEL Roof Cover, with 0 Units, 0 Baths, 2 HalfBaths, 0 3/4 Baths, 0 Ro Descrip NARRATIVE DESCRIPTION
This Parcel contains 6.821, 497 SQ. FT. of land
mainly classified as MUNICPL with a(n) GARAGE Com. Int SO. FT. Own Oc Direction/Street/City TRAPELO RD, WALTHAM Type LAND SECTION (First 7 lines only)
Use Description LUC No of Depth / Units PriceUnits Un Cod Unit # Stree 41 Block tem xmpt Topo Traffi 001 Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION PROPERTY FACTORS
Ite Code Descip % Cutr Cutr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Descrip/No Alt No OWNERSHIP R045 Map test 903 MUNICPL SVProv MA Census: Flood Haz. 190 StrProv Street Street Owner Owner Owner Owner Twn/Cit Postal 0 Code 0

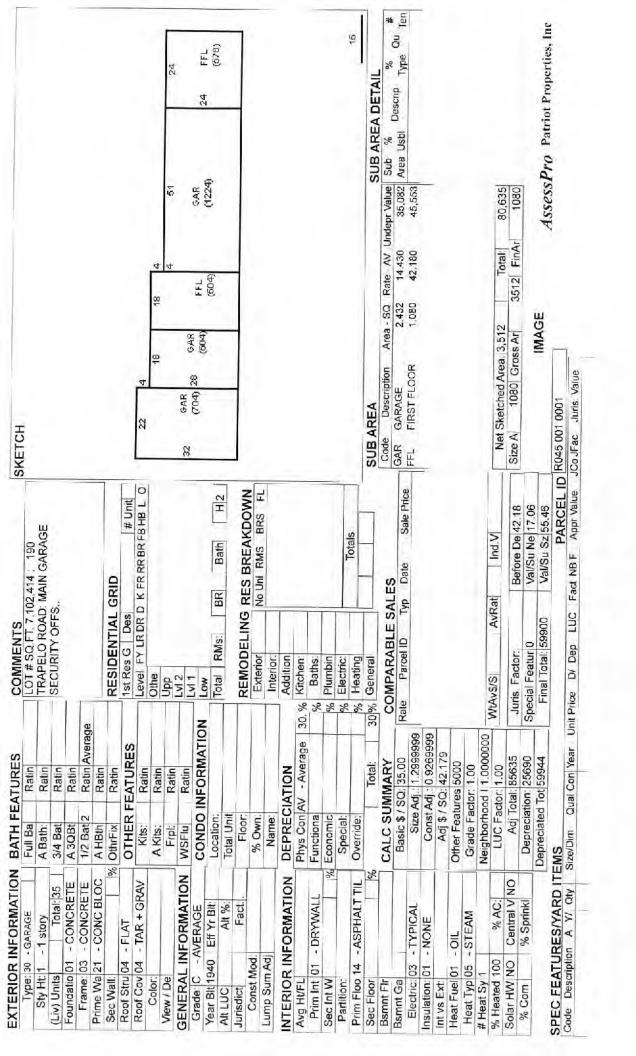
2017

Total:

Spl Cre

Total:

apro


Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total Yard Item

More N

Total Special Featue

Total:

Properties Inc. Datriot JSER DEFINED Notes Name Year LandReas BIdReason Prior Id# Prior Id# ASR Map Reval Dis Prior Id# Prior Id# Prior ld# Prior Id# Prior Id# Prior Id# Prior Id# Fact Dist 55,843,400 Fact Use Value B 08/05/1 11:20:2 Time Time 05/04/1 14:08:4 User Acct Insp Date GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION
Date Result apro AST R Date Date Code PRINT Notes Spec Land Date Legal Description PAT ACCT. % Entered Lot Size Class ¥ Sale Price V Tst Verif Assoc PCL Value City of Waltham Sign Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 22 of 66COMMERCIAL 1,075,300 55.843,400 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value 1,075,300 /Parc 63.3 Total Value 8 Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 52.04 % Sale Code Infl 1 TAX DISTRIC Influ eigh 0.000 156.600 Building Value Yard Items Land Size Neigh IN PROCESS APPRAISAL SUMMAR Date Adj Neigh 300 Legal Ref Typ 0.000 N4 o SALES INFORMATION Price Unit 1,075,300 Source: Market Adj Co 1,075,300 54,303,700 BUILDING PERMITS
Date Number Desc Chit Base Value Grantor PriceUnits Unit Type Land Type Facto Use Code Total Parcel Total Card 903 0001 SITE Pot Descrip Baths, 8 HalfBaths, 0 3/4 Baths, 0 Rooms Total, and mainly classified as MUNICPL with a(n) SCHOOL Building Built about 1891, Having Primarily BRICK Exterior and SLATE Roof Cover, with 0 Units, 0 Com. Int SQ. FT. Own Oc his Parcel contains 6,821,497 SQ. FT. of land TRAPELO RD. WALTHAM Direction/Street/City Type AND SECTION (First 7 lines only) Item Cod Unit # Depth / Stree 41 Block xmpt Topo Traffi 001 VARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION No of Cntr PROPERTY FACTORS
Ite Code Descip % Units Cntr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Use Description LUC Descrip/No Alt No OWNERSHIP R045 Map test 903 MUNICPL St/Prov MA Census: Flood Haz: 190 Owner Owner Owner StrProv Owner Street Street Twn/Cit Postal: 0 Code 0

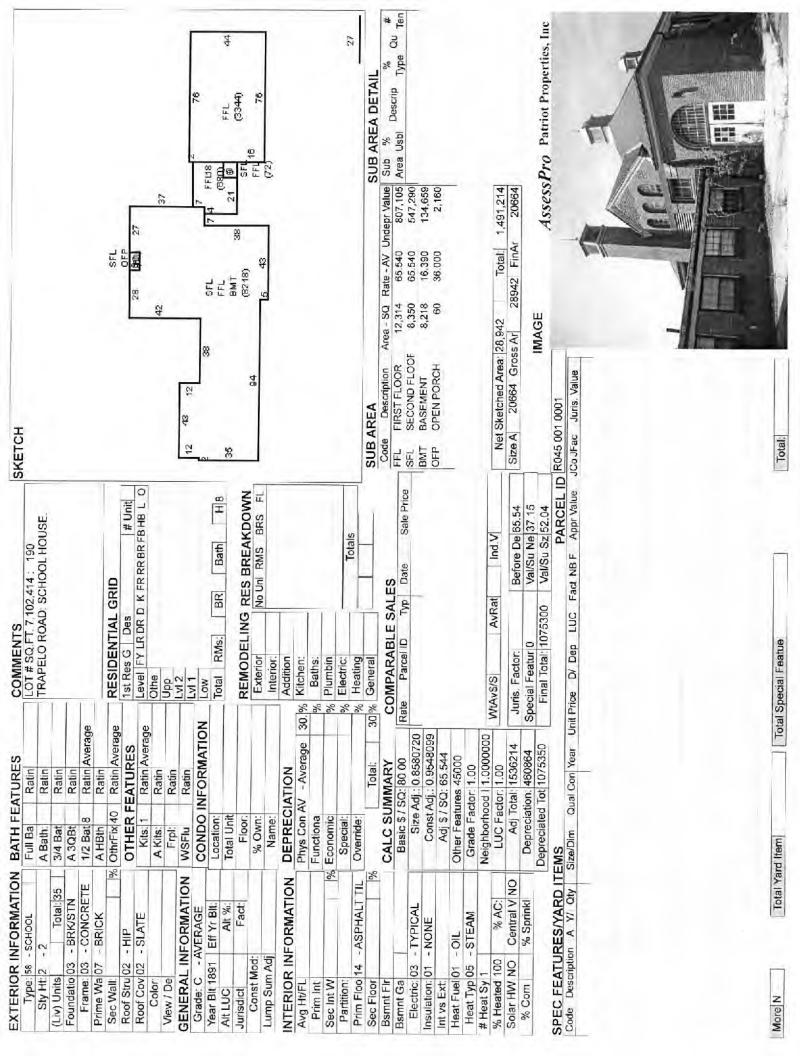
2017

Total:

Spl Cre

Total:

apro


Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Datriot Properties Inc. USER DEFINED Notes Name Year LandReas BldReason Prior Id# Prior Id# Prior Id# ASR Map Reval Dis Prior Id# Prior Id# Prior Id# Prior Id# Prior 1d# Prior Id# Fact Dist. 55,843,400 Fact Use Value B Time Time 05/04/1 14:08:5 38/05/1 11:20:4 Insp Date User Acct GIS Ref GIS Ref 112899 112899 TOTAL ASSESSED: ACTIVITY INFORMATION
Date Result LASTR apro Date PRINT Date Land Code Notes 1112899! Spec Date Legal Description PAT ACCT. % Entered Lot Size Class F Sale Code Sale Price V Tst Verif Assoc PCL Value Sign City of Waltham Date Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 561,900 23 of 66 RESIDENTIAL 561,900 55,843,400 /Parc 63.3 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Assesd Value Total Value 8 Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 60.13 % Infl 1 TAX DISTRIC Use Code Building Value Yard Items Land Size 0.000 156.600 Influ eigh 0.000 Neigh Legal Ref Typ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 0. 0.000 NA Number Descrip Source: Market Adj Co SALES INFORMATION Price Cuit 561,900 561,900 54.303.700 **BUILDING PERMITS** Unit Base Value Grantor PriceUnits Unit Type Land Type Facto 5 Total Parcel Total Card Date 903 SITE 0001 Ę Baths, 2 HalfBaths, 0 3/4 Baths, 0 Rooms Total, and Descrip Exterior and ASPHALT Roof Cover, with 0 Units, 0 Building Built about 1980, Having Primarily BRICK Com. Int SQ. FT. This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) OTHER Own Oc Direction/Street/City TRAPELO RD, WALTHAM PROPERTY FACTORS Type LAND SECTION (First 7 lines only)
Use Description LUC No of Depth / Units PriceUnits Un Stree 41 Put# Block xmpt Topo Traffi 001 NARRATIVE DESCRIPTION Amount a Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION Cutr Cut PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Iwn/Cit WALTHAM Descrip/No Alt No OWNERSHIP R045 test Map 903 MUNICPL St/Prov MA Census: Flood Haz: Owner St/Prov Owner Street Twn/Cit Owner Owner Street Postal: Code 0 0

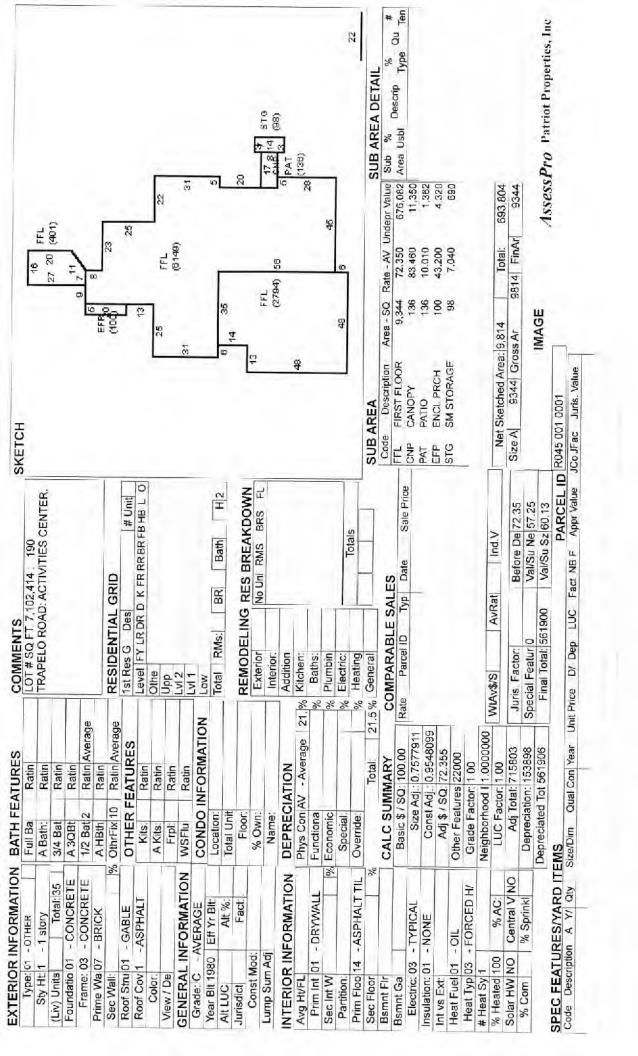
2017

Total:

Spl Cre

Total:

apro


Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total Yard Item

Total Special Featue

Total

Datriot Properties Inc. JSER DEFINED Notes Name LandReas BidReason ASR Map Reval Dis Prior Id# Fact Dist 55,843,400 Fact Use Value 05/04/1 14:09:0 08/05/1 11:21:0 B Time Time User Acct Insp Date GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION LAST R apro Date Date PRINT Land Code Notes 11128991 Spec Legal Description Date PAT ACCT % Entered Lot Size Class F V Tst Verif Assoc PCL Value City of Waltham Date Sign Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 24 of 66 COMMERCIAL Infl 3 1,379,000 1,379,000 /Parc 63.3 PREVIOUS ASSESSMENT

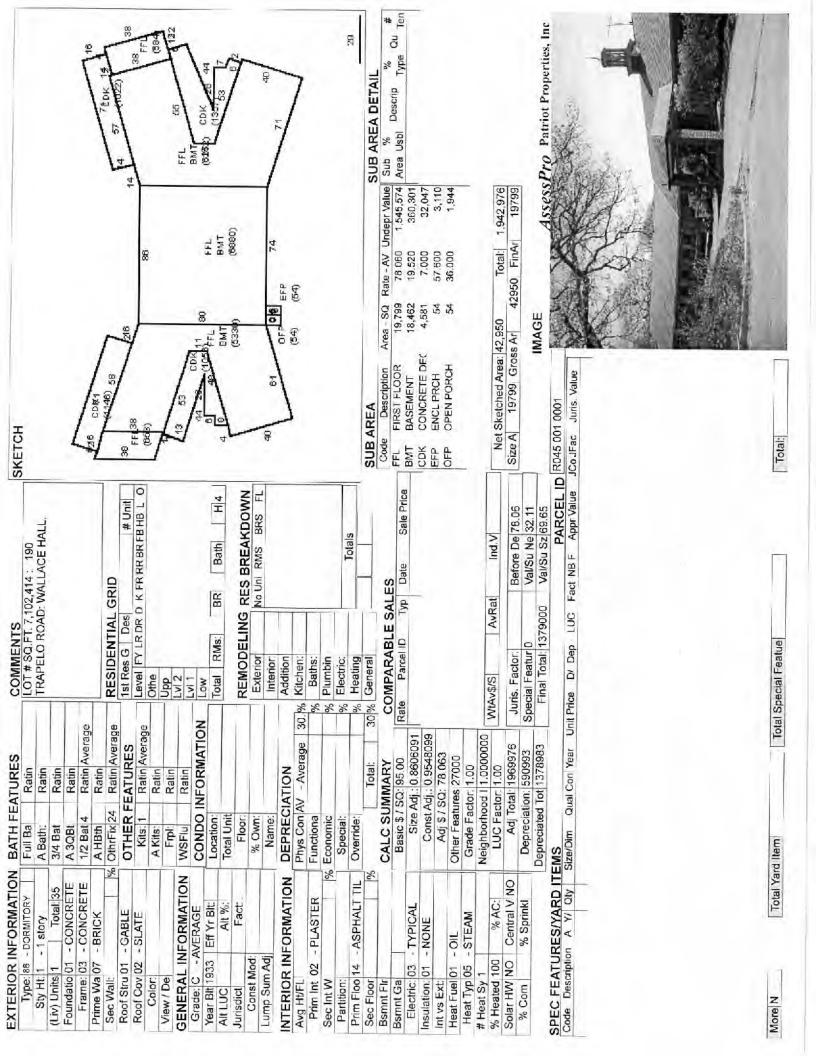
Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu 55,843,400 Total Value % Amount C/O Last Visit Fed Cod F. Descrip Sale Price Infl 2 1,539,400 Land Value Source: Market Adj Co Total Value per SQ unit /Card 69.65 % Infl 1 Sale Code TAX DISTRIC Land Size 0.000 0.000 156.600 Influ eigh IN PROCESS APPRAISAL SUMMAR Legal Ref Typ Date Adj Neigh 300 Building Value Yard Items 0. 0.000 NA Number Descrip Price SALES INFORMATION Sit 1,379,000 1,379,000 54,303,700 **BUILDING PERMITS** Unit Base Value Grantor Use Code Units PriceUnits Unit Type Land Type Facto Total Parcel 5 Total Card Date 000 SITE Ę DORMITORY Building Built about 1933, Having Primarily BRICK Exterior and SLATE Roof Cover, with 1 Units, 0 Baths, 4 HalfBaths, 0 3/4 Baths, 0 Ro Item Cod Descrip Com. Int SO. FT. NARRATIVE DESCRIPTION
This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) Own Oc Direction/Street/City TRAPELO RD, WALTHAM Type JSE DESCRIPTION (First 7 lines only) Unit #: Stree 41 Block Traffi xmpt Topo 001 Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION Cutr Cntr PROPERTY FACTORS
Ite Code Descip % PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Fwn/Cit WALTHAM Use Description LUC Descrip/No Alt No **OWNERSHIP** R045 Map test 903 MUNICPL St/Prov MA Flood Haz: Census: St/Prov Owner Street Street Twn/Cit Owner Owner Owner Postal 0 0

2017

Total:

Spl Cre

Total:


Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Datriot Properties Inc. **JSER DEFINED** Notes Name BldReason LandReas Reval Dis Prior Id# Prior Id# Prior Id# ASR Map Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Prior 1d# Fact Dist 55,843,400 Fact Use Value By Time Time 08/05/1 11:21:2 05/04/1 14:09:1 Insp Date User Acct GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION AST R apro Date Date PRINT Code Notes Land Spec Legal Description Date PAT ACCT. 8 Entered Lot Size Class ¥ Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 25 of 66 COMMERCIAL 1,366,600 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value 1,366,600 55.843,400 /Parc 63.3 Total Value % Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Source: Market Adj Co Total Value per SQ unit /Card 69.79 % Infl 1 Sale Code TAX DISTRIC 0.000 Influ eigh 156.600 Use Code Building Value Yard Items Land Size Legal Ref Typ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 0. 0.000 N4 Number Descrip SALES INFORMATION Price 1,366,600 Unit ,366,600 54,303,700 **BUILDING PERMITS** 0 Unit Base Value Grantor Units PriceUnits Unit Type Land Type Facto Total Parcel Total Card Date 903 0001 SITE ž with 1 Units, 0 Baths, 4 HalfBaths, 0 3/4 Baths, 0 Ro Descrip Com. Int DORMITORY Building Built about 1933, Having Primarily BRICK Exterior and SLATE Roof Cover, SO. FT. Own Oc This Parcel contains 5,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) Direction/Street/City TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only) Item | Cod Depth / Unit# Stree 41 Block Topo Traffi xmpt 001 MARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION No of Cutr PROPERTY FACTORS Cntr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Use Description LUC Descrip/No Alt No R045 **DWNERSHIP** Map test 903 MUNICPL St/Prov MA Census: Flood Haz 190 Owner Owner Street Owner Street St/Prov Twm/Cit Postal: Owner 0 Code 0

2017

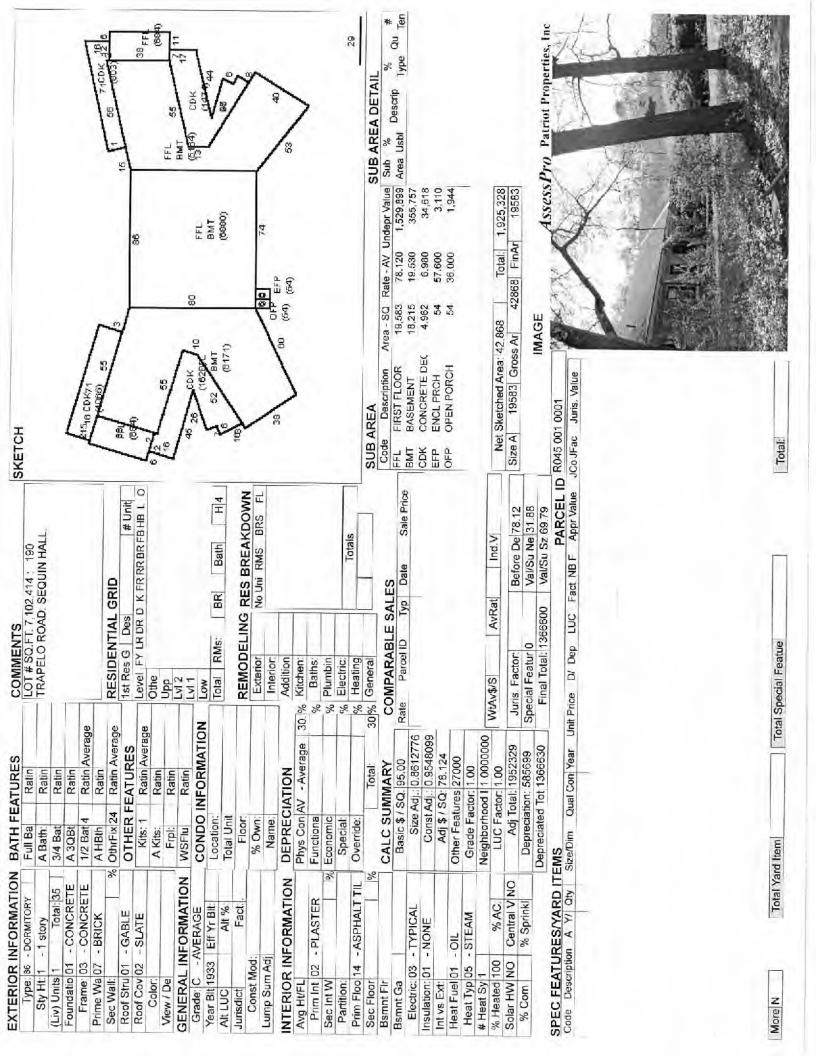
Total:

Spl Cre

Total:

Database: AssessPro

Prime NB D N4

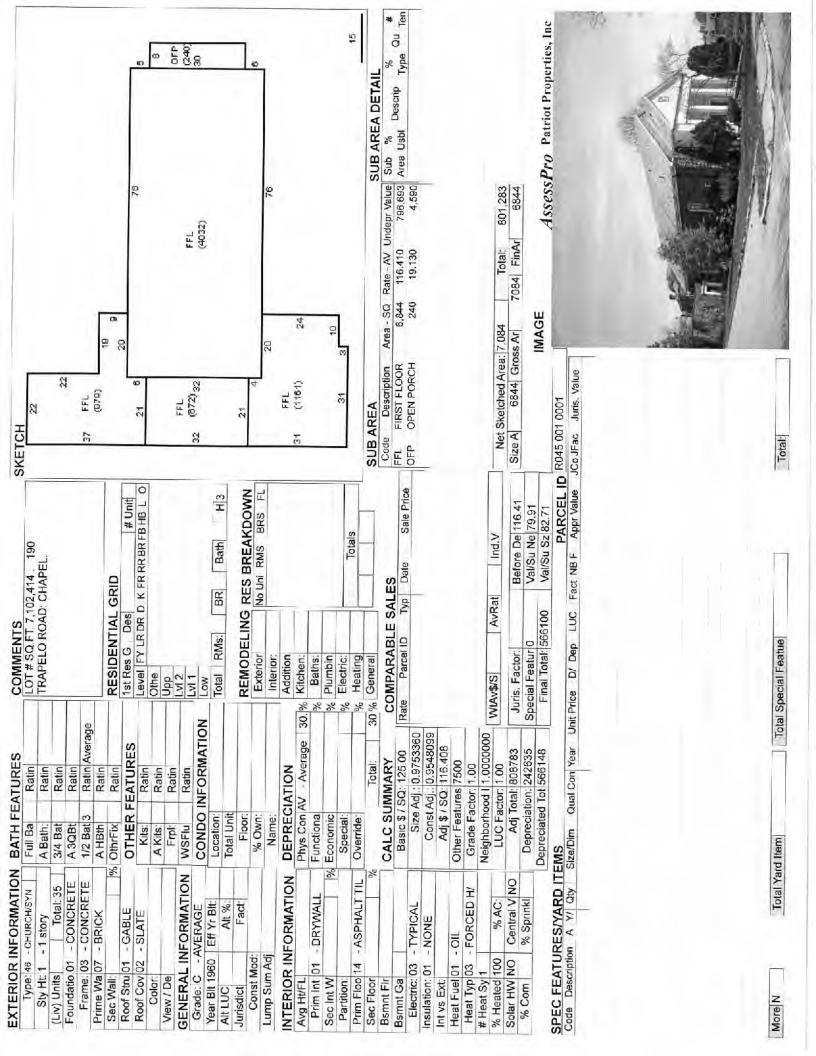

Parcel LU 903 MUNICPL

Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total AC/H 0.00000

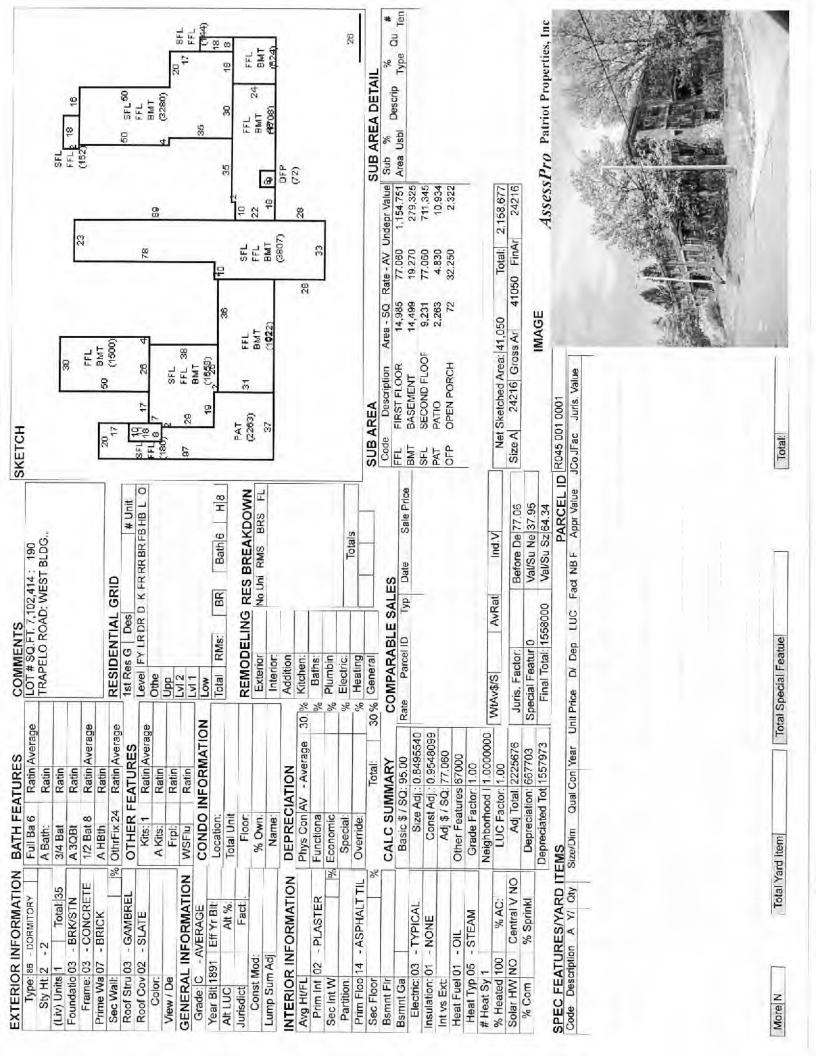
apro



JSER DEFINED Datriot Properties Inc. Notes Name Year LandReas BldReason Prior Id# ASR Map Prior Id# Prior Id# Prior Id# Reval Dis Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Fact Dist 55,843,400 Fact Use Value B Time Time 05/04/1 14:09:2 08/05/1 11:21:3 User Acct Insp Date GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION AST R apro Date Date PRINT Code Notes Result Land Spec Date Legal Description PAT ACCT 8 **Entered Lot Size** Class ¥ Sale Price V Tst Verif Assoc PCL Value City of Waltham Sign Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment % 26 of 66 COMMERCIAL Infl 3 566,100 55,843,400 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value 566,100 /Parc 63.3 Total Value % Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Use Code Building Value Yard Items Land Size Land Value Total Value per SQ unit /Card 82.71 % Infl 1 Sale Code TAX DISTRIC 0.000 0.000 Influ eigh 156.600 Adj Neigh Neigh IN PROCESS APPRAISAL SUMMAR Legal Ref Typ Date 300 0. 0.000 NA SALES INFORMATION Price 566,100 Source: Market Adj Co Sit 54,303,700 BUILDING PERMITS
Date Number Des Value Base Grantor Units PriceUnits Unit Type Land Type Facto Total Parcel 5 Total Card 0001 SITE Lot CHURCH/SYN Building Built about 1960, Having Primarily BRICK Exterior and SLATE Roof Cover, with 0 Units, 0 Baths, 3 HalfBaths, 0 3/4 Baths, 0 Ro Descrip Com. Int SQ. FT. Own Oc This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) Direction/Street/City TRAPELO RD, WALTHAM Type LAND SECTION (First 7 lines only)
Use Description LUC No of Depth / Uncode Description Fact Units PriceUnits Un Item Cod Unit # Stree 41 Block xmpt Traffi Topo 001 NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION Cutr Cntr PROPERTY FACTORS
Ite Code Descip % PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Descrip/No Alt No R045 OWNERSHIP Map test 903 MUNICPL St/Prov MA Census: Flood Haz: 190 St/Prov Owner Owner Street Street Twn/Cit Owner Postal: Owner 0 0

Total AC/H 0.00000	Total SF/S 0.00	Parcel LU 903 MUNICPL	Prime NB D N4		Total:	Spl Cre	Total:	
iscialmer. I his information is believed t	believed to be correct but is	but is subject to change and is n	ot warranteed. Databas	se: AssessPro	apro	2		2017


Disclaim

Datriot I Properties Inc. USER DEFINED Notes Name LandReas BldReason Reval Dis Prior Id# ASR Map Prior Id# Fact Dist 55,843,400 Land Code Fact Use Value B Time 08/05/1 11:21:5 Time 14:09:3 Insp Date User Acct GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION AST R apro Date Date 05/04/1 PRINT Notes 1112899! Legal Description Date PAT ACCT. % Entered Lot Size Class ¥ Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Sign Total Land: /Parc 63.3 Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes 8 Comment Infl 3 27 of 66 COMMERCIAL 1,558,000 1,558,000 PREVIOUS ASSESSMENT

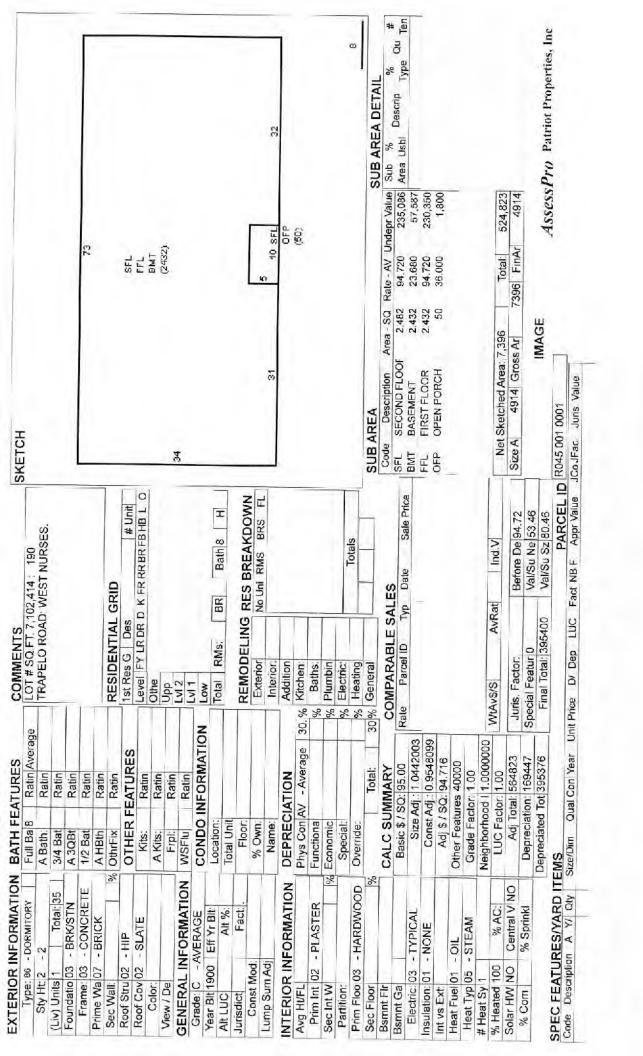
Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value 55,843,400 Total Value % Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 64.34 % Infl 1 Sale Code TAX DISTRIC 0.000 00000 156.600 Influ eigh Building Value Yard Items Land Size Legal Ref Typ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 0.0000 N4 Source: Market Adj Co SALES INFORMATION Price Chit 1,558,000 54,303,700 1,558,000 **BUILDING PERMITS** Base Value Grantor PriceUnits Unit Type Land Type Facto Use Code 5 Total Parcel Total Card Date 0001 Lot Descrip with 1 Units, 6 Baths, 8 HalfBaths, 0 3/4 Baths, 0 Ro Com. Int Primarily BRICK Exterior and SLATE Roof Cover, SQ. FT. DORMITORY Building Built about 1891, Having Own Oc NARRATIVE DESCRIPTION
This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) Direction/Street/City
TRAPELO RD, WALTHAM Type Item Cod AND SECTION (First 7 lines only) Stree 41 Depth / Unit #: Block xmpt Topo Traffi 001 Amount **DTHER ASSESSMENTS** Owner CITY OF WALTHAM PROPERTY LOCATION Cutr Noof Units PROPERTY FACTORS Cntr PREVIOUS OWNER Street 610 MAIN ST Descip Postal: 02452-5552 Fwn/Cit WALTHAM Use Description LUC Descrip/No Alt No OWNERSHIP R045 Map test 903 MUNICPL St/Prov MA Census: Flood Haz: Owner Owner Owner Street Street Owner St/Prov Twn/Cit Postal: 0 Code 0

Total. Spl Cre Total Database: AssessPro Prime NB D N4 Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

Properties Inc. USER DEFINED Datriol Notes Name LandReas BldReason Prior Id# ASR Map Reval Dis Prior Id# Fact Dist 55,843,400 Land Code Fact Use Value Time B Time 05/04/1 14:09:4 08/05/1 11:22:1 User Acct Insp Date GIS Ref GIS Ref 112899 ACTIVITY INFORMATION LAST R apro Date Date PRINT Notes 1112899! Spec Date Legal Description PAT ACCT. % **Entered Lot Size** Class V Tst Verif Assoc PCL Value Date City of Waltham Sign /Parc 63.3 Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 Infl 3 395,400 395,400 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value Total Value % Sale Price Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1.539,400 Use Code Building Value Yard Items Land Size Land Value Total Value per SQ unit /Card 80.46 8 Infi 1 Sale Code TAX DISTRIC 0.000 0.000 Influ eigh 156,600 Adj Neigh Neigh Legal Ref Typ Date IN PROCESS APPRAISAL SUMMAR 300 0. 0 000 NA Source: Market Adj Co SALES INFORMATION Price 395,400 54.303,700 5 395,400 **BUILDING PERMITS** Unit Base Value Grantor Facto Total Parcel H Total Card Date PriceUnits Unit Type Land Type SITE DORMITORY Building Built about 1900, Having Primarily BRICK Extenor and SLATE Roof Cover, with 1 Units, 8 Baths, 0 HalfBaths, 0 3/4 Baths, 0 Ro Item | Cod | Descrip Com. Int SQ. FT. Own Oc This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) Direction/Street/City TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only) Depth / Stree 41 Unit # Block xmpt odo Traffi NARRATIVE DESCRIPTION Amount \supset 0 Owner CITY OF WALTHAM *OTHER ASSESSMENTS* PROPERTY LOCATION Units Cntr PROPERTY FACTORS
Ite Code Descip % No of Crt PREVIOUS OWNER Street 610 MAIN ST Descip Postal: 02452-5552 Fwn/Cit WALTHAM Use Description Fact Descrip/No Alt No OWNERSHIP Map lest 903 MUNICPL St/Prov MA Census Flood Haz 190 Owner Owner Street Twn/Cit Owner Street SVProv Postal: Owner 0 0

TOTAL ASSESSED:


28 of 66COMMERCIAL

0001

001

R045

2017 Total: Spl Cre apro Total: Database: AssessPro Prime NB D N4 Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

Total Special Featue

Total:

Unit CARD City of V	Unit CARD City of V	Duit CARD CARD City of v	TOTAL ASSESSED: 55,843,400		Legal Description User Acct	112899	GIS Kei	GIS Ref	Total Land:	Insp Date	Sn	Date	- 1	Time	14:10:0	i	Time	10:47:4	PAT ACCT 112800 ASD Man	Notes	Reval Dis	Year	LandReas	מפסט	ACTIVITY INFORMATION	Date Result By Name				Sign	All Card
Code Building Value Yard Items Land Size 408.400 0.000 arcel A408,400 300 156.600 urce Market Adj Co Total Value per SQ unit/ TOUS ASSESSMENT Use Cat Bidg Value Yrd Item Land Size Land Grantor Legal Ref Typ Date Sale SINFORMATION TAX DIS Grantor Legal Ref Typ Date Sale I base Unit Neith	Unit IN PROCESS APPRAISAL SUMMAR Use Code Building Value Yard Ilems Land Size 114 408.400 0.000 Total Card 408.400 300 156.600 Source: Market Adj Co Total Value per SQ unit / Source: Market Adj Co Total Value per SQ unit / Tax Yr Use Cat Bidg Value Yrd Ilem Land Size Land Grantor Legal Ref Typ Date Sale BUILDING PERMITS Date Number Descrip Amount C/O Last Visit	Note	APARTMENT	City of Walt	18	406,400			55,843,400 Te	Land	-100	alue Asses'd Valu Notes																			
Unit Sode Building Value 408,400 arcel 54,303,700 Urce: Market Adj Co Ince: Market Adj Co Sin FORMATION Grantor Legal R Sin FORMATION Grantor Legal R Number Descrip	Use Code Building Value B14 408,400 Total Card 408,400 Total Parcel 54,303,700 Source: Market Adj Co Source: Market Adj Co Source: Market Adj Co Grantor Legal R BUILDING PERMITS Date Number Descrip	Stock	29 of 66 CARD		d Size	0000		0.000	300 156,600 1,539,400	'alue per SQ unit /Card 66.80		em Land Size Land Value Total V.							TAX DISTRIC	Date Sale Code						unt C/O Last Visit Fed Cod F. I					Neigh
	5 *	Slock Lot Slock Lot Slock Lot Soc FT. of land With a(n) Spout 1900, Having Fire and ASPHALT The Sourt Com. Int Iths. 3 HaifBaths, 0 3/4 t t Iths. 4 HaifBaths, 0 3/4 Ither Cod Descrip	Unit	PROCESS APPRAISAL SU	se Code Building Value Yard Iter				54,303,700		EVIOUS ASSESSMENT	c Yr Use Cat Bldg Value Yrd Ite							LES INFORMATION	Legal Ref					1	Number Descrip					UI Base Unit

R045

2017

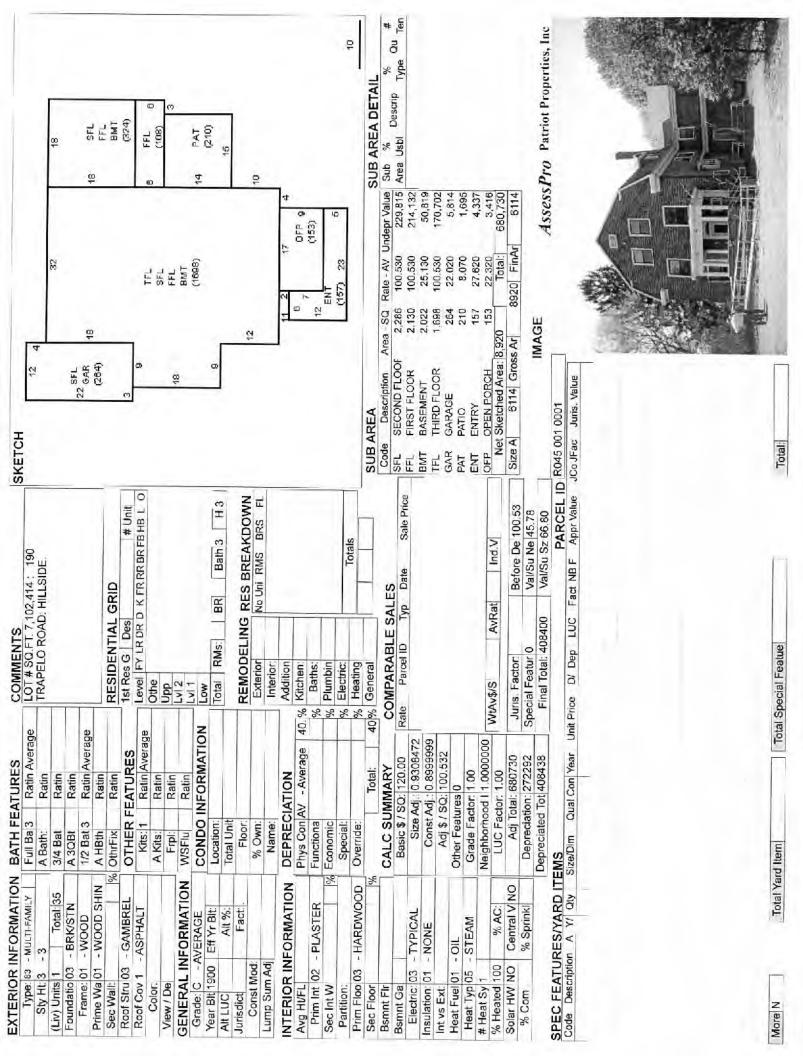
Total:

Spl Cre

Total:

Database: AssessPro

Prime NB D N4


Parcel LU 903 MUNICPL

Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total AC/H 0.00000

apro

Properties Inc. Datriot ISER DEFINED Notes Name LandReas BldReason Prior Id# Prior Id# Prior Id# Prior Id# Reval Dis Prior Id # Prior Id# Prior Id# 10:48:5 Prior Id # ASR Map Prior Id# Fact Dist Fact Use Value Time By Time 05/04/1 14:10:1 Insp Date User Acct GIS Ref GIS Ref 112899 ACTIVITY INFORMATION AST R apro Date 05/11/1 Date Code PRINT Notes Land Spec Date Legal Description PAT ACCT % **Entered Lot Size** Class ¥ Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Sign Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes % Comment 15,000 55,843,400 Inf 3 15,000 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd ttem Land Size Land Value Total Value Asses'd Value /Parc 63.3 Total Value 8 Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1.539,400 Land Value Total Value per SQ unit /Card 30.99 8 Sale Code Infl 1 TAX DISTRIC Adj Neigh Neigh Influ eigh 0.000 156,600 Building Value Yard Items Land Size IN PROCESS APPRAISAL SUMMAR Date 300 0.000 N4 Legal Ref Typ SALES INFORMATION 15,000 Source: Market Adj Co Price Chit 15,000 54,303,700 BUILDING PERMITS 0 Value Base Use Code [Grantor PriceUnits Unit Type Land Type Facto Total Parcel Total Card Primarily BRICK Exterior and TAR + GRAVEL Roof Cover, with 0 Units, 0 Baths, 0 HalfBaths, 0 3/4 Bath Descrip Com. Int SQ. FT. PROPERTY LOCATION

Direction/Street/City TRAPELO RD, WALTHAM Own Oc This Parcel contains 6,821,497 SQ. FT of land mainly classified as MUNICPL with a(n) COLD STORAGE Building Built about 1921, Having Type AND SECTION (First 7 lines only) PROPERTY FACTORS
Ite | Code | Descip | % | Item | Cod Unit# Depth / Stree 41 xmpt Topo Traffi NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS Cntr Units Cut No of PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 FWn/Cit WALTHAM Use Description LUC Descrip/No OWNERSHIP test 914 STATE DOI St/Prov MA Census: Flood Haz 190 StrProv Owner Street Owner Owner Street Owner Twn/Cit Postal: ٥

55,843,400

TOTAL ASSESSED:

30 of 66 INDUSTRIAL

Unit

0001

Block

Map

001

R045

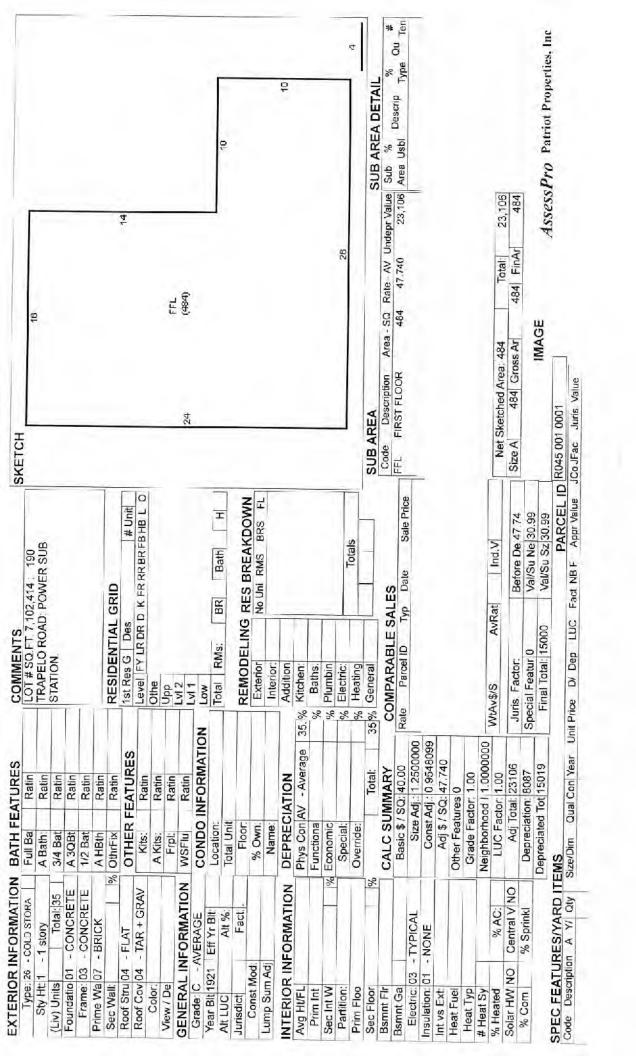
112899

2017

Total:

Spl Cre

Total:


Database: AssessPro

Prime NB D N4

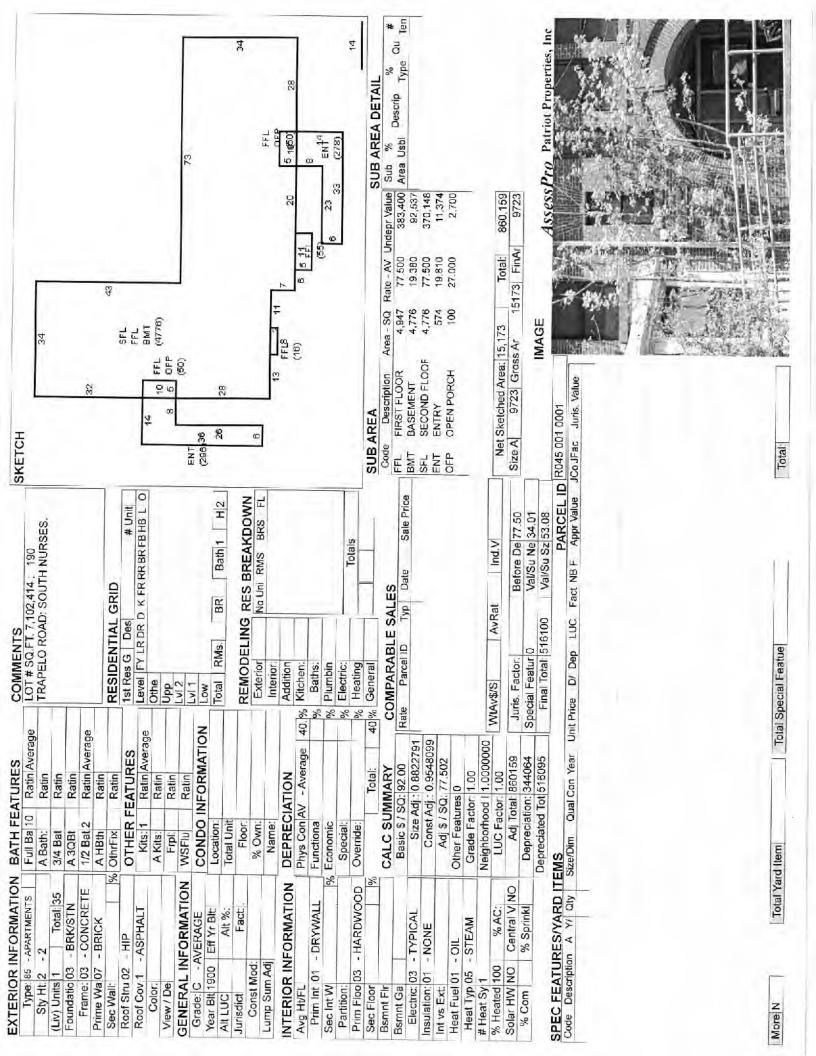
Parcel LU 903 MUNICPL

Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total Special Featue

Total:

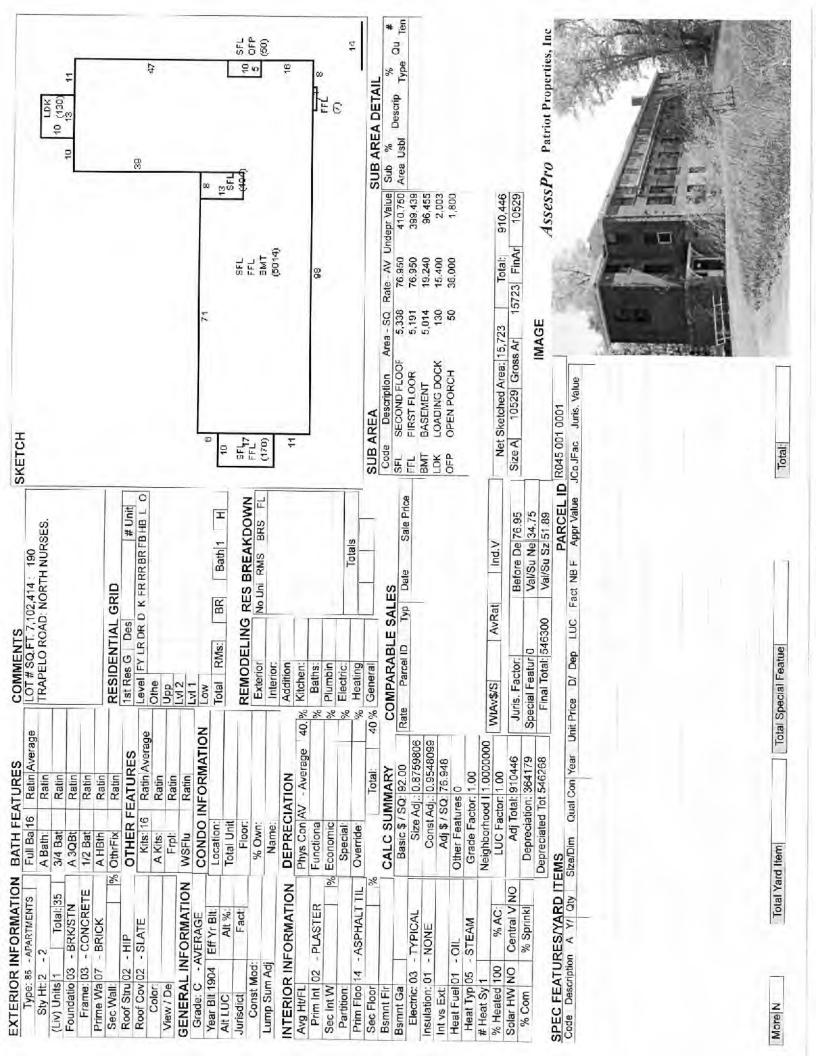

Datriot Properties Inc. USER DEFINED Notes Name Year LandReas BldReason Prior Id# Prior Id# Prior Id# ASR Map Reval Dis Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Fact Dist 55,843,400 Fact Use Value 05/11/1 | 10:49:5 By 14:10:2 Date Time User Acct Insp Date GIS Ref GIS Ref 112899 112899 TOTAL ASSESSED: ACTIVITY INFORMATION AST R Date apro 05/04/1 Code PRINT Notes 11128991 Land Spec Legal Description Date PAT ACCT 8 Entered Lot Size Class ¥ Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Sign Land Unit Type: Total Land: Appraised Parcel ID R045 001 0001 Value Notes Comment % 516,100 516,100 /Parc 63.3 Infl 3 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value 31 of 66 APARTMENT Total Value 8 BUILDING PERMITS

Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Building Value Yard Items Land Size Land Value Total Value per SQ unit /Card 53.08 8 Sale Code Infl 1 TAX DISTRIC 0.000 0.000 156.600 Influ eigh Adj Neigh Neigh Legal Ref Typ Date IN PROCESS APPRAISAL SUMMAR 300 0.000 N4 0 Source: Market Adj Co SALES INFORMATION Price 516,100 516,100 ij 54,303,700 o Cnit Base Value Grantor Units PriceUnits Unit Type Land Type Facto Use Code 17 Total Parcel Total Cand 000 SITE Lot Primarily BRICK Exterior and ASPHALT Roof Cover with 1 Units, 10 Baths, 2 HalfBaths, 0 3/4 Baths, 0 R Descrip APARTMENTS Building Built about 1900, Having Com. Int SO. FT. Own Oc NARRATIVE DESCRIPTION This Parcel contains 6,821,497 SQ. FT. of land Direction/Street/City TRAPELO RD, WALTHAM Type LAND SECTION (First 7 lines only)
Use Description LUC No of Depth / Urcode Description Fact Units PriceUnits Uri Cod Unit # mainly classified as MUNICPL with a(n) Stree 41 llem Block Topo raffi xmpt 001 Amount 0 Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION PROPERTY FACTORS
Ite | Code | Descip | % Cut Cut PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Descrip/No Alt No OWNERSHIP R045 Map les: 914 STATE DO St/Prov MA Census: Flood Haz. 190 StrProv Twn/Cit Owner Street Owner Owner Owner Street Postal:

	2017
Spl Cre Total:	apro
Total:	
e NB D N4	eed Database: AssessPro
Parcel LUI 903 MUNICPL Prime	out is subject to change and is not warrante
lotal SF/S 0.00	n is believed to be correct b
Diodai ACATIO DODOO	-

Total SF/S 0.00



Datriot Properties Inc. JSER DEFINED Notes Name Year LandReas BldReason Prior Id # Prior Id# Prior Id# ASR Map Reval Dis Prior Id# Prior 1d# Prior Id# Prior Id# Prior Id# Prior Id# Fact Dist 55,843,400 Fact Use Value By 05/11/1 | 10:51:4 Time 14:10:3 Time Insp Date User Acct GIS Ref GIS Ref 12899 112899 TOTAL ASSESSED: ACTIVITY INFORMATION
Date Result AST R Date apro Date 05/04/1 Code PRINT Notes 1112899 Land Spec Date Legal Description PAT ACCT. % Entered Lot Size Class AH Sale Price V Tst Verif Assoc PCL Value City of Waltham Sign Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes % Comment 55,843,400 /Parc 63.3 Infl 3 546,300 PREVIOUS ASSESSMENT
Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value 32 of 66 APARTMENT Total Value 38 Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Use Code Building Value Yard Items Land Size Land Value Source: Market Adj Co | Total Value per SQ unit /Card 51.89 CARD 8 Sale Code Infl 1 TAX DISTRIC 0.000 156.600 Influ eigh Adj Neigh Neigh Date IN PROCESS APPRAISAL SUMMAR 300 D. 0.000 N4 Legal Ref Typ SALES INFORMATION Price 546,300 Unit 54,303,700 546,300 BUILDING PERMITS Unit Value Base Grantor PriceUnits Unit Type Land Type Facto Total Parcel Total Card 914 0001 with 1 Units, 16 Baths, 0 HalfBaths, 0 3/4 Baths, 0 R Descrip This Parcel contains 6.821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) APARTMENTS Building Built about 1904, Having Primarily BRICK Exterior and SLATE Roof Cover, Com. Int SQ. FT. PROPERTY LOCATION

Y. AH No | Direction/Street/City TRAPELO RD, WALTHAM Own Oc Type AND SECTION (First 7 lines only) PROPERTY FACTORS
Ite Code Descip % Item Cod Unit # Stree 41 Depth / Block xmpt Topo Traffi 001 NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS Cntr Cutr Units No of PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 wn/Cit WALTHAM Descrip/No Use Description LUC R045 OWNERSHIP Map test 914 STATE DOI St/Prov MA Census: Flood Haz: SVProv Twn/Cit Owner Street Owner Owner Owner Street Postal: 0 0

Total Spl Cre Total: Database: AssessPro Prime NB D N4 Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

2017

Datriot Properties Inc. JSER DEFINED Notes Name LandReas Year BldReason Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# ASR Map Reval Dis Prior Id# Prior Id# Prior Id# Prior Id# Fact Dist 55,843,400 Fact Use Value By Time Date Time 05/11/1 11:02:1 14:10:4 Insp Date User Acct GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION AST R apro 05/04/1 Date PRINT Code Notes 112899! Land Spec Date Legal Description PAT ACCT. % **Entered Lot Size** Class ¥ Tst Verif Assoc PCL Value City of Waltham Date Sign Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 90,300 Infl 3 33 of 66 RESIDENTIAL 90,300 55,843,400 /Parc 63.3 Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value 8 Sale Price Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1.539,400 Use Code Building Value Yard Items Land Size Land Value Total Value per SQ unit /Card 75.25 % Infl 1 Sale Code TAX DISTRIC 0.000 156,600 Influ eigh Adj Neigh Neigh IN PROCESS APPRAISAL SUMMAR Legal Ref Typ Date 300 300 0. 0.000 N4 PREVIOUS ASSESSMENT Number Descrip Source: Market Adj Co SALES INFORMATION 90,000 Price 90,000 Unit 54,303,700 BUILDING PERMITS 0 Unit Base Value Grantor Facto Total Parcel H Total Card Date Depth / Unit Type Land Type 914 SITE ř and N/A Roof Cover, with 0 Units, 0 Baths, 0 HalfBaths, 0 3/4 Baths, 0 Rooms Total, and 0 Bdrms Descrip Building Built about, Having Primarily N/A Exterior Com. Int mainly classified as MUNICPL with a(n) OTHER SQ. FT. Own Oc NARRATIVE DESCRIPTION This Parcel contains 6,821,497 SQ. FT. of land Direction/Street/City TRAPELO RD, WALTHAM Type Cod AND SECTION (First 7 lines only) Unit# Stree 41 Block Item xmpt Topo Traff Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION PROPERTY FACTORS
Its Code Descip | % Cht Cutr No of Units PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Use Description LUC Descrip/No Alt No OWNERSHIP Map test 914 STATE DOI St/Prov MA Census: Flood Haz. 190 StyProv Street Street Owner Owner Owner Twn/Cit Postal: Owner 0

0001

001

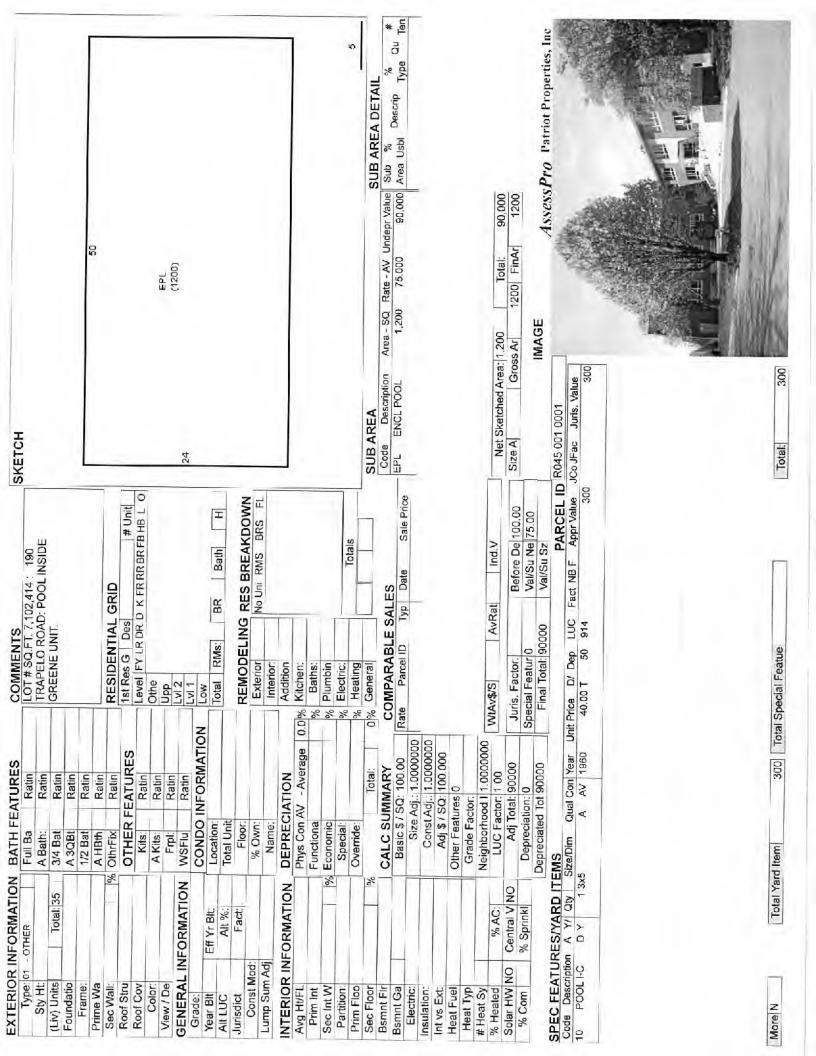
R045

2017

Total.

Spl Cre

Total:


Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

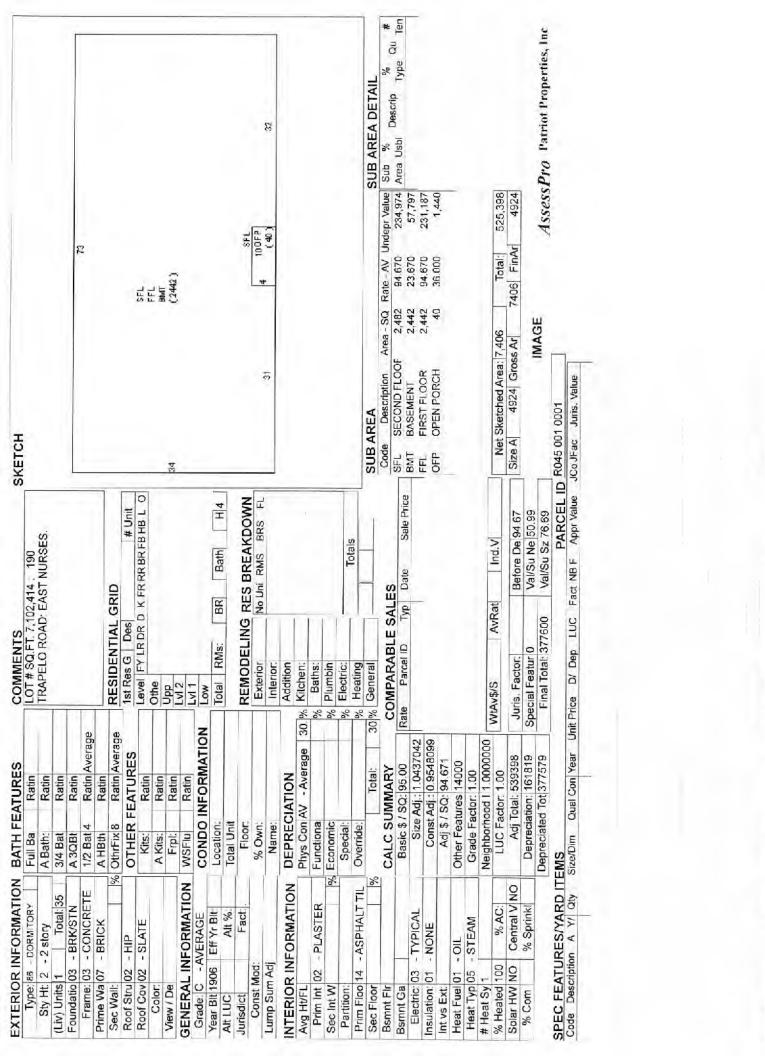
Datriot Properties Inc. **USER DEFINED** Notes Name Year LandReas BidReason Reval Dis Prior Id# ASR Map Fact Dist Fact Use Value Time B Time 05/04/1 |14:10:5| 11:02:5 User Acct Insp Date GIS Ref GIS Ref 112899 ACTIVITY INFORMATION LASTR apro 05/11/1 Date Date PRINT Code Notes 1112899! Land Legal Description Date PAT ACCT 8 Entered Lot Size Class Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Sign Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 377,600 377,600 Infl 3 /Parc 63.3 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value 8 Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 76.69 8 F Sale Code TAX DISTRIC Use Code Building Value Yard Items Land Size 914 0 000 00000 0.000 156.600 Adj Neigh Neigh Influ eigh Legal Ref Typ Date IN PROCESS APPRAISAL SUMMAR D. 0.000 N4 SALES INFORMATION Source: Market Adj Co Price Chit 377.800 377,600 54.303.700 **BUILDING PERMITS** Unit Base Value Grantor PriceUnits Unit Type Land Type Facto Total Parcel Total Card Date SITE Lot with 1 Units, 0 Baths, 4 HalfBaths, 0 3/4 Baths, 0 Ro Descrip Com. Int DORMITORY Building Built about 1906, Having Primarily BRICK Exterior and SLATE Roof Cover. SO FT Own Oc Direction/Street/City This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) TRAPELO RD, WALTHAM Type Item Cod AND SECTION (First 7 lines only) Depth / Stree 41 Block xmpt Topa Traff NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION PROPERTY FACTORS 랷 Noof Units Cutr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 [wn/Cit|WALTHAM Use Description Fact Descrip/No Alt No **DWNERSHIP** Map iest 914 STATE DOL St/Prov MA Census: Flood Haz St/Prov Street Owner Owner Owner Owner Street Twn/Cit Postal: 0

55,843,400

TOTAL ASSESSED:

34 of 66 COMMERCIAL


0001

001

R045

Total Spl Cre Total Database: AssessPro Prime NB D N4 Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

2017

Total:

Total Special Featue

Total Yard Item

Datriot Properties Inc. JSER DEFINED Notes Name Year. LandReas BIdReason Reval Dis Prior Id# Prior Id # Prior Id# Prior Id# Prior ld# Prior Id# Prior Id# Prior Id# Prior Id# ASR Map Fact Dist Fact Use Value 05/11/1 11:04:2 B Time Date Time 05/04/1 14:11:0 Insp Date User Acct GIS Ref GIS Ref 112899 ACTIVITY INFORMATION LAST R apro Date Land Code PRINT Notes 112899 Spec Date Legal Description PAT ACCT % **Entered Lot Size** Class ¥ Sale Price V Tst Verif Assoc PCL Value City of Waltham Sign Date Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment 3 Infl 3 366,900 366,900 55.843,400 /Parc 63.3 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value Total Value % Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1.539,400 Land Value Total Value per SQ unit /Card 31.85 % CARD Infl 1 Sale Code TAX DISTRIC 0.000 156.600 Influ eigh Use Code Building Value Yard Items Land Size Adj Neigh Neigh IN PROCESS APPRAISAL SUMMAR Legal Ref Typ Date 300 0.000 N4 SALES INFORMATION Price Source: Market Adj Co Chit 366,900 54,303,700 BUILDING PERMITS C Value Unit Base Grantor PriceUnits Unit Type Land Type Facto Total Parcel Total Card 914 Pot Descrip Cover, with 0 Units, 0 Baths, 2 HalfBaths, 0 3/4 Bath WAREHOUSE Building Built about 1891, Having Primarily BRICK Exterior and TAR + GRAVEL Roof Com. Int SQ. FT. TRAPELO RD, WALTHAM Own Oc This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) Direction/Street/City Type AND SECTION (First 7 lines only) Item Cod Depth / Unit # Stree 41 Block xmpt Topo Traff MARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION PROPERTY FACTORS

Ite | Code | Descip | % Cutr Units 000 Crt PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Fwn/Cit WALTHAM Use Description LUC Descrip/No Alt No OWNERSHIP Map test 914 STATE DO St/Prov MA Census: Flood Haz: StrProv Owner Street Street Twn/Cit Owner Owner Owner Postal: 0

55,843,400

TOTAL ASSESSED:

35 of 66 INDUSTRIAL

0001

001

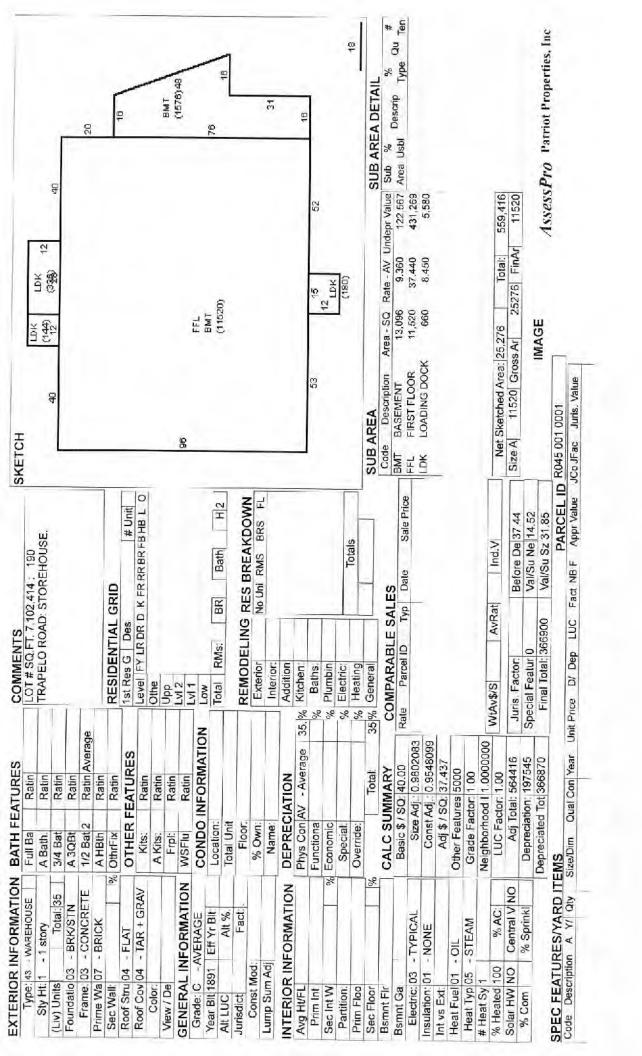
R045

2017

Total:

Spl Cre

Total:


Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total Special Featue

Total:

Datriot Properties Inc. JSER DEFINED Notes Name LandReas BldReason Year Prior Id# Reval Dis Prior Id# Prior Id# Prior Id# 05/11/1 11:05:0 Prior Id # ASR Map Prior Id# Prior Id# Prior Id# Prior Id# Fact Dist Land Code Fact Use Value B Time Time 14:11:1 Insp Date User Acct GIS Ref GIS Ref 112899 ACTIVITY INFORMATION LAST R apro 05/04/1 Date Date PRINT Notes Result 112899 Date Legal Description PAT ACCT % **Entered Lot Size** Class F Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Sign Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment % 58,500 Infl 3 58,500 /Parc 63.3 PREVIOUS ASSESSMENT
Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value Total Value % Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Use Code Building Value Yard Items Land Size Land Value Total Value per SQ unit /Card 30.99 % Sale Code Infl 1 TAX DISTRIC 0.000 0.000 156.600 Influ eigh Neigh IN PROCESS APPRAISAL SUMMAR Legal Ref Typ Date Adj Neigh 300 0. 0.000 N4 SALES INFORMATION Source: Market Adj Co Price 58,500 5 54,303,700 BUILDING PERMITS
Date Number Desr O Unit Base Value Grantor PriceUnits Unit Type Land Type Facto Total Parcel Total Card SQ. FT. SITE Roof Cover, with 0 Units, 0 Baths, 1 HalfBaths, 0 3/4 Descrip Com. Int This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) WAREHOUSE Building Built about 1948, Having Own Oc Primarily CONC BLOCK Exterior and ASPHALT PROPERTY LOCATION

Direction/Street/City TRAPELO RD, WALTHAM Type Item Cod AND SECTION (First 7 lines only) Depth / Unit# Stree 41 Block xmpt Traffi Topo NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY FACTORS Cntr Units No of Cut PREVIOUS OWNER Street 610 MAIN ST Descip Postal: 02452-5552 wn/Cit WALTHAM Use Description LUC Descrip/No OWNERSHIP Map test 914 STATE DOI St/Prov MA Census; Flood Haz: 190 Twn/Cit SVProv Owner Owner Street Owner Street Owner Postal 0

55,843,400

TOTAL ASSESSED:

36 of 66 INDUSTRIAL

0001

001

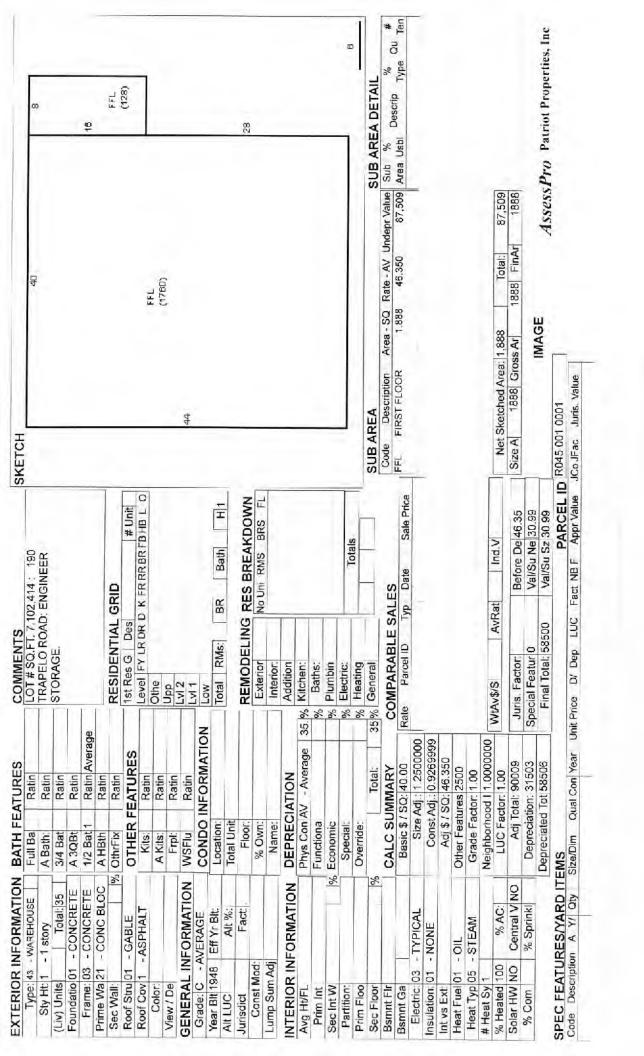
R045

2017

Total:

Spl Cre

Total:


Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total Special Featue

Total:

55,843,400 TOTAL ASSESSED: City of Waltham 37 of 66 RESIDENTIAL IN PROCESS APPRAISAL SUMMAR 0001 Block 001 PROPERTY LOCATION R045 Map OWNE

		BUILDING PERMITS	RMITS				ACTIVITY	ACTIVITY INFORMATION		
PROPERTY FACTORS		Date Numbe	er Descrip	Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip	Fed Cod F. Descrip	Comment	Date	Result	By	Name
Ite Code Descip % Item Cod Descrip	od Descrip									
Z										
0										
ı.										
Census:	7.									
Flood Haz: xmpt										
D 0 test Topo										
S Stree 41										
t Traffi							Sign			,
LAND SECTION (First 7 lines only)	(<u>></u>)		CHINATES.	,
Use Description LUC No of Depth / Unit Type Land Type Fardo Value Price	Unit Type La	nd Type Factor Val	ise Unit	Adj Neigh left, cich	Infl 1 % Infl 2 % Infl 3 % Appraised Alt % Spec J Fact Use Value	Infl 3 %	Appraised Alt	Spec J Fg	act Use Value	Notes
ALL OTATT DO	100	0000	30	IIRID DIIII			value Class	Land Code		

LandReas Year

Reval Dis

Fact Dist.

Notes

Sale Price V Tst Verif Assoc PCL Value

mainly classified as MUNICPL with a(n) OTHER Building Built about 1930, Having Primarily CONC BLOCK Exterior and TAR + GRAVEL Roof Cover, with 0 Units, 0 Baths, 1 HalfBaths, 0 3/4 Baths, 0 Ro

Com. Int

Amount

OTHER ASSESSMENTS

Descrip/No

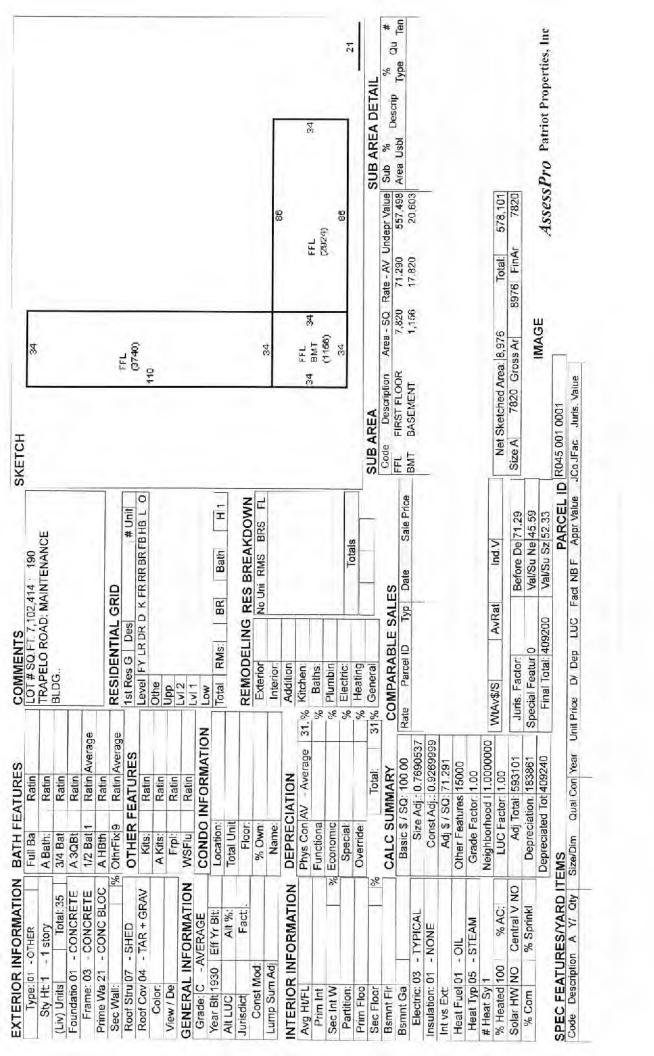
BldReason

Total: Spl Cre apro Total

> Disclaimen This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0 00 Total AC/H 0.00000

Database: AssessPro Prime NB D N4

2017


0.0000 N4

0

SITE

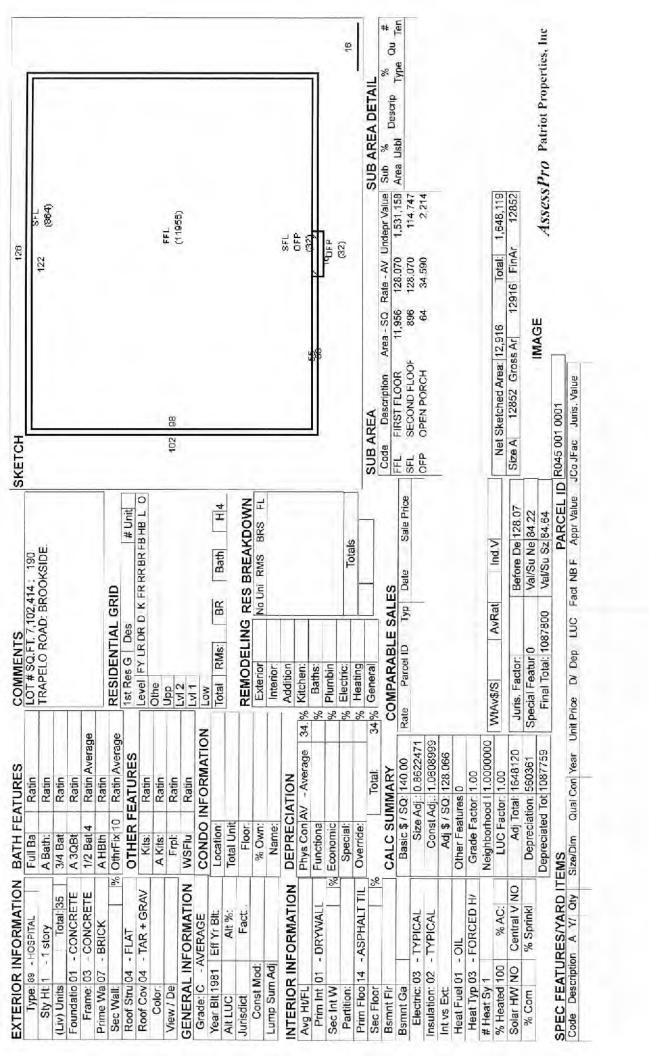
SQ. FT.

914 STATE DOL

Total Special Featue

Total:

TOTAL ASSESSED: (112899) City of Waltham 38 of 66 APARTMENT IN PROCESS APPRAISAL SUMMAR Unit 0001 Lot PROPERTY LOCATION


No Alt No Direction/Street/City 001 Block R045 Map

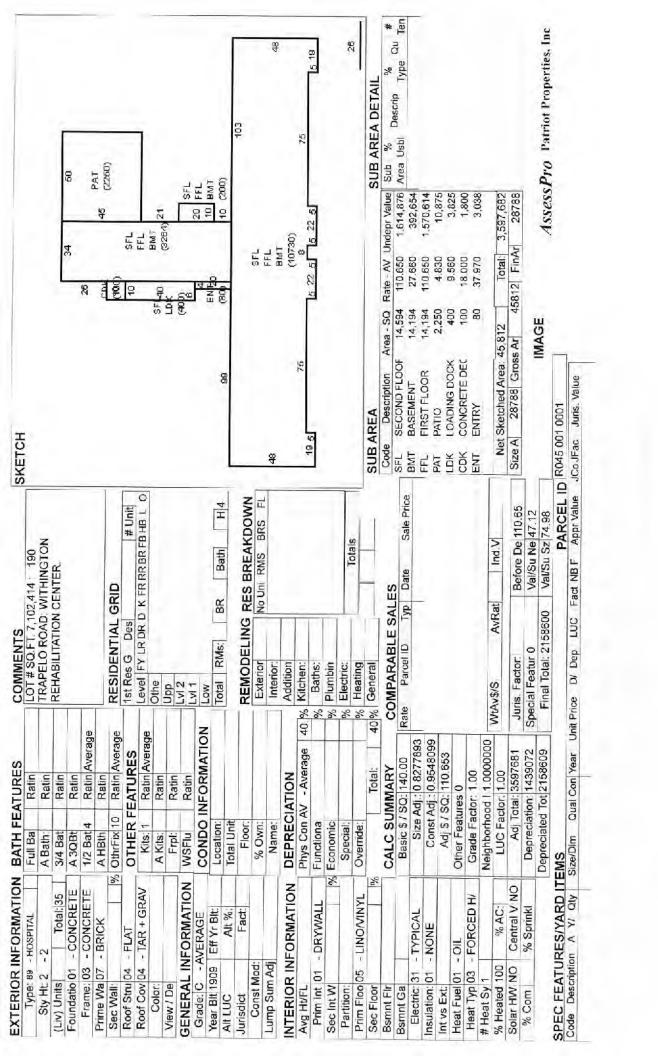
55,843,400

	2000		raid liettis Land Size	orze Land value	lotal value	Legal Description	User Acct	
190 I RAPELO RD, WALTHAM	914	1,087,800		0.000	1,087,800		112899	
OWNERSHIP Unit #.							GIS Ref	K
Owner CITY OF WALTHAM							200	1
Owner					1		GIS Bof	Section Section
Owner		1,087,800			1,087,800	Entered Lot Size	200	,
Street 610 MAIN ST	lotal Parcel	-	300 156	156.600 1,539,400	55,843,400	Total Land:	of of or	Darrot
Street	Source: Market Adj Co		Total Value per SQ unit /Card 84.64	unit /Card 84.64	/Parc 63.3	Land Unit Type:	insp pare	■ Properties Inc.
Twn/Cit WALTHAM	PREVIOUS ASSESSMEN	SCECCINE	L L		Parcel ID R045 001 0001	45 001 0001		IISER DEFINED
St/Prov MA Cutr Own Oc	Tay Ve 160 Oct	DIAC VALUE	Very House Land Office	The state of the late of the state of the st	raicei in in			Drier IA #
52-5552	Idy II Ose Cdi	and value	TIO ITEM LAND SIZE	Tro liem Land Size Land Value lotal Value Asses'd Valu	ne Assesid Valu	Notes Date		Prior ld#
REVIOUS OWNER	Ī						1	Prior Id#
Owner							270	Prior Id#
Owner							05/04/1 14:11:3	Prior ld#
Street							LASTR	Prior Id#
Twn/Cit							Date Time	Prior Id#
StrProv	1						05/11/1 11:08:4	Prior Id#
Postal:							apro	Prior Id#
ARRATIVE DESCRIPTION	SALES INFORMATION	RMATION	(AT	TAX DISTRIC		PAT ACCT	112899	ASR Man
his Parcel contains 6.821.497 SO. FT. of land	Grantor	Legal Ref	ef Typ Date	Sale Code Sale Price	>	Tst Verif Assoc PCL Value	Notes	Fart Dist
IATION Classified as MINIODI with a/a: HOSPITA							1	951 0151
uilding Built about 1981, Having Primarily BRICK								Reval Dis
xterior and TAR + GRAVEL Roof Cover, with 0	-							andReas.
THER ASSESSMENTS								BldReason
Code Descrip/No Amount Com. Int								
	T							
	BUILDING PERMITS Date Number Des	RMITS ar Descrip	Amount C/O Las	Amount C/O Last Visit Fed Cod F. Descrip	escrip Comment	ACTIVITY INFORMATION	Result Bv	Name
ROPERTY FACTORS	, c							
0	1							
Census:								
Flood Haz:								
D 0 test Topo								
S Stree 41								
t Traffi						Sign		1 1
(First 7 li								,
Ise Description Fact Units PriceUnits Unit Type Land Type Facto		Base Unit	Adj Neigh Neigh	eigh Infl 1 %	Infl 2 % Infl 3	% Appraised Alt % Sp	Spec J Fact Use Value	Value Notes
0	1		0. 0.000 N4	in in		Cigan	onno nue	
The second secon								

Total: Spl Cre apro Total: Database: AssessPro Prime NB D N4 Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

2017

Total Special Featue

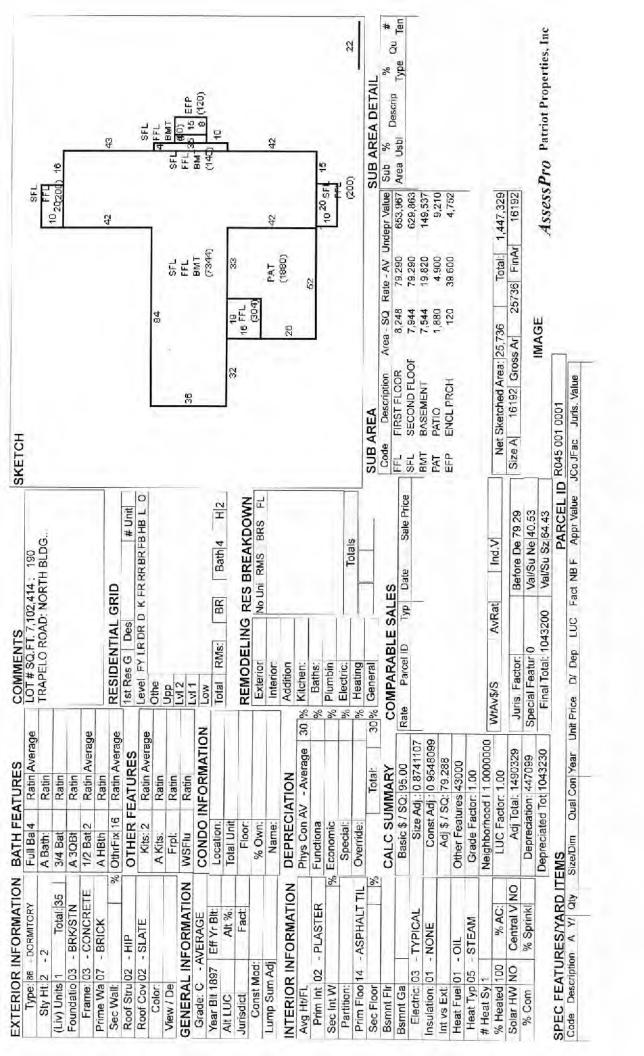

Total:

Datriot Properties Inc. JSER DEFINED Notes Name LandReas BldReason Reval Dis ASR Map Prior Id# Prior Id# Prior Id # Prior Id # Prior Id# Prior Id# Prior Id# Prior ld# Prior Id# Fact Dist 55,843,400 Fact Use Value Time Time By 11:11:2 14.11.4 Insp Date User Acct GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION LAST R apro 05/04/1 05/11/1 Date Date PRINT Land Code Notes 112899 Spec Date Legal Description PAT ACCT % **Entered Lot Size** Class ₹ Sale Price V 1st Verif Assoc PCL Value City of Waltham Date Sign Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment % 2,158,600 55,843,400 Infl 3 2,158,600 39 of 66 APARTMENT /Parc 63.3 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value % Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Use Code Building Value Yard Items Land Size Land Value Total Value per SQ unit /Card 74.98 % Infl 1 Legal Ref Typ Date Sale Code TAX DISTRIC 0.000 156.600 Influ eigh Neigh IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 0. 0.000 NA Descrip SALES INFORMATION Price S 2,158,600 Source: Market Adj Co 54,303,700 2,158,600 BUILDING PERMITS Unit Base Value Number Grantor Units PriceUnits Unit Type Land Type Facto Total Parcel Total Card Date 914 0001 SITE Ę This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) HOSPITAL Building Built about 1909, Having Primarily BRICK Exterior and TAR + GRAVEL Roof Cover, with 0 Units, 0 Baths, 4 HalfBaths, 0 3/4 Baths, 0 Rooms T Descrip Com. Int SQ. FT. PROPERTY LOCATION

Direction/Street/City Own Oc TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only) Cod Depth / Stree 41 Unit # Block Item xmpt Topo Traffi 001 NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY FACTORS Cutr No of Cntr PREVIOUS OWNER Street 610 MAIN ST Descip Postal: 02452-5552 Use Description Fact Twn/Cit WALTHAM Descrip/No OWNERSHIP R045 Map lest 914 STATE DOI St/Prov MA Census: Flood Haz SVProv Street Street Owner Owner Owner Owner Twn/Cit Postal 0

2017 Total: Spl Cre apro Total: Database: AssessPro Prime NB D N4 Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000


Total Special Featue

Total:

Properties Inc. Datriot **JSER DEFINED** Notes Name LandReas BidReason Year ASR Map Prior Id# Reval Dis Prior Id# Prior Id# Prior Id# Fact Dist. Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# 55,843,400 Fact Use Value B Time Time 05/04/1 14:11:5 05/11/1 11:14:2 Insp Date User Acct GIS Ref GIS Ref 112899 112899 TOTAL ASSESSED: ACTIVITY INFORMATION LAST R apro Date Date PRINT Land Code Notes Result 11128991 Spec Legal Description Date PAT ACCT. % Entered Lot Size Class ¥ Sale Code Sale Price V Tst Verif Assoc PCL Value Sign Date City of Waltham Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 Infl 3 1,043,200 40 of 66 COMMERCIAL PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value 1,043,200 55,843,400 /Parc 63.3 Total Value 8 Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Source: Market Adj Co Total Value per SQ unit /Card 64,43 % Infl 1 TAX DISTRIC Adj Neigh Neigh Influ eigh 0.000 156,600 Land Size Date IN PROCESS APPRAISAL SUMMAR Use Code Building Value Yard Items 300 Legal Ref Typ 0. 0.000 N4 Number Descrip Price SALES INFORMATION Chit 1,043,200 54.303,700 1,043,200 BUILDING PERMITS Base Value Grantor Facto 5 Total Parcel Total Card Date Units PriceUnits Unit Type Land Type SITE 0001 Lot with 1 Units, 4 Baths, 2 HalfBaths, 0 3/4 Baths, 0 Ro Descrip SQ. FT. Com. Int Primarily BRICK Exterior and SLATE Roof Cover, DORMITORY Building Built about 1897, Having Own Oc This Parcel contains 6,821,497 SQ. FT. of land TRAPELO RD, WALTHAM Direction/Street/City Type Cod AND SECTION (First 7 lines only) mainly classified as MUNICPL with a(n) Stree 41 Block Item xmpt Topo Traffi 90 NARRATIVE DESCRIPTION Amount *THER ASSESSMENTS* Owner CITY OF WALTHAM PROPERTY LOCATION PROPERTY FACTORS Cutr Cutr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Use Description LUC Descrip/No Alt No OWNERSHIP R045 test Map 914 STATE DOI St/Prov MA Flood Haz: Census St/Prov Postal: Street Street Twn/Cit Owner Owner Owner Owner 0 Code 0

2017 Total: Spl Cre apro Total, Database: AssessPro Prime NB D N4 Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

More N

Total Yard Item

Total Special Featue

Total:

TOTAL ASSESSED:	City of Waltham		Legal Description User Acct		GIS Ref		Entered Lot Size		and Unit Tune:	and Ome type:	5 001 0001	Notes Date	L OFFICE THE PARTY OF THE PARTY	+	10	-		08/21/1 10:23:3	apro	ACCT.	Tst Verif Assoc PCL Value Notes						MOLTANGO CHAIN STRUITO	ent Date Result By								Sign	
MMERCIAL	City of		Total Value	30,400			30.400	55.843,400	1		Parcel ID R045 001 0001	a Asses'd Valu									>							scrip Comment									
41 of 66COMMERCIAL	CAND		Land Value	0				0 1.539.400	it /Card 28.95			Yrd Item Land Size Land Value Total Value Asses'd Valu							The state of the s	-	Sale Code Sale Price							sit Fed Cod F. Descrip									
		SUMMAR	Yard Items Land Size	0.000			0.00.0	300 156,600	per			tem Land Size La								TAX	Typ Date S							Amount C/O Last Visit									
4	OUIL	2		30,400			Total Card 30.400	Total Parcel 54,303,700	Market Adj Co	î	PREVIOUS ASSESSMENT	Yr Use Cat Bidg Value Yro									Grantor Legal Ref							BUILDING PERMITS Date Number Descrip Ar									
0001	LOC			914 414			Total	Total					Ī								pu		laving	0 HalfB		Com. Int	i		Descrip	dincon							
001	BIOCK	NO	Direction/Street/City	TRAPELO RD, WALTHAM	Unit#	THAM						Cntr						Cutr		RIPTION	This Parcel contains 6.821, 497 SQ, FT, of land	NICPL with a(n)	GREENHOUSE Building Built about 1930, Having Primarily CONC BLOCK Exterior and TAR +	GRAVEL Roof Cover, with 0 Units, 0 Baths, 0 HalfB	NTS	Amount Co			Ifam Cod	0	4		xmpt	Topo	Stree 41	Traff	ort 7 lings only
R045	Мар	PROPERTY LOCATION	Alt No		OWNERSHIP	Owner CITY OF WALTHAM	Owner	Owner	Street 610 MAIN ST	Street	LIMAIM	Surprov MA C Postal: 02452-5552	PREVIOUS OWNER	Owner	Owner	Street	Twn/Cit	SVProv		RATIVE DESCR	Parcel contains 6.8.	mainly classified as MUNICPL with a(n)	arily CONC BLOCK	VEL Roof Cover, wi	OTHER ASSESSMENTS	Code Descrip/No			THE Code Descin %			Census:	Flood Haz:	0 test			AND SECTION (First 7 lines only

2017

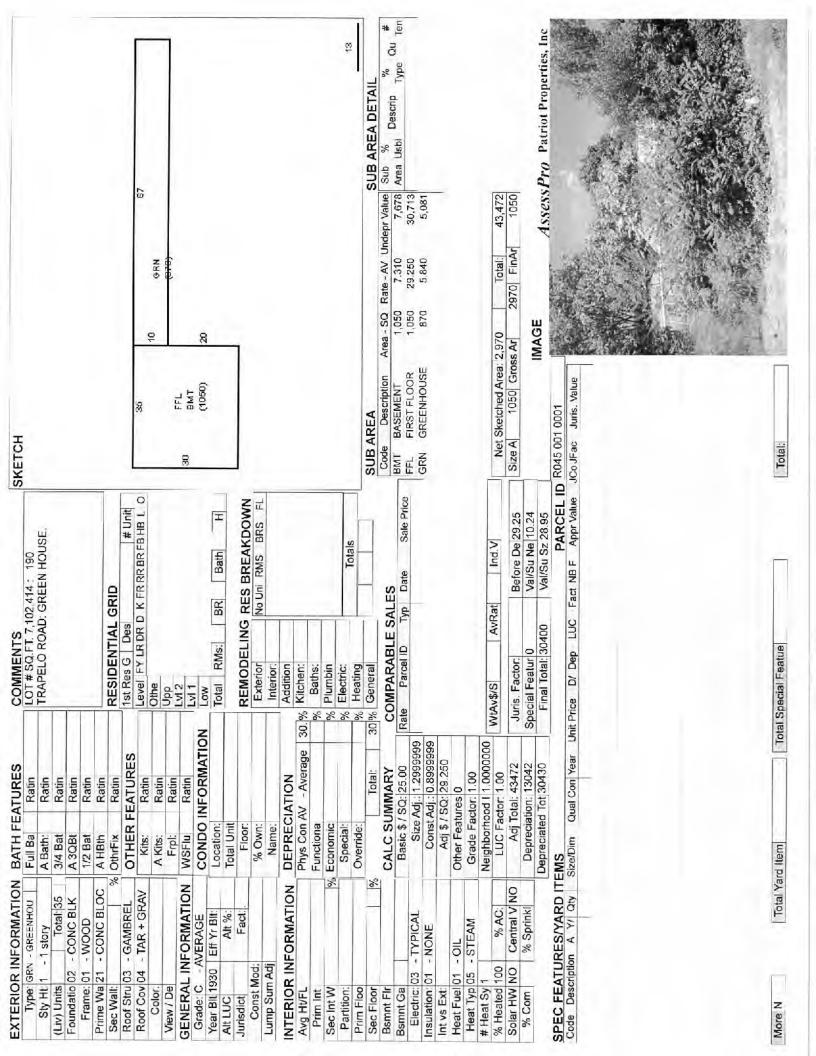
Total:

Spl Cre

Total.

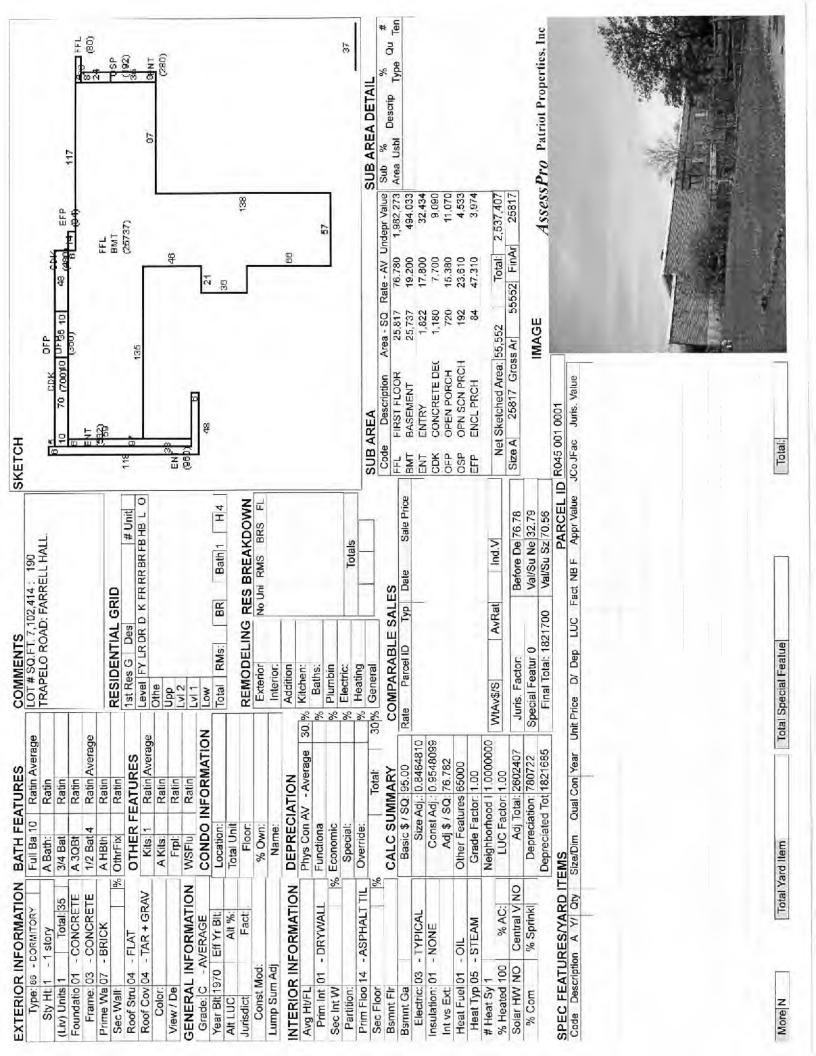
apro

Database: AssessPro


Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total AC/H 0.00000


Prime NB D N4

Parcel LU 903 MUNICPL

Properties Inc. Datriot JSER DEFINED Notes Name LandReas Year BldReason Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# ASR Map Prior Id# Prior Id# Prior Id# Reval Dis Prior Id# Fact Dist 55,843,400 Fact Use Value B Time 14:12:2 Time 05/11/1 11:16:4 User Acct Insp Date GIS Ref GIS Ref 112899 112899 TOTAL ASSESSED: LASTR apro ACTIVITY INFORMATION Date Date 05/04/1 PRINT Code Notes Spec Land Legal Description Date PAT ACCT. **Entered Lot Size** % Class A Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Sign Land Unit Type: Total Land: Appraised Parcel ID R045 001 0001 Value Notes Comment 8 42 of 66 COMMERCIAL /Parc 63.3 Infl 3 1,821,700 1,821,700 55,843,400 Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value % Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 70.56 30 Sale Code Infl 1 TAX DISTRIC 0.000 0.000 156.600 eigh Land Size Neigh Influ IN PROCESS APPRAISAL SUMMAR Use Code Building Value Yard Items Lan Date Adj Neigh 300 0. 0.000 N4 Typ PREVIOUS ASSESSMENT Legal Ref Source: Market Adj Co SALES INFORMATION 1,821,700 Price 54,303,700 Sit 1,821,700 BUILDING PERMITS Unit Base Value Grantor Depth / LT Unit Type Land Type Facto Total Parcel Total Card Date 0001 Lot SITE Cover, with 1 Units, 10 Baths, 4 HalfBaths, 0 3/4 Bat Descrip mainly classified as MUNICPL with a(n)
DORMITORY Building Built about 1970, Having
Primarily BRICK Exterior and TAR + GRAVEL Roof Com. Int SQ. FT. Own Oc PROPERTY LOCATION TRAPELO RD, WALTHAM This Parcel contains 6,821,497 SQ. FT. of land Type LAND SECTION (First 7 lines on y)
Use Description Fact Units PriceUnits Ur Item Cod # jiun Stree 41 Block Traffi 001 xmpt Topo NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS Crit PROPERTY FACTORS
Its Code Descip % Cutr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Descrip/No R045 OWNERSHIP Map test 914 STATE DOI St/Prov MA Census: Flood Haz 190 Street Owner Owner Twn/Cit StrProv Owner Owner Street Postal: 0 0

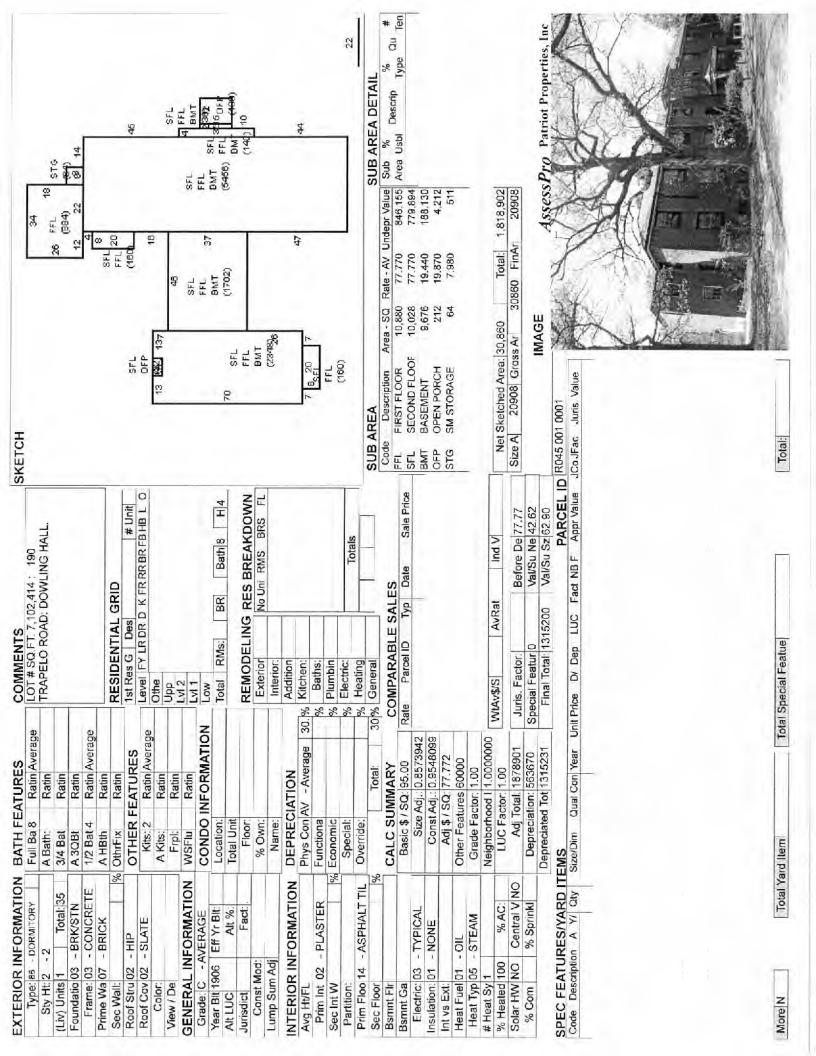
2017 Total: Spl Cre apro Total: Database: AssessPro Prime NB D N4 Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00

F Properties Inc. Datriot JSER DEFINED Notes Name LandReas BidReason Year Reval Dis ASR Map Prior Id# Fact Dist: Prior Id# Prior Id # Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Fact Use Value B 05/04/1 14:12:5 Time Time 05/11/1 11:19:1 Insp Date **User Acct** GIS Ref GIS Ref 112899 112899 ACTIVITY INFORMATION
Date Result LAST R apro Date Date PRINT Land Code Notes 11128991 Spec Date Legal Description PAT ACCT. % Entered Lot Size Class ¥ Sale Price V Tst Verif Assoc PCL Value Sign City of Waltham Total Land Land Unit Type; Appraised Value Parcel ID R045 001 0001 Notes % Comment Infl 3 1,315,200 PREVIOUS ASSESSMENT
Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value 55,843,400 1,315,200 /Parc 63.3 Total Value % BUILDING PERMITS

Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Size Land Value % Total Value per SQ unit /Card 62.90 Infl 1 Sale Code TAX DISTRIC 0.000 Influ eigh 156,600 Neigh IN PROCESS APPRAISAL SUMMAR
Use Code Building Value Yard Items Lan
914 1,315,200 Legal Ref Typ Date Adj Neigh 300 0. 0.000 N4 Source: Market Adj Co SALES INFORMATION Price Piit 54,303,700 1,315,200 Base Value Grantor Depth / Unit Type Land Type Facto Total Parcel Total Card SITE with 1 Units, 8 Baths, 4 HalfBaths, 0 3/4 Baths, 0 Ro Descrip SO. FT Com. Int DORMITORY Building Built about 1906, Having Primarily BRICK Exterior and SLATE Roof Cover, Own Oc This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) TRAPELO RD, WALTHAM Direction/Street/City Type AND SECTION (First 7 lines only) Cod Stree 41 Block Item xmpt Topa Traffi NARRATIVE DESCRIPTION Amount OTHER ASSESSMENTS Owner CITY OF WALTHAM PROPERTY LOCATION Noof Units PROPERTY FACTORS
Its Code Descip | % Cut Spirat PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 [wn/Cit WALTHAM Use Description LUC Descrip/No Alf No OWNERSHIP 914 STATE DOL Map est St/Prov MA Census Flood Haz Twn/Cit Street Owner Street Owner Owner Owner StrProv Postal: Code

55,843,400

TOTAL ASSESSED:

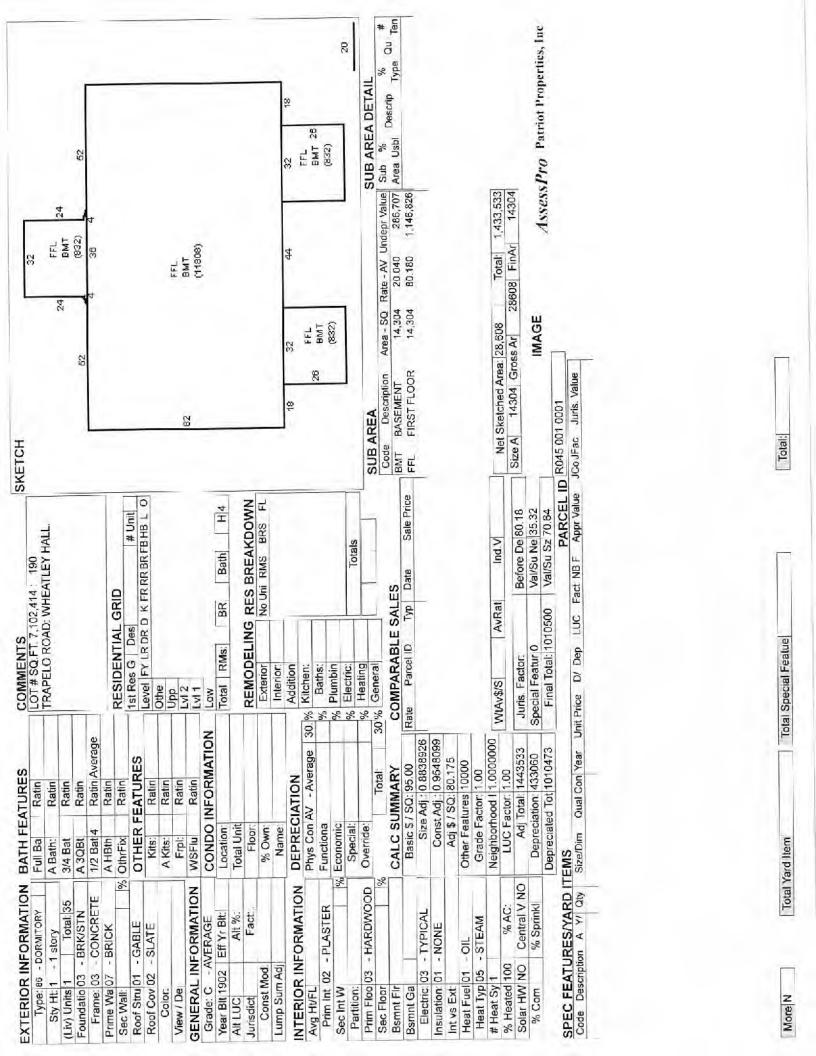

43 of 66 COMMERCIAL

0001

001

R045

2017 Total Spl Cre apro Total: Database: AssessPro Prime NB D N4 Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000



Properties Inc. USER DEFINED Datriot Notes Name BldReason LandReas Year Fact Dist. Prior Id# Prior Id# Reval Dis Prior Id# Prior Id# Prior Id# ASR Map Prior Id# Prior Id# Prior Id# Prior Id# 55,843,400 Fact Use Value Time Time 05/11/1 11:20:3 B 05/04/1 14:13:3 User Acct Insp Date GIS Ref GIS Ref 112899 112899 TOTAL ASSESSED: **ACTIVITY INFORMATION** AST R apro Date Date PRINT Land Code Notes Result 112899! Spec Legal Description Date PAT ACCT % **Entered Lot Size** Class Alt Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Sign Total Land Land Unit Type: Appraised Parcel ID R045 001 0001 Value Notes Comment 8 44 of 66 COMMERCIAL 1,010,500 1,010,500 /Parc 63.3 PREVIOUS ASSESSMENT
Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value Infl 3 Total Value % Amount C/O Last Visit Fed Cod F, Descrip Infl 2 1,539,400 Land Size Land Value Total Value per SQ unit /Card 70.64 CARD 8 Sale Code 141 TAX DISTRIC 0.000 0.000 156.600 Influ eigh Neigh IN PROCESS APPRAISAL SUMMAR Legal Ref Typ Date Use Code Building Value Yard Items 914 1,010,500 Adj Neigh 300 0. 0.000 NA Descrip Source: Market Adj Co SALES INFORMATION 1,010,500 Price 54,303,700 S **BUILDING PERMITS** Unit 0 Base Value Number Grantor LAND SECTION (First 7 lines only)
Use Description LUC No of Depth / Unit Type Land Type Lato Total Parcel Total Card Date 914 0001 rot SITE with 1 Units, 0 Baths, 4 HalfBaths, 0 3/4 Baths, 0 Ro Descrip Primarily BRICK Exterior and SLATE Roof Cover, Com. Int mainly classified as MUNICPL with a(n) DORMITORY Building Built about 1902, Having PROPERTY LOCATION

No Alt No Direction/Street/City Own Oc TRAPELO RD, WALTHAM This Parcel contains 6,821,497 SQ. FT. of land SQ. FT. Type Cod Unil # Stree 41 Block Item 001 xmpt Topo raffi NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS Cutr Cut PROPERTY FACTORS PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Descrip/No Use Description LUC R045 OWNERSHIP Map test 914 STATE DOI St/Prov MA Census Flood Haz: 190 Owner Street Owner Street Iwn/Cit StrProv Owner Owner Postal. 0 0 Code 0

Total: Spl Cre apro Total: Database: AssessPro Prime NB D N4 Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

2017

		cct	60	iei		T	Daille	A Properties Inc	USER DEFINED	Prior Id#	١,	Time Prior Id#	-1	-,1	-1	11:22:1 Prior Id #			Fact Dist:	Reval Dis	Year	LandReas			By Name								1		Fact Use Value Notes		
i112899! I m		Legal Description User Acct	112899	GIS Ket		Entered Lot Size	id:			Date	-	Date	1	N	- 1	05/11/1		ACCT.	Value Notes						Date Result								Sign	Ď	Alt % Spec J	Class Land Code	
City of Waltham			200				t00 Total Land:	.3 Land Unit Type:	Parcel ID R045 001 0001	alu Notes									Tst Verif Assoc PCL Value						Comment								S.		Infl 3 % Appraised	7	
		Total	2,495,600				0	70 /Parc 63.3	Parcel ID	al Value Asses'd V									Sale Price V T						F. Descrip										% Infl %		
CARD		Land Size Land Value	0.000				156.600 1,539,400	Total Value per SQ unit /Card 53.70		Yrd Item Land Size Land Value Total Value Asses'd Valu							1	TAX DISTRIC	Sale Code						Amount C/O Last Visit Fed Cod F Descrip										Neigh Neigh Infl 1		
	SAL SUMM	Yard Items					-		THE	ue Yrd Item Land									Legal Ref Typ Date																Adi		0. 0.000 N4
Unit	SESS APPRAI	Bailc	2,495,600				64,303,700	Source: Market Adj Co	PREVIOUS ASSESSMENT	e Cat Bldg Value								SALES INFORMATION	Grantor Lega						BUILDING PERMITS Date Number Descrip										Base	Value	0
Lot	IN PROC	Use Code	914			Total Card	Total Parcel	Source	PREVIO	Tax Yr Use Cat	1	Ī		Ī				SALES	Gra		9000	4 Bat			BUILDIN	+	Describ								and Type	F. F.	r. SITE
Block		Direction/Street/City	TRAPELO RD, WALTHAM	Unit#:						Own Oc	lype							NOI	97 SQ. FT. of land	'L with a(n)	about 1961, Having	. 0 HalfBaths, 0 3/		Amount Com. Int		100	Lien Cod				xmpt	Topo	Stree 41	Traffi	7 lines only) Depth / Linit To	PriceUnits	O SQ FT.
Map B	CATIC	Alt No Din		SHIP	Owner CITY OF WALTHAM		Stoot 610 MAIN ST	D NICH DID	wn/Cit WALTHAM	MA Cutr	-ostal: 02452-5552	REVIOUS OWNER				Contr		ARRATIVE DESCRIPTION	his Parcel contains 6 821 497 SQ. FT. of land	iainly classified as MUNICPL with a(n)	ORMITORY Building Built about 1961, Having	over, with 1 Units, 12 Baths, 0 HalfBaths, 0 3/4 Bat	THER ASSESSMENTS	Descrip/No Am		ROPERTY FACTORS	disseria %			is:	3Z:	test			AND SECTION (First 7 lines only) Jse Description LUC No of Depth / In-	Fact Units	314 STATE DOI
Map	ROPE		190	WNERSHIP	wner (Owner	Stroot &	Street	wn/Cit V	St/Prov MA	ostal.	REVIO	Owner	Street	wn/Cit	St/Prov	Postal	LAGGA	ils Parce	ainly cla	DRMITC	over, wit	THER	Code		ROPE	7 Coc	1 0	_	Census:	8	0	S	1	AND S	apo	CAPO .

2017

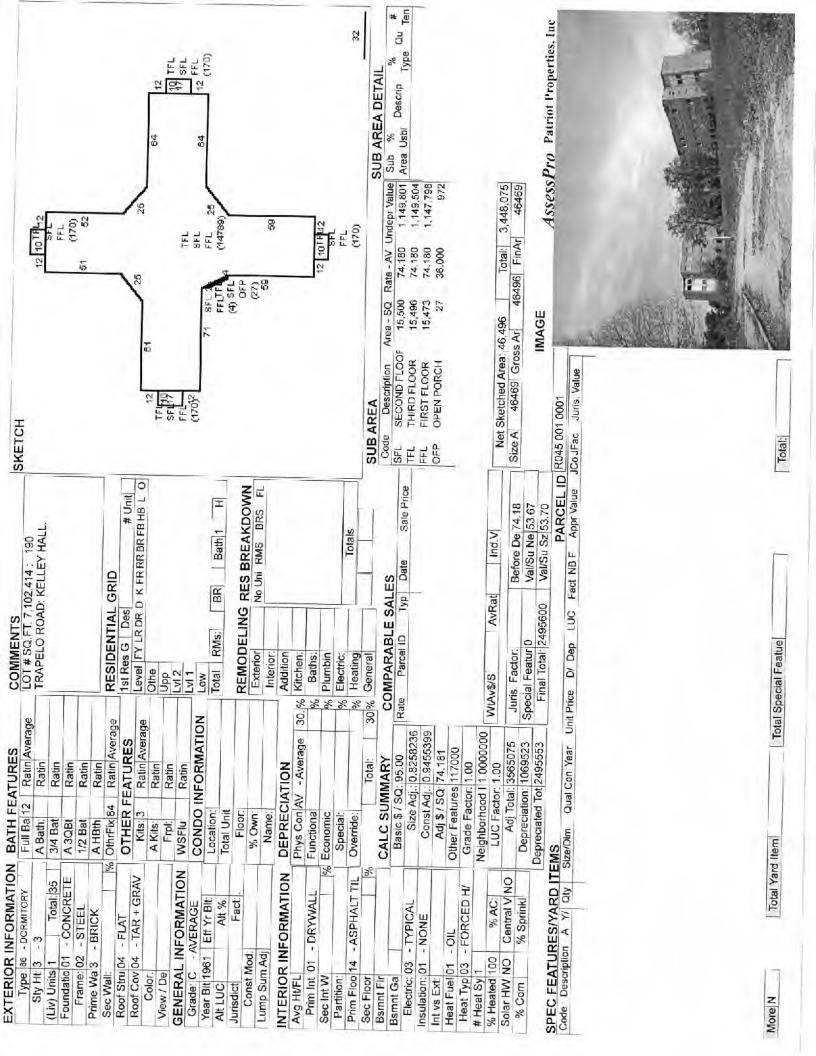
Total

Spl Cre

Total:

apro

Database: AssessPro


Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total AC/H 0.00000

Prime NB D N4

Parcel LU 903 MUNICPL

Datriot Properties Inc. JSER DEFINED Notes Name Year LandReas BldReason ASR Map Fact Dist: Reval Dis Prior Id# Fact Use Value By Time Time 11:22:5 14:14:1 User Acct Insp Date GIS Ref GIS Ref 112899 112899 ACTIVITY INFORMATION
Date Result 05/04/1 AST R 05/11/1 apro Date Date PRINT Land Code Notes Spec Date Legal Description PAT ACCT % Entered Lot Size Class ₹ Sale Price V Tst Verif Assoc PCL Value Sign City of Waltham Total Land: Land Unit Type. Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 708,800 55,843,400 708,800 PREVIOUS ASSESSMENT
Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value /Parc 63.3 Total Value % Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1.539,400 Land Value Total Value per SQ unit /Card 68.39 % Inf 1 Sale Code TAX DISTRIC Influ eigh 0.000 156.600 Use Code Building Value Yard Items Land Size Neigh Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 0. 0.000 NA Legal Ref Typ SALES INFORMATION Price Source: Market Adj Co Chit 708,800 54,303,700 708,800 BUILDING PERMITS Value Base Grantor Facto 5 Total Parcel Total Card PriceUnits Unit Type Land Type SITE with 1 Units, 4 Baths, 2 HalfBaths, 0 3/4 Baths, 0 Ro Descrip Com. Int Primarily BRICK Exterior and SLATE Roof Cover SO. FT. DORMITORY Building Built about 1933, Having Own Oc his Parcel contains 6,821,497 SQ. FT. of land **IRAPELO RD, WALTHAM** Direction/Street/City Type AND SECTION (First 7 lines only) Cod mainly classified as MUNICPL with a(n) Stree 41 Block Ilem xmpt Topo Traffi NARRATIVE DESCRIPTION Amount 0 **DTHER ASSESSMENTS** Owner CITY OF WALTHAM PROPERTY LOCATION Units No of PROPERTY FACTORS
Ite Code Descip | % Cutr Cut PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Use Description LUC Descrip/No OWNERSHIP 914 STATE DO! Map est St/Prov MA Census Flood Haz Twn/Cit SVProv Street Owner Owner Owner Owner Street Postal Code ٥ 0

55,843,400

TOTAL ASSESSED:

46 of 66 COMMERCIAL

0001

001

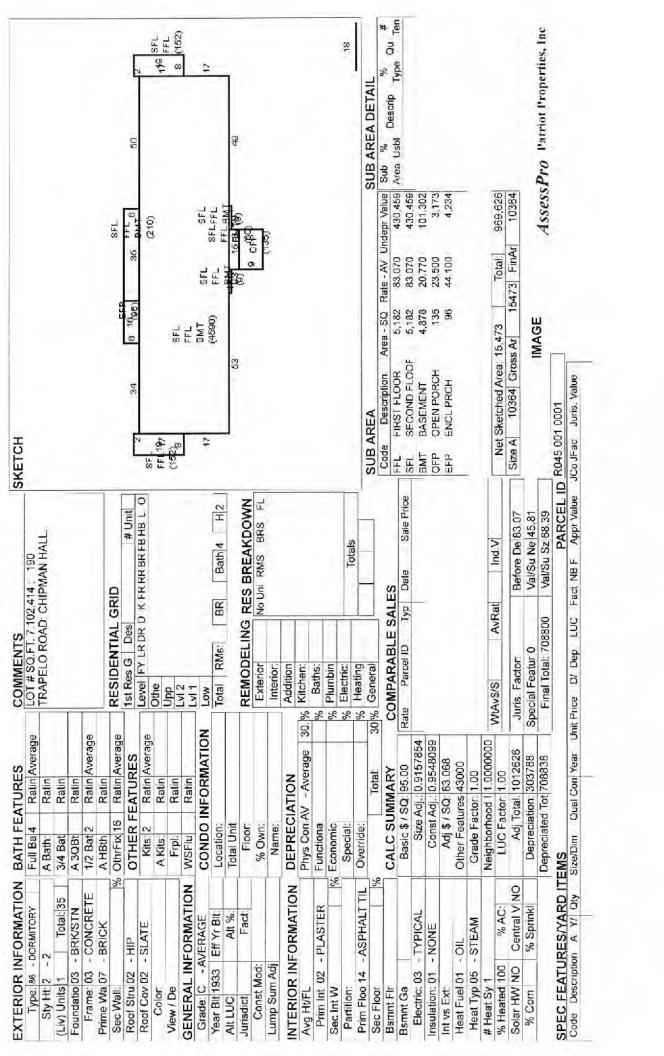
R045

2017

Total:

Spl Cre

Total:


Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total:

Total Special Featue

Datriot Properties Inc. **JSER DEFINED** Notes Name LandReas BidReason Year ASR Map Reval Dis Fact Dist. Prior Id# Prior Id# Prior Id# Prior ld# Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Fact Use Value B Time 05/11/1 11:36:0 05/04/1 14:14:2 Time Insp Date User Acct GIS Ref GIS Ref 112899 112899 ACTIVITY INFORMATION
Date Result LAST R apro Date Date PRINT Land Code Notes 1112899! Spec Date Legal Description PAT ACCT. % **Entered Lot Size** Class ¥ Sale Price V Tst Verif Assoc PCL Value Sign City of Waltham Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 /Parc 63.3 1,135,700 1,135,700 55,843,400 PREVIOUS ASSESSMENT
Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value Total Value % Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Source: Market Adj Co | Total Value per SQ unit /Card 126,30 8 Land Size Land Value Infl 1 Sale Code TAX DISTRIC 0.000 Influ eigh 156.600 Neigh Date IN PROCESS APPRAISAL SUMMAR Adj Neigh Use Code Building Value Yard Items 300 0.000 N4 Typ egal Ref 0 SALES INFORMATION Price Sit 1,135,700 1,135,700 54,303,700 BUILDING PERMITS Value Unit Base Facto Grantor Total Parcel Total Card No of Depth / Unit Type Land Type SITE ٢ Baths, 4 HalfBaths, 0 3/4 Baths, 0 Rooms Total, and Descrip This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) THEATER Building Built about 1933, Having Primarily BRICK Com. Int SO. FT. Exterior and SLATE Roof Cover, with 0 Units, 0 Own Oc Direction/Street/City TRAPELO RD, WALTHAM Type LAND SECTION (First 7 lines only)
Use Description LUC No of Depth / Uncode Description Fact Units PriceUnits Item Cod Stree 41 Traffi Block xmpt odo 5 NARRATIVE DESCRIPTION Amount OTHER ASSESSMENTS Owner CITY OF WALTHAM PROPERTY LOCATION PROPERTY FACTORS Cutr Crt PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Descrip/No OWNERSHIP 914 STATE DOI test Map SVProv MA Census: Flood Haz: SUProv Owner Street Owner Owner Street Twn/Cit Owner Postal Code 0

55,843,400

TOTAL ASSESSED:

47 of 66COMMERCIAL

0001

001

R045

2017

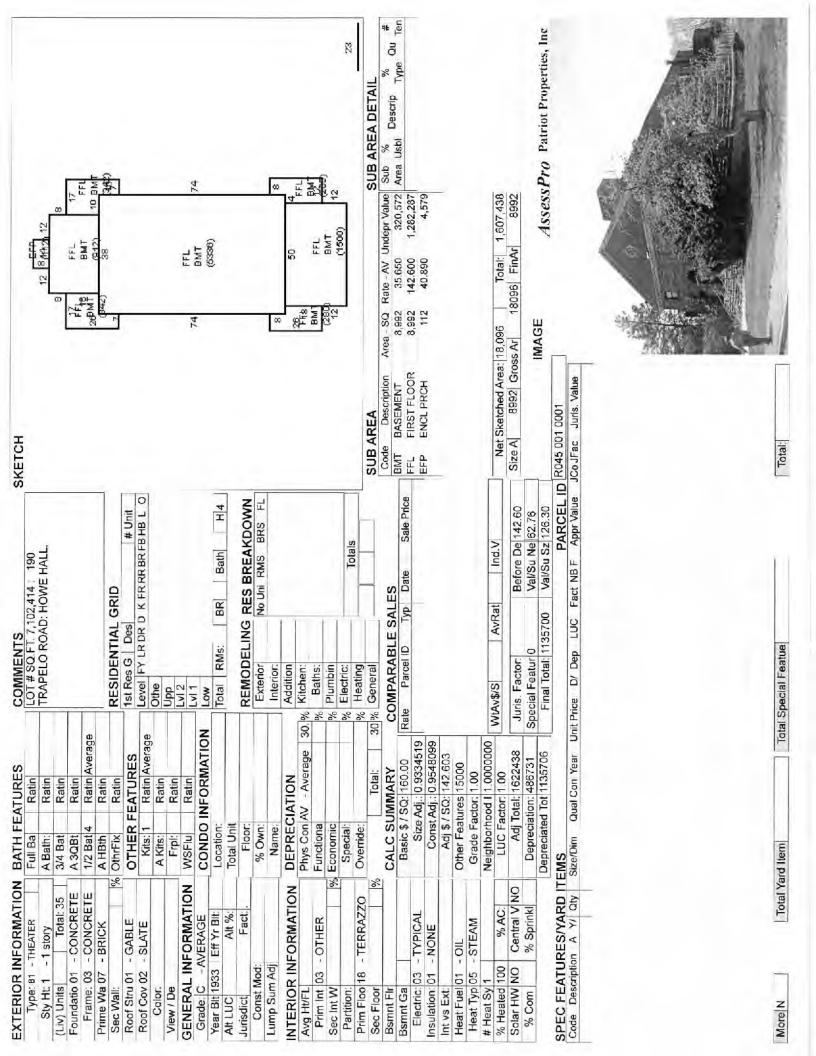
Total:

Spl Cre

Total

apro

Database: AssessPro


Disclaimer This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total AC/H 0.00000

Prime NB D N4

Parcel LU 903 MUNICPL

L Properties Inc. Datriot JSER DEFINED Notes Name BldReason Year LandReas Prior Id# Reval Dis Prior Id# Prior ld# Prior Id# ASR Map Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Fact Dist 55,843,400 Fact Use Value Time B Time 05/11/1 11:26:3 14:14:3 User Acct Insp Date GIS Ref GIS Ref 12899 112899 TOTAL ASSESSED: ACTIVITY INFORMATION apro LAST R Date Date 05/04/1 Spec J F PRINT Notes Result Legal Description Date PAT ACCT. % Entered Lot Size Class ¥ V Tst Verif Assoc PCL Value City of Waltham Sign Land Unit Type: Total Land. Appraised Parcel ID R045 001 0001 Value Notes Comment 8 48 of 66 COMMERCIAL 1,962,500 55,843,400 /Parc 63.3 Infl 3 1,962,500 lax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value 8 Amount C/O Last Visit Fed God F. Descrip Sale Price Infl 2 1.539,400 Land Value Total Value per SQ unit /Card 59.51 % Sale Code Infl 1 TAX DISTRIC 00000 Land Size 0.000 156.600 Influ eigh Neigh IN PROCESS APPRAISAL SUMMAR Date Use Code Building Value Yard Items 300 Adj Neigh Typ 0. 0.000 N4 PREVIOUS ASSESSMENT Legal Ref Descrip SALES INFORMATION Source: Market Adj Co 1,962,500 Price 54.303,700 1,962,500 i BUILDING PERMITS Unit Value Base Number Grantor Depth / Unit Type Land Type Facto Total Parcel Total Card Date 914 0001 Fot SITE Descrip with 1 Units, 20 Baths, 6 HalfBaths, 0 3/4 Baths, 0 Com. Int Primarily BRICK Exterior and SLATE Roof Cover, DORMITORY Building Built about 1934, Having Own Oc SQ. FT. Direction/Street/City TRAPELO RD. WALTHAM his Parcel contains 6,821,497 SQ. FT. of land lype AND SECTION (First 7 lines only)
Use LUC No of Death / Cod Unit# mainly classified as MUNICPL with a(n) Stree 41 Block 001 Item Traffi xmpt Topo NARRATIVE DESCRIPTION Amount PROPERTY LOCATION Owner CITY OF WALTHAM 0 OTHER ASSESSMENTS Cut Units PROPERTY FACTORS
Ite Code Descip % Crt PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Use Description LUC Descrip/No R045 OWNERSHIP Map test 914 STATE DOI Str Nov MA Flood Haz: Census: 190 Street Twn/Cit Owner Owner Street Owner Owner St/Prov Postal: Code 0 0

2017 Total: Spl Cre apro Total: Database: AssessPro Prime NB D N4 Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00

Properties Inc. Datriot USER DEFINED Notes Name BldReason Year LandReas ASR Map Prior Id# Fact Dist: Reval Dis Fact Use Value Time By Time 14:14:4 11:27:2 Insp Date User Acct GIS Ref GIS Ref 112899 112899 ACTIVITY INFORMATION LASTR 05/04/1 apro Date 05/11/1 Date Code PRINT Notes 112899 Land Spec Date Legal Description PAT ACCT 8 Entered Lot Size Class A Sale Price V Tst Verif Assoc PCL Value Date Sign City of Waltham Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 882,900 882,900 55.843,400 /Parc 63.3 PREVIOUS ASSESSMENT
Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value Total Value % Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 IN PROCESS APPRAISAL SUMMAR
Use Code Building Value Yard Items Land Size Land Value
914 Total Value per SQ unit /Card 67.72 % Infl 1 TAX DISTRIC Sale Code Influ eigh 0.000 156,600 Neigh Legal Ref Typ Date Adj Neigh 300 0. 0.000 NA Price SALES INFORMATION Chit 54,303,700 Source: Market Adj Co 882,900 BUILDING PERMITS 0 Base Value Sit Grantor Facto Total Parcel 5 Total Card Depth / Unit Type Land Type PriceUnits SQ. FT. SITE Ę Primarily BRICK Exterior and SLATE Roof Cover, with 1 Units, 12 Baths, 4 HalfBaths, 0 3/4 Baths, 0 R Descrip Com, Int DORMITORY Building Built about 1906, Having NARRATIVE DESCRIPTION
This Parcel contains 6.821,497 SQ. FT. of land
mainly classified as MUNICPL with a(n) Own Oc Direction/Street/City TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only) Cod Stree 41 Item Block Topo xmpt Traffi Amount 0 **DTHER ASSESSMENTS** Owner CITY OF WALTHAM PROPERTY LOCATION Noof Units PROPERTY FACTORS Cntr Cutr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Use Description LUC Descrip/No OWNERSHIP test 914 STATE DOI Map St/Prov MA Census: Flood Haz St/Prov Twn/Cit Owner Owner Owner Street Street Owner Postal Code

55,843,400

TOTAL ASSESSED:

49 of 66 COMMERCIAL

0001

001

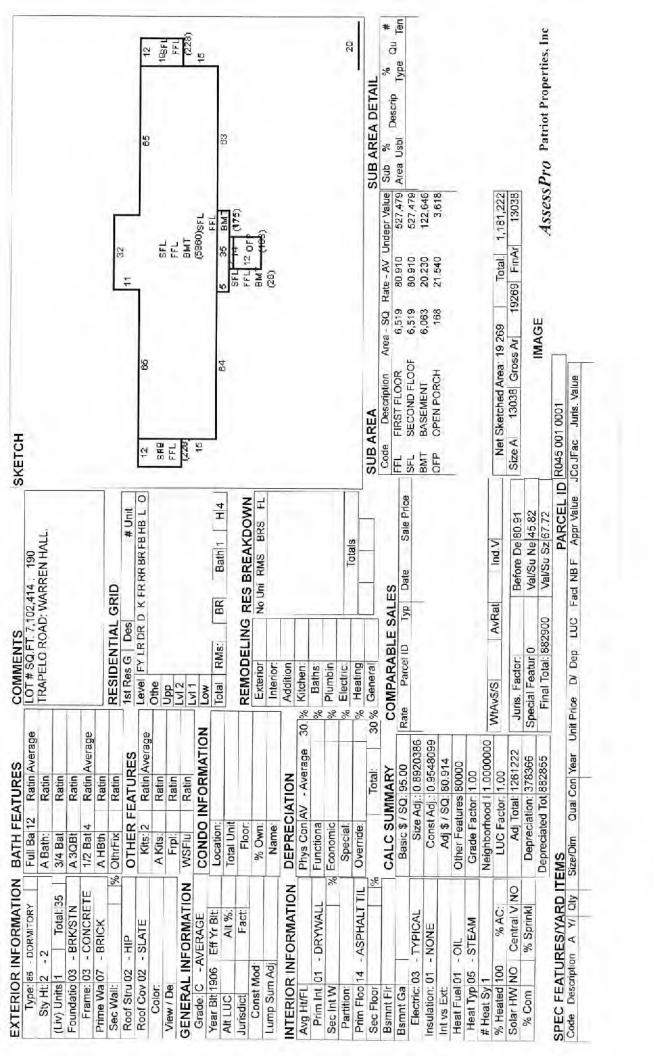
R045

2017

Total

Spl Cre

Total:


Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

More N

Total Yard Item

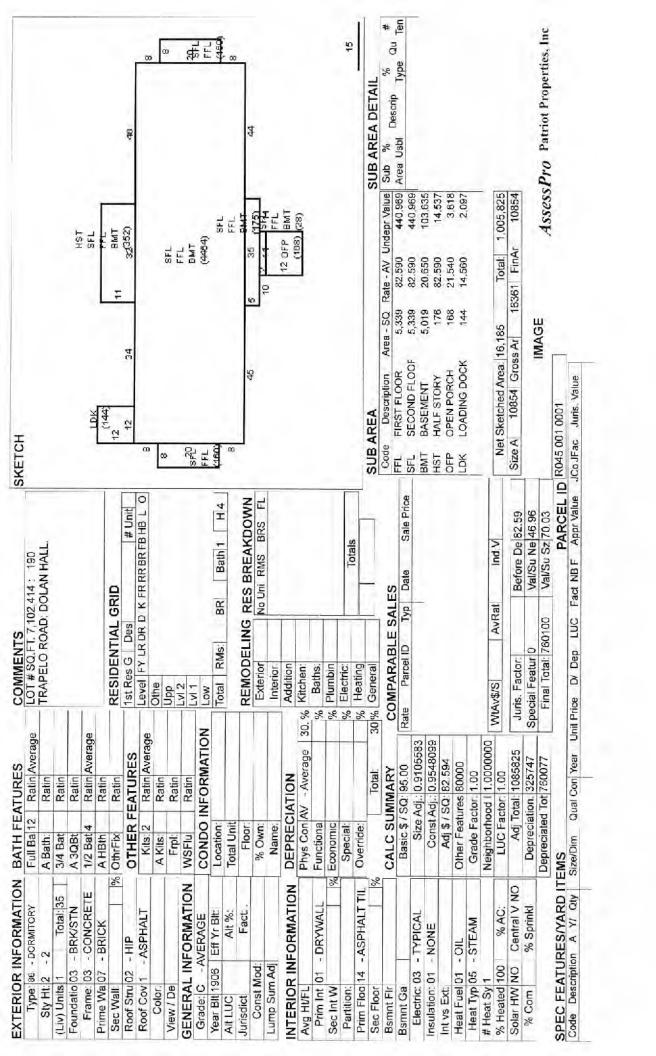
Total Special Featue

Total:

Properties Inc. Datriot USER DEFINED Notes Name Year BidReason LandReas ASR Map Reval Dis Prior Id# Prior ld# Prior Id# Fact Dist: Fact Use Value By Time Time 11:28:2 05/04/1 14:15:1 Insp Date User Acct GIS Ref GIS Ref 112899 112899 ACTIVITY INFORMATION
Date Result LAST R apro 05/11/1 Date Date Code PRINT Notes 112899 Spec Land Date Legal Description PAT ACCT. 8 Entered Lot Size Class AH Sale Price V Tst Verif Assoc PCL Value Sign City of Waltham Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 Infl 3 760,100 760,100 55.843,400 /Parc 63.3 PREVIOUS ASSESSMENT
Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value Total Value % Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Source: Market Adj Co Total Value per SQ unit /Card 70.03 8 Infl 1 Sale Code TAX DISTRIC IN PROCESS APPRAISAL SUMMAR
Use Code Building Value Yard Items Land Size
814 760,100 0.000 0.000 Influ eigh 156.600 Adj Neigh Neigh Legal Ref Typ Date 300 0. 0.000 N4 SALES INFORMATION Price E 54,303,700 BUILDING PERMITS Unit Value Base Grantor Facto 5 Total Parcel Total Card PriceUnits Unit Type Land Type SITE with 1 Units, 12 Baths, 4 HalfBaths, 0 3/4 Baths, 0 R Descrip Primarily BRICK Exterior and ASPHALT Roof Cover, Com. Int SQ. FT. DORMITORY Building Built about 1906, Having Own Oc This Parcel contains 6 821,497 SQ. FT. of land Direction/Street/City TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only) Cod mainly classified as MUNICPL with a(n) Stree 41 Item Block Topo xmpt Traffi NARRATIVE DESCRIPTION Amount OTHER ASSESSMENTS Owner CITY OF WALTHAM PROPERTY LOCATION Units Soot Cutr Cht PROPERTY FACTORS
Its Code Descip % PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Use Description LUC Twn/Cit WALTHAM Descrip/No Alt No OWNERSHIP Map test. 914 STATE DOI St/Prov MA. Census: Flood Haz: 190 Twn/Cit St/Prov Street Owner Postal Owner Owner Owner 0

55,843,400

TOTAL ASSESSED:


50 of 66 COMMERCIAL

0001

001

R045

2017 Total: Spl Cre Total: Database: AssessPro Prime NB D N4 Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

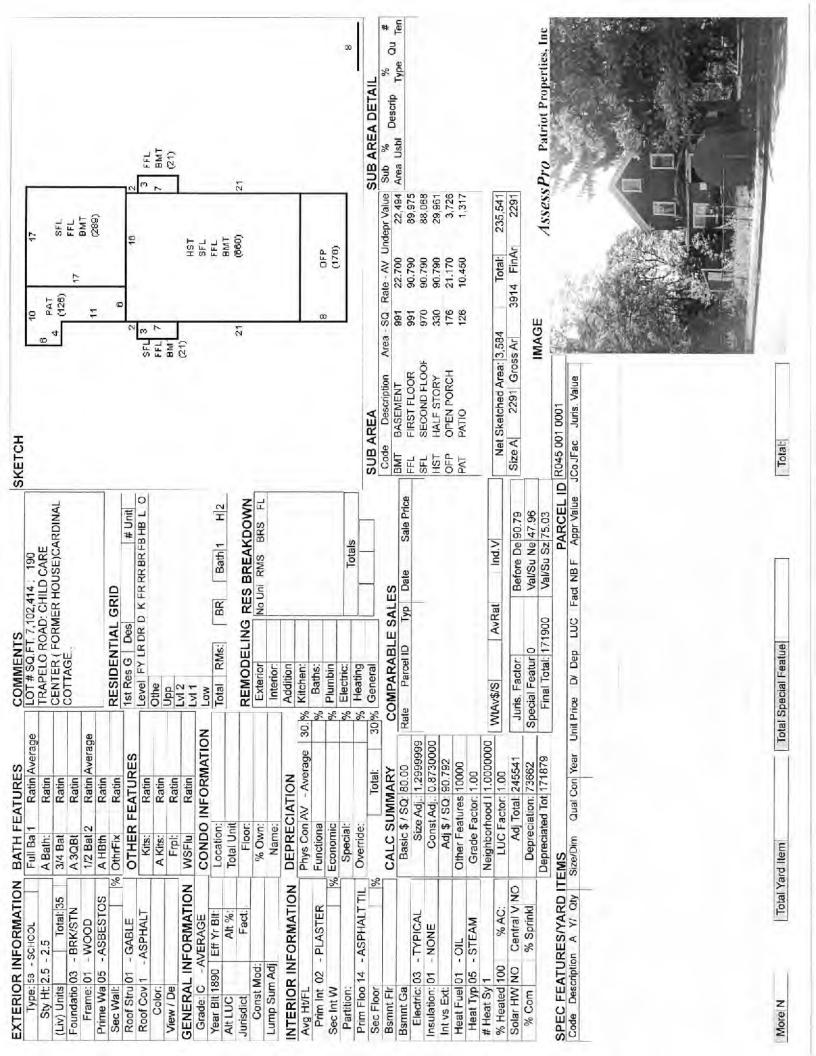
Total Special Featue

Total:

Datriot ▲ Properties Inc. USER DEFINED Notes Name BldReason Year LandReas Prior Id# Prior Id# ASR Map Reval Dis Prior Id# Fact Dist 55,843,400 Fact Use Value By Time Time 10:36:1 14:15:2 **User Acct** Insp Date GIS Ref GIS Ref 112899 TOTAL ASSESSED: ACTIVITY INFORMATION LASTR 08/21/1 apro 05/04/1 Date Date Code PRINT Notes 1112899! Spec Land Date Legal Description PAT ACCT. 8 Entered Lot Size Class ¥ Sale Price V Tst Verif Assoc PCL Value City of Waltham Date Sign Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment % E HI 171,900 55,843,400 /Parc 63.3 51 of 66 COMMERCIAL 171,900 PAREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value 8 Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Size Land Value Source: Market Adj Co | Total Value per SQ unit /Card 75.03 8 Inf 1 Sale Code TAX DISTRIC 0.000 0.000 Influ eigh 156,600 Adj Neigh Neigh Date IN PROCESS APPRAISAL SUMMAR Use Code Building Value Yard Items 300 Legal Ref Typ Price SALES INFORMATION E S 171,900 54,303,700 BUILDING PERMITS
Date Number Desc Sit Base Value Grantor Facto Total Parcel 5 Total Card PriceUnits Unit Type Land Type 914 0001 Ę Descrip with 0 Units, 1 Baths, 2 HalfBaths, 0 3/4 Baths, 0 Ro Com. Int mainly classified as MUNICPL with a(n) SCHOOL ASBESTOS Exterior and ASPHALT Roof Cover, Own Oc This Parcel contains 6,821,497 SQ. FT. of land TRAPELO RD, WALTHAM Direction/Street/City Type LAND SECTION (First 7 lines only)
Use Description LUC No of Depth / Urcode Description Fact Units PriceUnits Ur Building Built about 1890, Having Primarily 800 Stree 41 Block Topo Item xmpt Traff 001 NARRATIVE DESCRIPTION 0 Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION PROPERTY FACTORS Cutr Crit PREVIOUS OWNER Street 610 MAIN ST Descip Postal: 02452-5552 Twn/Cit WALTHAM Descrip/No Alt No R045 OWNERSHIP test Map StyProv MA Census: Flood Haz. St/Prov Twn/Cit Street Postal. Owner Owner Owner Owner 0

2017 Total: Spl Cre Total. Database: AssessPro Prime NB D N4 Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000


0. 0.000 NA

0

SQ. FT. SITE

0

914 STATE DOI

Datriot Properties Inc. JSER DEFINED Notes Name LandReas BldReason Year Reval Dis Prior ld# Prior Id# Prior Id# Prior Id# Prior ld# ASR Map Prior Id # Prior ld # Prior Id# Prior Id# Fact Dist Code Fact Use Value B 10:25:3 Time Time 05/04/1 14:15:3 **User Acct** Insp Date GIS Ref GIS Ref 112899 ACTIVITY INFORMATION AST R apro Date 08/21/1 Date PRINT Notes 1112899! Land Spec Date Legal Description PAT ACCT 8 Entered Lot Size Class Ŧ Sale Price V Tst Verif Assoc PCL Value City of Waltham Sign Date Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes Comment % 129,100 Infl 3 55,843,400 129 100 /Parc 63.3 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value Total Value % Number Descrip Amount C/O Last Visit Fed Cod F, Descrip Infl 2 1,539,400 Land Value Source: Market Adj Co | Total Value per SQ unit /Card 78.82 % Infl.1 Sale Code TAX DISTRIC Land Size 0.000 156.600 Influ eigh Adj Neigh Neigh IN PROCESS APPRAISAL SUMMAR Legal Ref Typ Date Use Code Building Value Yard Items 914 129.100 300 0. 0.000 N4 SALES INFORMATION Price Cuit 129,100 129,100 54.303.700 **BUILDING PERMITS** Unit Base Value Grantor Price Unit Type Land Type Facto Total Parcel 5 Total Card Date SITE Building Built about 1925, Having Primarily STUCCO Exterior and ASPHALT Roof Cover, with 0 Units, 0 Baths, 0 HalfBaths, 0 3/4 Baths, 0 Rooms T Descrip Com. Int SQ. FT. This Parcel contains 6,821,497 SQ, FT, of land mainly classified as MUNICPL with a(n) OFFICE Own Oc Direction/Street/City TRAPELO RD, WALTHAM lype Item Cod AND SECTION (First 7 lines only) Stree 41 Depth / Block xmpt Topo Traff NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION Cutr PROPERTY FACTORS Units 000 Cut PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 fwn/Cit WALTHAM Use Description LUC Describ/No Alt No OWNERSHIP Map test 914 STATE DOL SVProv MA Census: Flood Haz 190 St/Prov Owner Owner Owner Street Street Twn/Cit Postal Owner 0

55,843,400

TOTAL ASSESSED:

52 of 66COMMERCIAL

000

001

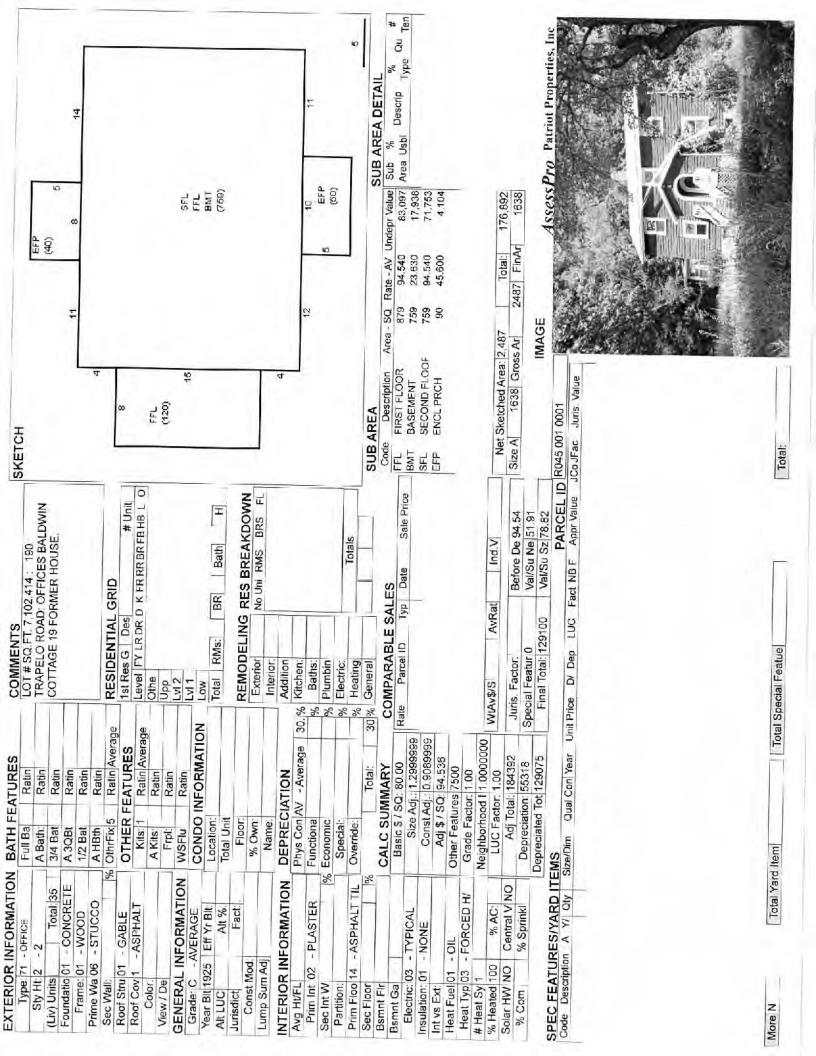
R045

2017

Total:

Spl Cre

Total:


Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Properties Inc. USER DEFINED Datriot Notes Name Year LandReas BldReason ASR Map Prior Id# Fact Dist: Prior Id# Reval Dis Fact Use Value B Time 08/21/1 10:26:2 14:15:4 Time Insp Date User Acct GIS Ref GIS Ref 112899 112899 ACTIVITY INFORMATION LASTR apro 05/04/1 Date Date PRINT Code Notes Result Spec Land Date Legal Description PAT ACCT. 8 **Entered Lot Size** Class A Sale Price V Tst Verif Assoc PCL Value Dafe City of Waltham Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes Comment % 155,300 Infl 3 155,300 55.843,400 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value /Parc 63.3 Total Value 8 Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 94.81 % Infl 1 Sale Code TAX DISTRIC IN PROCESS APPRAISAL SUMMAR
Use Code Building Value Yard Items Land Size
1914 155,300 0.000 Influ eigh 0.000 156.600 Neigh Date Adj Neigh 300 0. 0.000 NA Legal Ref Typ SALES INFORMATION Price Ē 54,303,700 Source: Market Adj Co 155,300 BUILDING PERMITS 0 Base Value E S Depth / Unit Type Land Type LT PriceUnits Grantor Total Parcel Total Card SQ. FT. SITE Cover, with 1 Units, 1 Baths, 1 HalfBaths, 0 3/4 Bath Descrip Com. Int DORMITORY Building Built about 1925, Having Primarily STUCCO Exterior and ASPHALT Roof Own Oc This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) Direction/Street/City TRAPELO RD, WALTHAM Type Cod AND SECTION (First 7 lines only) Stree 41 Block Item xmpt Topo Traffi 0 NARRATIVE DESCRIPTION Amount 0 OTHER ASSESSMENTS Owner CITY OF WALTHAM ROPERTY LOCATION Chtr No of Units PROPERTY FACTORS
Ite Code Descip | % Cutr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Use Description LUC Descrip/No Alt No OWNERSHIP Map test 914 STATE DOI SVProv MA Census: Flood Haz. Owner Street [wn/Cit St/Prov Owner Owner Street Postal Owner Code

55,843,400

TOTAL ASSESSED:

53 of 66COMMERCIAL

0001

001

R045

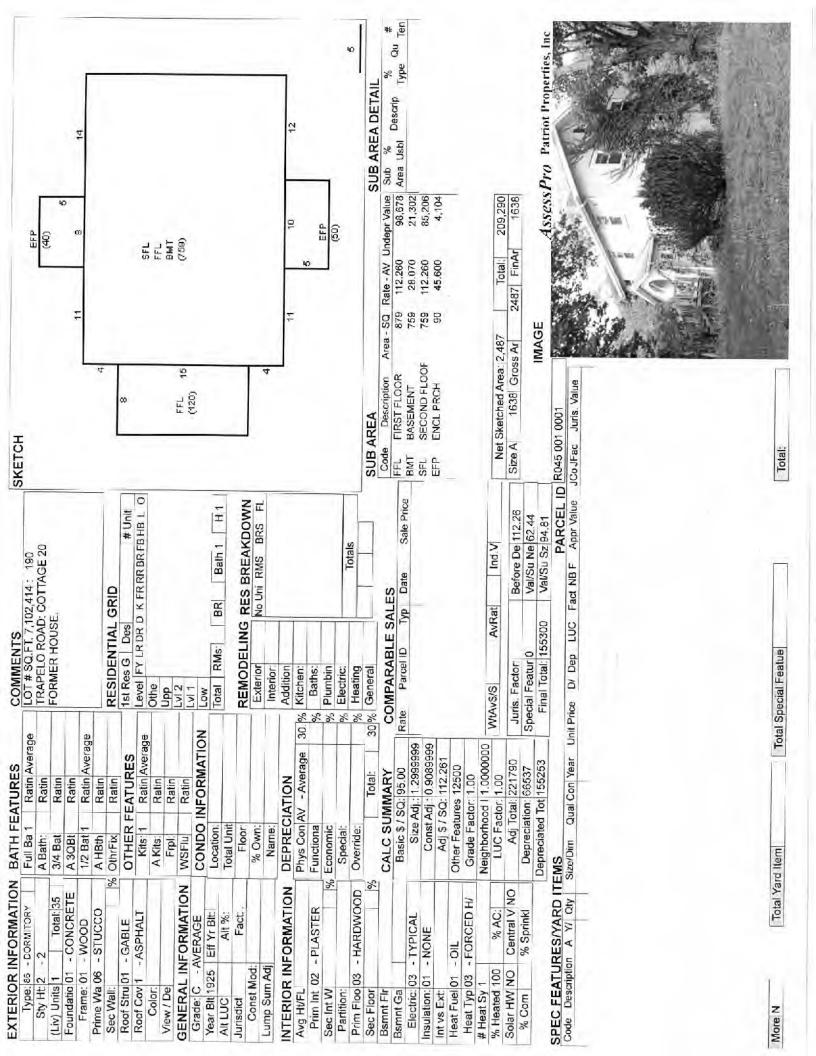
2017

Total:

Spl Cre

Total:

apro


Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.

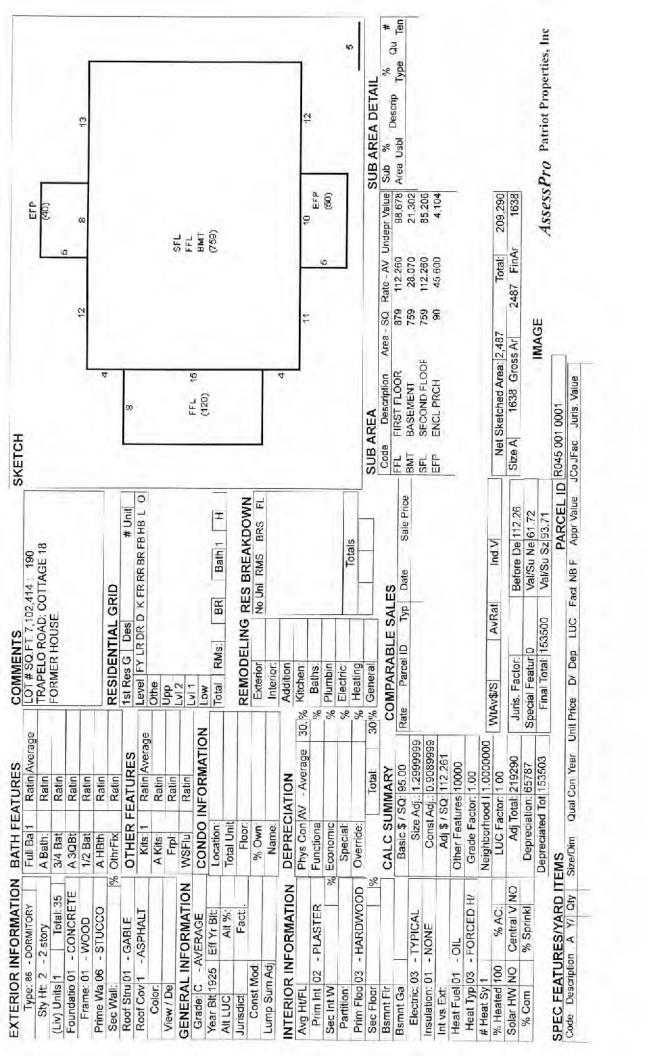
Total SF/S 0.00

Natriot Properties Inc. **USER DEFINED** Notes Name BldReason LandReas Prior 1d# ASR Map Prior Id# Prior 1d# Prior ld# Reval Dis Prior Id# Prior Id# Prior Id# Prior Id# Prior ld# Fact Dist 55,843,400 Fact Use Value B Time Time 05/04/1 | 14:15:5 11:31:5 Insp Date User Acct GIS Ref GIS Ref 112899 112899 ACTIVITY INFORMATION AST R apro Date 05/11/1 Date PRINT Code Notes 11128991 Land Spec Date Legal Description PAT ACCT 8 Entered Lot Size Class ¥ Sale Price V Tst Verif Assoc PCL Value Date City of Waltham Sign Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 Infl 3 153.500 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value 153,500 55,843,400 /Parc 63.3 Total Value 8 Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539.400 IN PROCESS APPRAISAL SUMMAR
Use Code Building Value Yard Items Land Size Land Value Source: Market Adj Co Total Value per SQ unit /Card 93.71 8 Infl 1 Sale Code TAX DISTRIC 0.000 Influ eigh 0.000 156,600 Adj Neigh Neigh Dafe 300 0. 0.000 N4 Legal Ref Typ SALES INFORMATION 3 Price 153,500 153,500 54,303,700 BUILDING PERMITS

Date Number Desc Base Value Chit Grantor Facto Total Parcel Total Card Depth / Unit Type Land Type 914 SITE Pot Cover, with 1 Units, 1 Baths, 0 HalfBaths, 0 3/4 Bath Cod Descrip Com. Int SQ. FT. DORMITORY Building Built about 1925, Having Primarily STUCCO Exterior and ASPHALT Roof Own Oc This Parcel contains 6,821,497 SQ, FT. of land mainly classified as MUNICPL with a(n) Direction/Street/City IRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only) Stree 41 Block Item Odol Traffi xmpt 5 NARRATIVE DESCRIPTION Amount 0 OTHER ASSESSMENTS Owner CITY OF WALTHAM PROPERTY LOCATION No of PROPERTY FACTORS Units Crit S PREVIOUS OWNER Street 610 MAIN ST Descip Postal: 02452-5552 Iwn/Cit WALTHAM Use Description Fact Descrip/No OWNERSHIP 914 STATE DOI test Map SVProv MA Code Census: Flood Haz Twn/Cit Owner StyProv Postal: Owner Street Owner Owner Street Code ę ۵ 0

TOTAL ASSESSED:


54 of 66 COMMERCIAL

0001

001

R045

Total: Spl Cre apro Total Database: AssessPro Prime NB D N4 Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

Total Special Featue

Total:

Properties Inc. Datriot USER DEFINED Nates Name LandReas BidReason Year Prior Id# Reval Dis Prior Id# Prior Id# ASR Map Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Fact Dist: Code Fact Use Value By Time Time 11:32:3 05/04/1 14:16:0 **User Acct** Insp Date GIS Ref GIS Ref 112899 ACTIVITY INFORMATION apro AST R Date 05/11/1 Date PRINT Notes Result Land Spec Date Legal Description PAT ACCT % **Entered Lot Size** Class Ħ Sale Price V Tst Verif Assoc PCL Value Date Sign City of Waltham Land Unit Type: Total Land Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 118,100 /Parc 63.3 118,100 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value Total Value % Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infiz 1,539,400 IN PROCESS APPRAISAL SUMMAR
Use Code Building Value Yard Items Land Size Land Value
914 118,100 0,000 Total Value per SQ unit /Card 72.10 % Infl 1 Sale Code TAX DISTRIC 0.000 0.000 Influ eigh 156.600 Neigh Date Adj Neigh 300 0. 0.000 N4 Legal Ref Typ Source: Market Adj Co Price SALES INFORMATION ii. 118,100 54,303,700 **BUILDING PERMITS** Base Value Grantor Facto Total Parcel Total Card Depth / Unit Type Land Type SITE Item Cod Descrip STUCCO Exterior and ASPHALT Roof Cover, with 1 Jnits, 1 Baths, 0 HalfBaths, 0 3/4 Baths, 0 Rooms T CAPÉ Building Built about 1925, Having Primarily Com. Int SQ. FI Own Oc This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) SPLIT TRAPELO RD, WALTHAM Direction/Street/City Type AND SECTION (First 7 lines only) Stree 41 Iraff xmpt Topo NARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM OTHER ASSESSMENTS ROPERTY LOCATION PROPERTY FACTORS No of Units Cut Cutr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Fwn/Cit WALTHAM Use Description LUC Descrip/No Alf No OWNERSHIP 914 STATE DO test St/Prov MA Code Census Flood Haz Owner Street Twn/Cit StrProv Owner Owner Street Owner Postal: Code a

55,843,400

TOTAL ASSESSED:

55 of 66 RESIDENTIAL

Unit

0001 Lot

Block

Map

001

R045

112899

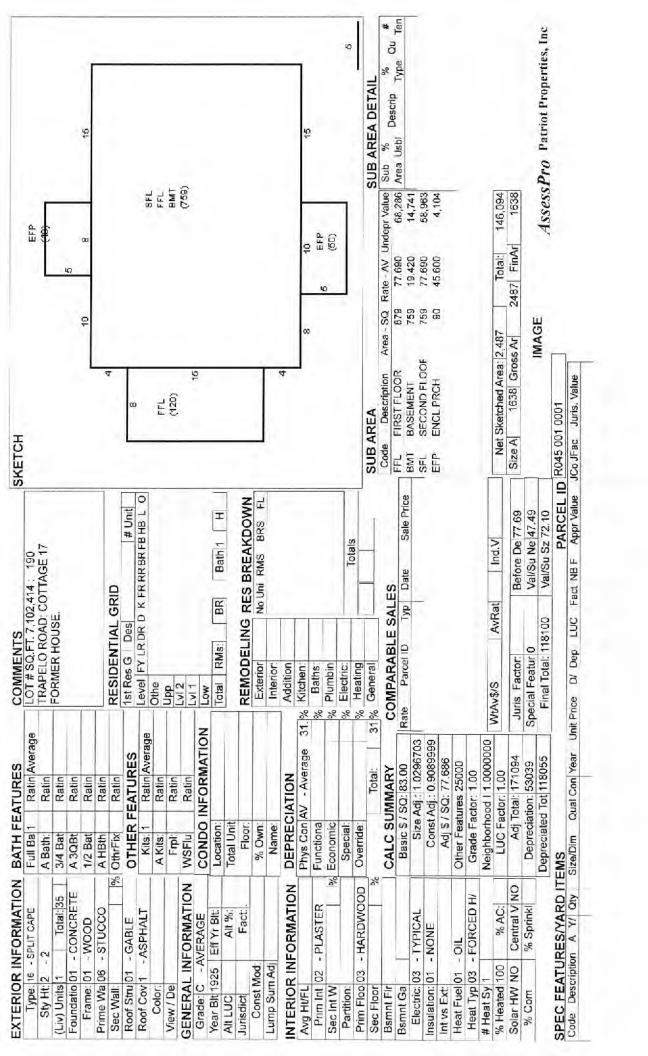
2017

Total:

Spl Cre

Total:

apro

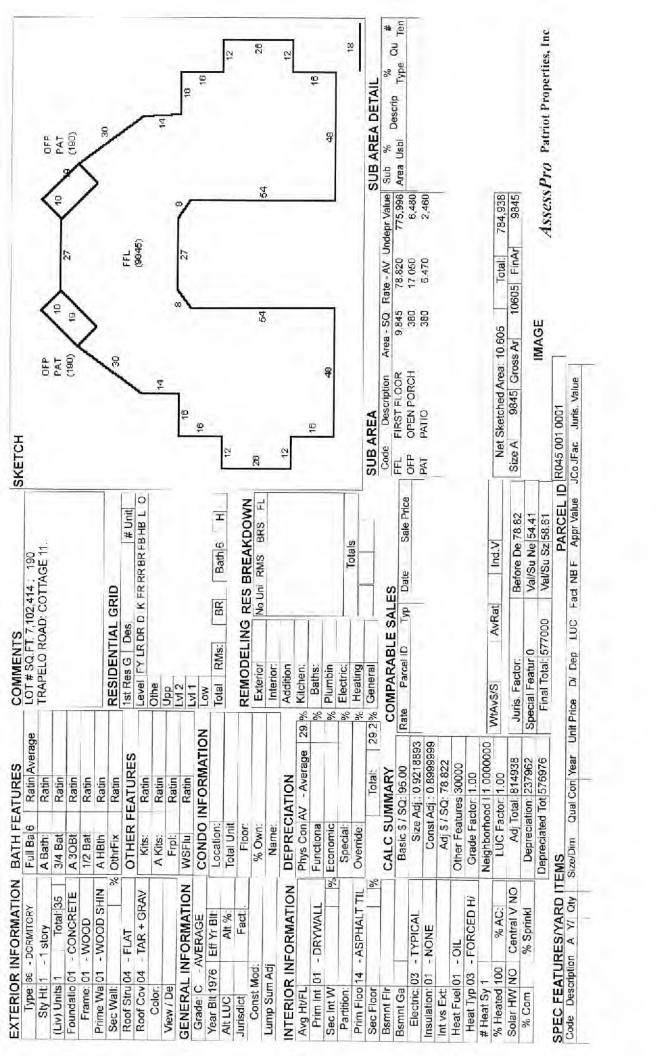

Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00


Total Special Featue

Total

Datriot Properties Inc. USER DEFINED Notes Name LandReas BldReason Year Prior Id# Prior Id# Prior Id# Prior Id# Prior ld # Prior Id# ASR Map Reval Dis Prior Id# Prior Id# Prior Id# Fact Dist 55,843,400 Fact Use Value Time By 05/04/1 14:16:0 Time 11:34:0 User Acct Insp Date GIS Ref GIS Ref 112899 112899 ACTIVITY INFORMATION
Date Result TOTAL ASSESSED: LASTR Date apro 05/11/1 Date PRINT Code Notes 112899! Land Spec Date Legal Description PAT ACCT. 8 Entered Lot Size Class Sale Price V Tst Verif Assoc PCL Value Sign City of Waltham Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 56 of 66 COMMERCIAL 577,000 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value 577,000 55,843,400 Total Value /Parc 63.3 % Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1.539,400 Land Value Source: Market Adj Co Total Value per SQ unit /Card 58.61 % Infl 1 Sale Code TAX DISTRIC 0.000 0.000 156.600 Influ eigh Use Code Building Value Yard Items Land Size 914 577,000 0.000 Neigh Neigh Legal Ref Typ Date IN PROCESS APPRAISAL SUMMAR 300 0. 0.000 NA Adj SALES INFORMATION Price Sit 577,000 577,000 54,303,700 BUILDING PERMITS Lhit Value Base Grantor PriceUnits Unit Type Land Type Facto 5 Total Parcel Total Card Date SITE 0001 ř DORMITORY Building Built about 1976, Having Primarily WOOD SHING Exterior and TAR + GRAVEL Roof Cover, with 1 Units, 6 Baths, 0 HalfB Item Cod Descrip Com. Int SQ. FT. Own Oc This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) Direction/Street/City TRAPELO RD, WALTHAM Type LAND SECTION (First 7 lines only)
Use Description LUC No of Depth / Units PriceUnits Units Stree 41 Block Topo Traffi xmpt 001 NARRATIVE DESCRIPTION Amount 0 Owner CITY OF WALTHAM OTHER ASSESSMENTS PROPERTY LOCATION Cutr PROPERTY FACTORS
Ite Code Descip % Cutr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Fwn/Cit WALTHAM Descrip/No Alt No OWNERSHIP R045 test 914 STATE DOI Map St/Prov/MA Census: Flood Haz: Owner Owner Owner Twn/Cit SUProv Street Owner Street Postal: 0

2017 Total Spl Cre apro Total: Database: AssessPro Prime NB D N4 Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

.

Total Special Featue

Total:

Properties Inc. Datriot USER DEFINED Notes. Name BldReason Year LandReas ASR Map Reval Dis Prior Id# Prior Id # Fact Dist: 55,843,400 Land Code Fact Use Value By Time Time 14:16:2 14:23:3 Insp Date User Acct GIS Ref GIS Ref 112899 bvazquez 112899 ACTIVITY INFORMATION AST R 02/10/1 05/04/1 Date Date PRINT Notes 1112899! Date Legal Description PAT ACCT % **Entered Lot Size** Class ¥ Sale Price V Tst Verif Assoc PCL Value Sign City of Waltham Date Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 Infl 3 635,700 /Parc 63.3 635,700 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses d Value Total Value 8 Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 IN PROCESS APPRAISAL SUMMAR
Use Code Building Value Yard Items Land Size Land Value
914 635,700 0,000 Total Value per SQ unit /Card 64.77 % Infl 1 Sale Code TAX DISTRIC 0.000 0.000 Influ eigh 156.600 Adj Neigh Neigh Date 300 0.000 NA Legal Ref Typ Number Descrip o Price Source: Market Adj Co SALES INFORMATION Cuit 54,303,700 **BUILDING PERMITS** Unit Value Base Grantor Facto 5 Total Parcel Total Card Date Depth / Unit Type Land Type SITE Cod Descrip GRAVEL Roof Cover, with 1 Units, 6 Baths, 0 HalfB Com. Int DORMITORY Building Built about 1976, Having SQ. FT. Own Oc This Parcel contains 6,821,497 SQ. FT, of land mainly classified as MUNICPL with a(n) Direction/Street/City TRAPELO RD, WALTHAM Primarily WOOD SHING Exterior and TAR + Type AND SECTION (First 7 lines only) Stree 41 llem Block Traff Topo xmpt NARRATIVE DESCRIPTION Amount OTHER ASSESSMENTS Owner CITY OF WALTHAM PROPERTY LOCATION No of Units Cut Cutr PROPERTY FACTORS
Its Code Descip % PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Use Description LUC Descrip/No OWNERSHIP 914 STATE DO Map St/Prov MA Census Flood Haz: Twn/Cit SVProv Owner Street Street Owner Owner Owner Postal Code 0

TOTAL ASSESSED:

57 of 66 COMMERCIAL

0001

100

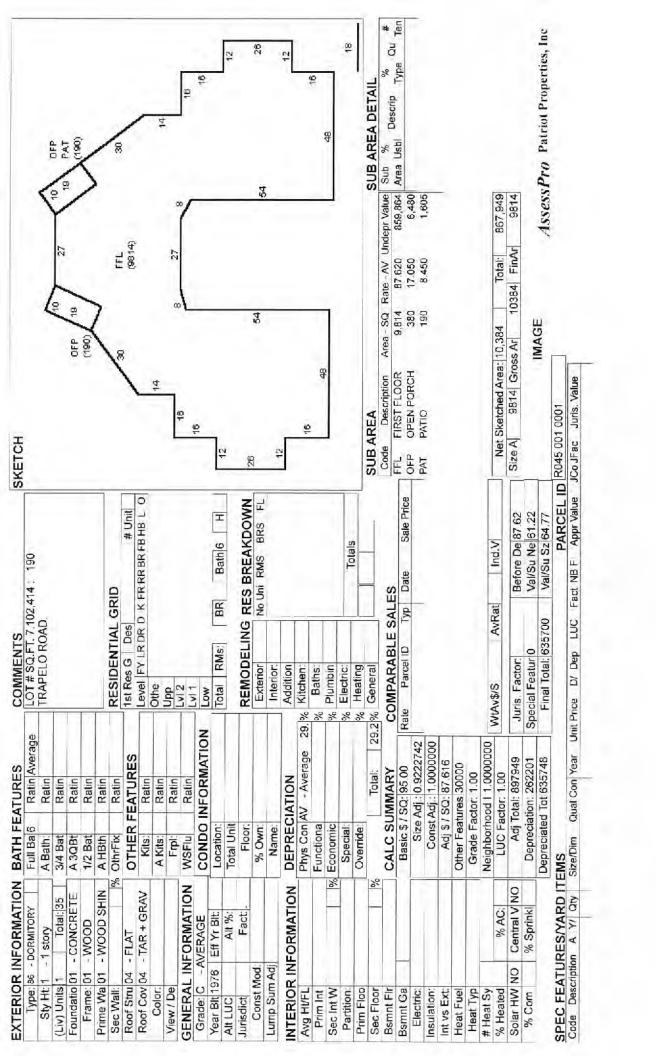
R045

2017

Total:

Spl Cre

Total:


Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total Special Featue

Total

Datriot Properties Inc. JSER DEFINED Notes Name BldReason LandReas Year Reval Dis ASR Map Prior Id# Fact Dist Fact Use Value B Time 14:23:3 Time 05/04/1 14:16:3 Insp Date User Acct GIS Ref GIS Ref pvazquez 112899 ACTIVITY INFORMATION LASTR Date 02/10/1 Date Code PRINT Notes 112899! Land Spec Date Legal Description PAT ACCT. % **Entered Lot Size** Class ¥ Sale Price V Tst Verif Assoc PCL Value City of Waltham Date /Parc 63.3 | Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes Comment 8 三里3 596,500 596,500 55,843,400 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value 8 Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Size Land Value Source: Market Adj Co Total Value per SQ unit /Card 58.10 % Infl 1 Sale Code TAX DISTRIC 0.000 0.000 Influ eigh 156.600 Date IN PROCESS APPRAISAL SUMMAR Adj Neigh Use Code Building Value Yard Items 914 596,500 300 0. 0.000 NA Legal Ref Typ Price SALES INFORMATION E. 596,500 54,303,700 596,500 BUILDING PERMITS Unit Depth / Unit Type Land Type Facto Value Grantor Total Parcel Total Card SITE Ę Cod Descrip GRAVEL Roof Cover, with 1 Units, 6 Baths, 0 HalfB Com. Int SQ. FT. DORMITORY Building Built about 1976, Having Primarily WOOD SHING Exterior and TAR + This Parcel contains 6,821,497 SQ, FT of land mainly classified as MUNICPL with a(n) Own Oc TRAPELO RD, WALTHAM Direction/Street/City Type AND SECTION (First 7 lines only) # 150 Stree 41 Item Block xmpt Traffi odol 0 NARRATIVE DESCRIPTION Amount 0 OTHER ASSESSMENTS Owner CITY OF WALTHAM PROPERTY LOCATION PROPERTY FACTORS

Its Code Descip % No of Units Cntr Cut PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Twn/Cit WALTHAM Use Description LUC Descrip/No OWNERSHIP test 914 STATE DOI Map St/Prov MA Flood Haz. Census: St/Prov Owner Street Owner Street Twn/Cit Owner Owner Postal: Code

55,843,400

TOTAL ASSESSED:

58 of 66 COMMERCIAL

0001

001

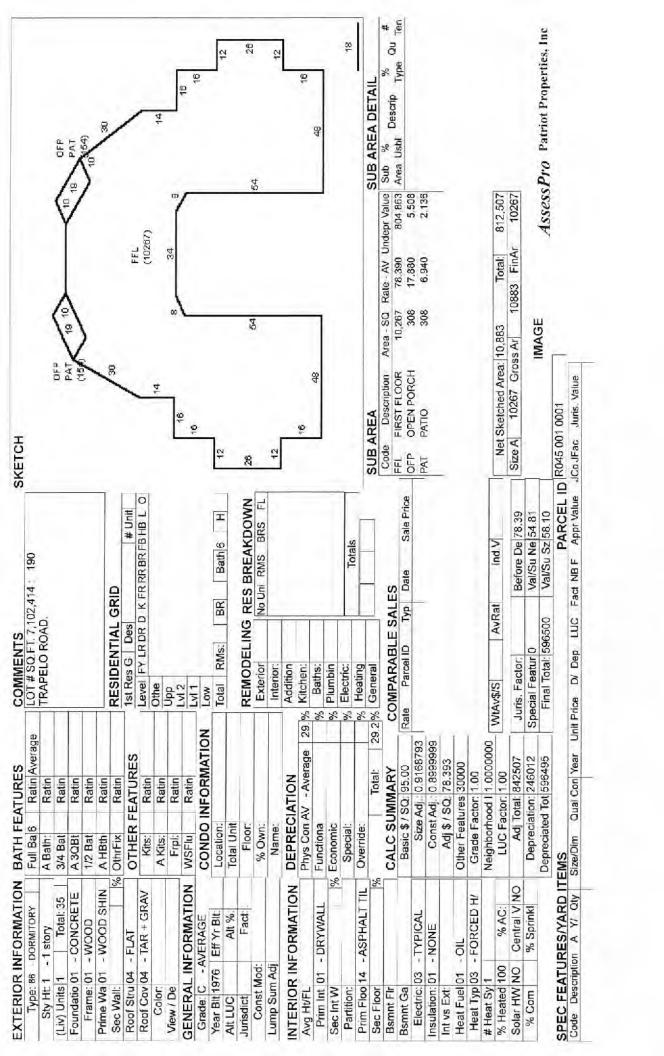
R045

2017

Total

Spl Cre

Total


Database: AssessPro

Prime NB D N4

Parcel LU 903 MUNICPL

Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total Special Featue

Total:

More N

Total Yard Item

1172899!		Š	112899	GIS Ker		GIS Ref	T	Insp Date Properties Inc.	USER DEFINED		PRINT		14:16:4	no!	Date Time Prior Id#	02/10/1 14:23:3 Prior Id #	bvazquez Prior Id#	T. 112899 ASR Map	Notes Fact Dist.	Reval Dis	Year	LandReas	BldReason				Result By Name								/ /	Spec J Fact Use Value Notes	
City of Waltham		Legal Description				Entered Lot Size	Total Land:	and Unit Type:	15 001 0001	Notes Date								PAT ACCT.	if Assoc PCL Value								nent Date							Cont. O	ligic	% Appraised Alt %	
City of		Total Value	006,006			1008,093	55,843,400	/Parc 63.3	Parcel ID R045 001 0001	e Asses'd Valu									rice V Tst Verif								scrip Comment									Infl 2 % Infl 3	
CARD		Land Value					1,539,400	/Card 58.92		Yrd Item Land Size Land Value Total Value Asses'd Valu								STRIC	Sale Code Sale Price								Amount C/O Last Visit Fed Cod F. Descrip									Infl 1 %	
	MMAR	is Land Size	0.000			0.000	300 156.600	Total Value per SQ unit /Card 58.92		m Land Size Lan								TAX DISTRIC	Date								nt C/O Last Visi									Veigh Neigh	1
	RAISAL SUR	falue Yard Items	006,000			260,900			COMENT	g Value Yrd Iter								NOIL	Legal Ref Typ																	Unit Adj Neigh	
Unit	IN PROCESS APPRAISAL SUMMAR	e Code Buildir				Total Card 560	Total Parcel 54,303,700	Source: Market Adj Co	EVIOLIS ASSE	Tax Yr Use Cat Bldg Value Yr								SALES INFORMATION	Grantor							2	Date Number Descrip									ype Costs Make	
Lot			TAIW SIA			Tot	Tot		00	00) e	Ī				Ī		SA	Fland		Having	X +		Com. Int	_1	BL		Descrip					ĺ			(y) Unit Type Land Type Engle	SQ. FT. SITE
DIOCK	NO	Direction/Street/City	ואשרבוט אט, אארו האוו	Unit #.	MINI					Cutr	lype					Contr		NOITE	21 497 SO FT o	VICPL with a(n)	uilt about 1976, I	th 1 Units 6 Bath	NTS	Amount			00	% Item Cod	n			******	Topo	Stree 41	Traffi	No of Depth/	0
Map	PROPERTY LOCATION	Alt No		OWNERSHIP	_	Owner	Owner CAO MACINI OT	Ctroet old MAIN SI	Twn/Cit WALTHAM		Postal: 02452-5552	PREVIOUS OWNER	Owner	Street	Twn/Cit			NAPPATIVE DESCRIPTION	This Parcel contains 6.821 497 SO FT of land	mainly classified as MUNICPL with a(n)	DORMITORY Building Built about 1976, Having	Frimaniy WOOD SHING Exterior and TAR + GRAVEL Roof Cover, with 1 Units, 6 Baths, 0 HalfB	OTHER ASSESSMENTS	Code Descrip/No			DODGEDTY EACTOR	Ite Code Descip %	Z	0	_	Census:	D 0 lest	S	1	UND SECTION (First 7 lines only) Use Description End No of Depth Unit Depth Unit Unit	STATE DOI

2017

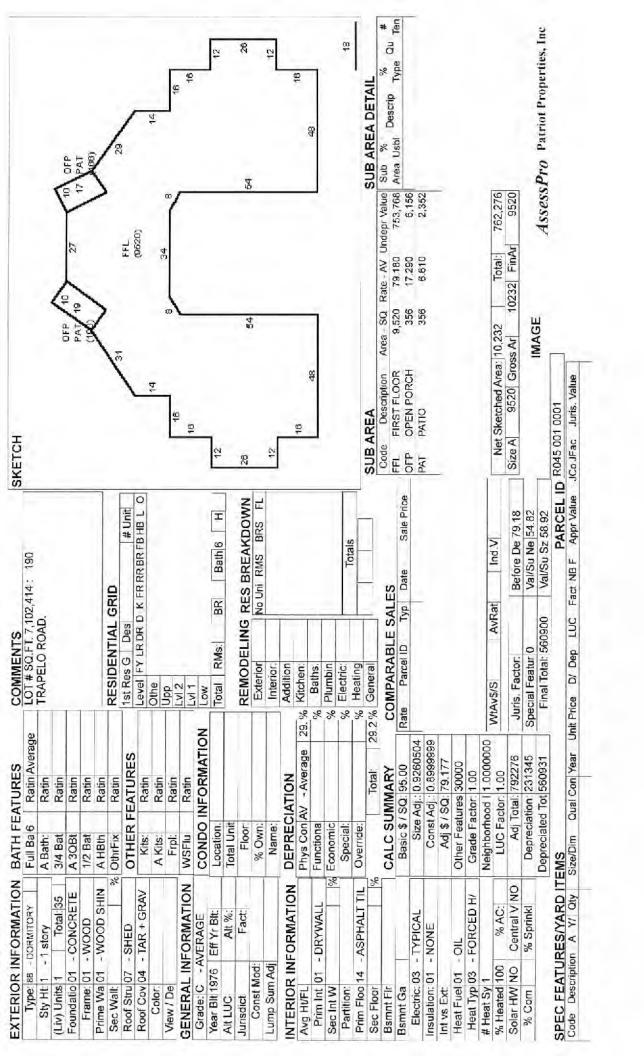
Total:

Spl Cre

Total:

apro

Database: AssessPro


Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total AC/H 0.00000

Prime NB D N4

Parcel LU 903 MUNICPL

Total Special Featue

Total:

Total Yard Item

Datriot Properties Inc. JSER DEFINED Notes Name LandReas Year. BldReason Reval Dis ASR Map Fact Dist: Prior 1d# Prior ld# Prior Id# Fact Use Value B 02/10/1 14:23:3 05/04/1 14:16:4 Time Time Insp Date User Acct GIS Ref GIS Ref bvazquez 112899 ACTIVITY INFORMATION ASTR Date Date Code PRINT Notes Land Date Legal Description PAT ACCT. % Entered Lot Size Class ¥ Sale Price V Tst Verif Assoc PCL Value Sign Date City of Waltham Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes 8 Comment Infl 3 604,200 55,843,400 /Parc 63.3 PAREVIOUS ASSESSMENT

Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Valu 604,200 Total Value 8 Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 % Use Code Building Value Yard Items Land Size Land Value Source: Market Adj Co Total Value per SQ unit /Card 57.98 Infl 1 Sale Code TAX DISTRIC Influ eigh 0.000 0.000 156,600 Neigh Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 0.000 N4 Legal Ref Typ Price SALES INFORMATION 604,200 54,303,700 604,200 BUILDING PERMITS Value Unit Base Date Number Grantor Depth / Unit Type Land Type Facto Total Parcel Total Card Lot Descrip SRAVEL Roof Cover, with 1 Units, 6 Baths, 0 HalfB Com. Int SO. FT. DORMITORY Building Built about 1976, Having Primarily WOOD SHING Exterior and TAR + NARRATIVE DESCRIPTION
This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) Own Oc Direction/Street/City TRAPELO RD, WALTHAM Type Cod AND SECTION (First 7 lines only) Stree 41 Item Traffi xmpt Block Topo Amount OTHER ASSESSMENTS Owner CITY OF WALTHAM No of PROPERTY FACTORS

The Code Descrip % PROPERTY LOCATION Units Cntr Cut PREVIOUS OWNER Street 610 MAIN ST Use Description LUC Postal: 02452-5552 Fwn/Cit WALTHAM Descrip/No Alt No **WNERSHIP** lest 914 STATE DO Map St/Prov MA Census Flood Haz St/Prov Street Owner Street Twn/Cit Owner Owner Owner Postal 0 Code 0

55,843,400

TOTAL ASSESSED:

60 of 66 COMMERCIAL

0001

001

R045

2017

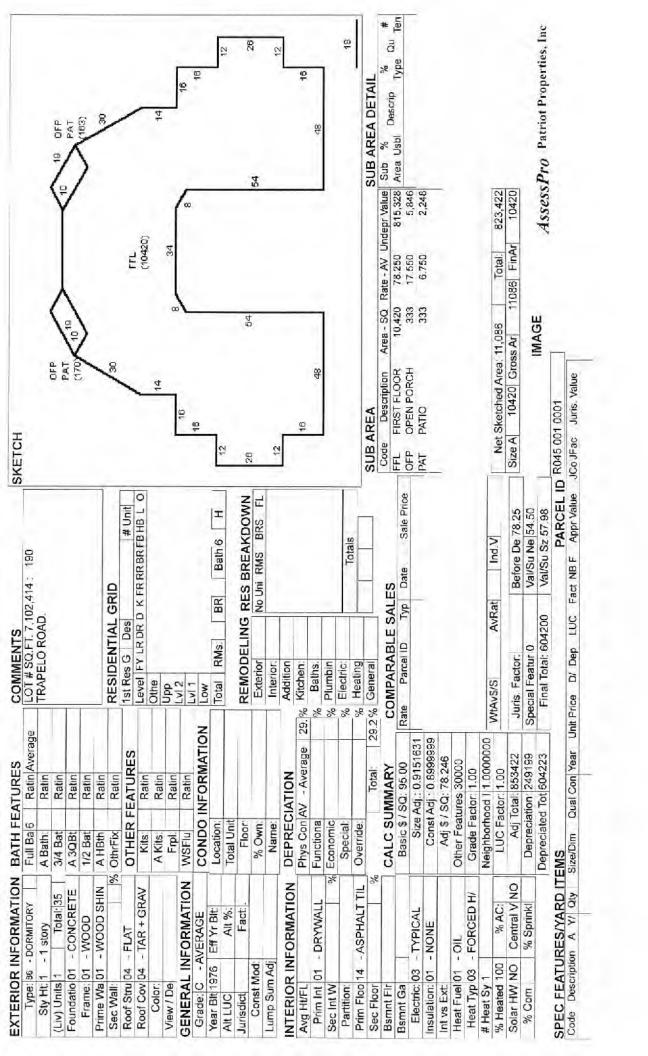
Total:

Spl Cre

Total:

apro

Database: AssessPro


Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total AC/H 0.00000

Prime NB D N4

Parcel LU 903 MUNICPL

More N

Total Special Featue

Total,

Datriot Properties Inc. JSER DEFINED Notes Name Year LandReas BIdReason Fact Dist: Reval Dis Prior Id# ASR Map Prior Id# Fact Use Value B Time Time 14:16:5 02/10/1 14:23:3 Insp Date User Acct GIS Ref GIS Ref 112899 bvazquez 112899 ACTIVITY INFORMATION
Date Result AST R Date 05/04/1 Date Land Code PRINT Notes 11128991 Spec Date Legal Description PAT ACCT. % Entered Lot Size Class A Sale Price V Tst Verif Assoc PCL Value Sign City of Waltham Land Unit Type: Total Land Appraised Value Parcel ID R045 001 0001 Notes Comment 8 Infl 3 55,843,400 568,500 568,500 /Parc 63.3 Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Valu Total Value % Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Size Land Value Source: Market Adj Co Total Value per SQ unit /Card 58.79 % Infi 1 Sale Code TAX DISTRIC Influ eigh 0.000 156.600 Neigh Typ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh Use Code Building Value Yard Items 300 0.000 NA PREVIOUS ASSESSMENT Legal Ref Price SALES INFORMATION ŧ 568,500 568,500 54,303,700 BUILDING PERMITS Value Unit Base Grantor Depth / Unit Type Land Type Facto Total Parcel Total Card Date 914 Ę Descrip SRAVEL Roof Cover, with 1 Units, 6 Baths, 0 HalfB Com. Inf DORMITORY Building Built about 1976, Having Primarily WOOD SHING Exterior and TAR + SO FT Own Oc This Parcel contains 6.821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) Direction/Street/City TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only) Item | Cod Stree 41 xmpt Traffi Block Topo NARRATIVE DESCRIPTION Amount OTHER ASSESSMENTS Owner CITY OF WALTHAM No of PROPERTY LOCATION PROPERTY FACTORS
Ite Code Descip %
Z Units Crt Chtr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Use Description LUC Twn/Cit WALTHAM Descrip/No AIT No OWNERSHIP est 914 STATE DO Map St/Prov MA Census Flood Haz St/Prov Street Street Owner Owner Owner Twn/Cit Postal Owner Code ۵ 0

55,843,400

TOTAL ASSESSED:

61 of 66 COMMERCIAL

0001

001

R045

2017

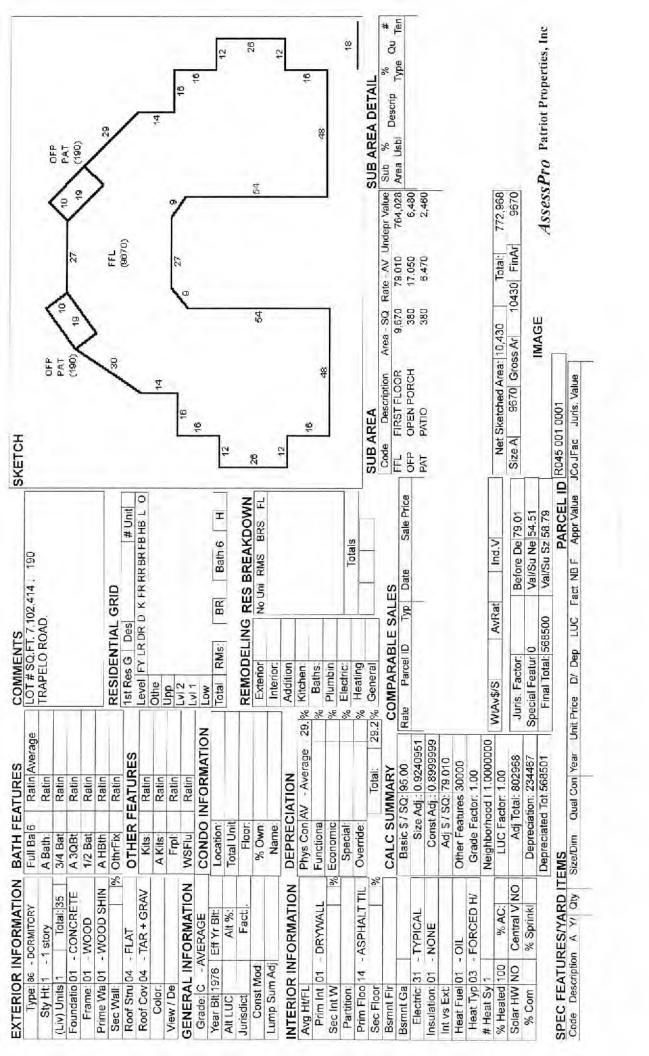
Total

Spl Cre

Total:

apro

Database: AssessPro

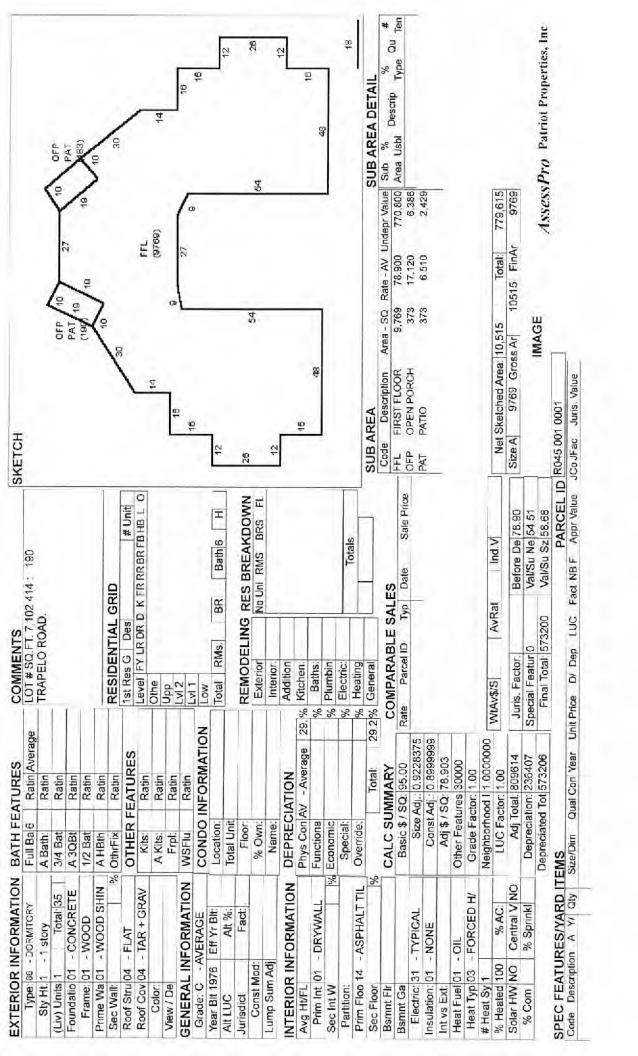

Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total AC/H 0.00000

Prime NB D N4

Parcel LU 903 MUNICPL


Total Special Featue

Datriot Properties Inc. JSER DEFINED Notes Name Year. LandReas BidReason Prior Id# ASR Map 02/10/1 | 14:23:3 | Prior ld # Reval Dis Prior Id# Fact Dist 55,843,400 Fact Use Value By Time Time 05/04/1 14:17:0 Insp Date User Acct GIS Ref GIS Ref 112899 pvazquez 112899 ACTIVITY INFORMATION TOTAL ASSESSED: AST R Date Date Land Code PRINT Notes Result 112899 Spec Date Legal Description PAT ACCT. 8 Entered Lot Size Class ¥ Sale Price V Tst Verif Assoc PCL Value Sign Date City of Waltham fotal Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 /Parc|63.3 62 of 66 COMMERCIAL PREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value 573,200 55,843,400 573,200 Total Value % BUILDING PERMITS
Date Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 58.68 8 Sale Code Infl 1 TAX DISTRIC Influ eigh 0.000 156.600 0.000 Use Code Building Value Yard Items Land Size 914 573,200 Neigh Legal Ref Typ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 0. 0.000 N4 Price SALES INFORMATION Cuit Source: Market Adj Co 573,200 54,303,700 573,200 Base Value Chit Grantor Depth / Unit Type Land Type Facto Total Parcel Total Card SQ. FT. SITE 0001 Ę Item Cod Descrip SRAVEL Roof Cover, with 1 Units, 6 Baths, 0 HalfB Com. Int DORMITORY Building Built about 1976, Having Primarily WOOD SHING Exterior and TAR + Own Oc This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) TRAPELO RD, WALTHAM Direction/Street/City Type AND SECTION (First 7 lines only) Stree 41 Unit# Ympt Traffi Block 001 VARRATIVE DESCRIPTION Amount *OTHER ASSESSMENTS* Owner CITY OF WALTHAM No of Units PROPERTY FACTORS

Ite Code Descip | % PROPERTY LOCATION Cut Cutr REVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Use Description Fact Twn/Cit WALTHAM Descrip/No OWNERSHIP R045 test 914 STATE DOI Map St/Prov MA Census. Flood Haz: Street Owner **[wn/Cit** St/Prov Postal: Street Owner Owner Owner Code 0 0

2017 Total: Spl Cre apro Total: Database: AssessPro Prime NB D N4 Disclaimer. This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

Total Special Featue

Total:

Properties Inc. JSER DEFINED Jatriot Notes Name Year. LandReas BldReason Prior Id# ASR Map Prior Id# Reval Dis Prior Id# Prior Id# 02/10/1 | 14:23:3 | Prior ld # Prior 1d# Prior Id# Prior Id# Prior Id# Fact Dist 55,843,400 Fact Use Value By Time Time 14:17:1 Insp Date User Acct GIS Ref GIS Ref bvazquez 112899 ACTIVITY INFORMATION TOTAL ASSESSED: AST R Date Code Date 05/04/1 PRINT Notes Result Land Date Legal Description PAT ACCT. % **Entered Lot Size** Class F Sale Code Sale Price V Tst Verif Assoc PCL Value Date City of Waltham Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 568,500 /Parc 63.3 63 of 66 COMMERCIAL 55,843,400 PAREVIOUS ASSESSMENT

Tax Yr Use Cat Bldg Value Yrd Item Land Size Land Value Total Value Asses'd Value 568.500 Total Value % Number Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 Land Value Total Value per SQ unit /Card 57.98 % Infl 1 TAX DISTRIC Influ eigh 156.600 Use Code Building Value Yard Items Land Size 0.000 Neigh Legal Ref Typ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 0. 0.000 NA Price SALES INFORMATION Source: Market Adj Co S 568,500 54,303,700 **BUILDING PERMITS** Base Facto Value Unit Grantor Total Parcel Total Card Date No of Depth / Unit Type Land Type 914 SITE 0001 Descrip GRAVEL Roof Cover, with 1 Units, 6 Baths, 0 HaffB OTHER ASSESSMENTS SQ. FT. Com. Int DORMITORY Building Built about 1972, Having Primarily WOOD SHING Exterior and TAR + This Parcel contains 6,821,497 SQ. FT. of land mainly classified as MUNICPL with a(n) Own Oc Direction/Street/City TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only) Item Cod Stree 41 Unit #: xmpt Topo Traffi Block 001 VARRATIVE DESCRIPTION Amount Owner CITY OF WALTHAM PROPERTY LOCATION PROPERTY FACTORS
Ite Code Descip % Cut Cut PREVIOUS OWNER Street 610 MAIN ST Use Description Fact Postal: 02452-5552 CNC Twn/Cit WALTHAM Descrip/No OWNERSHIP R045 test 914 STATE DOI Map St/Prov MA Census: Flood Haz: Postal: Street Twn/Cit St/Prov Owner Owner Street Owner Owner 9 Code Code

2017

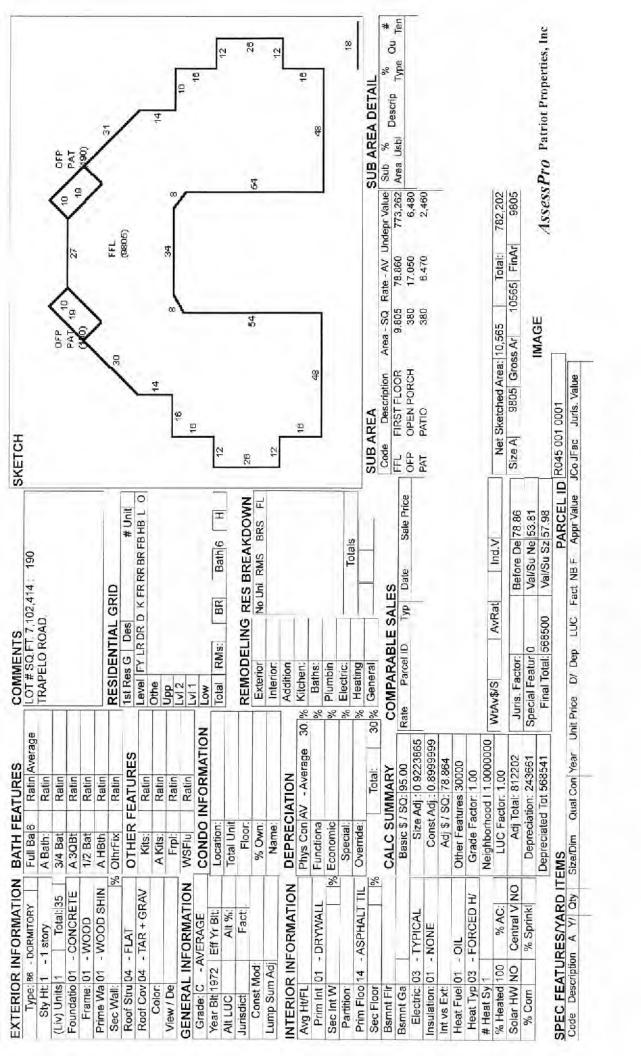
Total:

Spl Cre

Total.

apro

Database: AssessPro


Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total AC/H 0.00000

Prime NB D N4

Parcel LU 903 MUNICPL

Total Yard Item

Total Special Featue

Total:

More N

Properties Inc. USER DEFINED Datriot Notes Name Year. LandReas BldReason ASR Map Prior Id# Reval Dis Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# Prior Id# 02/10/1 14:23:3 Prior Id # Fact Dist Prior Id# 55,843,400 Fact Use Value B 14:17:2 Time Time Insp Date User Acct GIS Ref GIS Ref bvazquez 112899 ACTIVITY INFORMATION AST R 05/04/1 Date Spec J Date PRINT Notes Result Date Legal Description PAT ACCT. % **Entered Lot Size** Class Ŧ Sale Price V Tst Verif Assoc PCL Value Sign Date City of Waltham Total Land: Land Unit Type: Appraised Value Parcel ID | R045 001 0001 Notes % Comment Infl 3 64 of 66 COMMERCIAL 1,102,200 /Parc 63.3 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Value 1,102,200 55.843,400 Total Value % Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1.539,400 Land Value % Total Value per SQ unit /Card 53.54 Infl 1 Sale Code TAX DISTRIC Influ eigh IN PROCESS APPRAISAL SUMMAR
Use Code Building Value Yard Items Land Size 0.000 156,600 Neigh Legal Ref Typ Date Adj Neigh 300 0.000 NA 0 Price Source: Market Adj Co SALES INFORMATION THO CHI 1,102,200 54,303,700 1,102,200 BUILDING PERMITS Value Base Number Grantor No of Deptin Unit Type Land Type Facto Total Parcel Total Card Date 914 SITE 0001 Descrip SRAVEL Roof Cover, with 1 Units, 6 Baths, 0 HalfB Com. Int SO. FT. DORMITORY Building Built about 1976, Having Primarily WOOD SHING Exterior and TAR + Own Oc This Parcel contains 6,821,497 SQ. FT. of land TRAPELO RD, WALTHAM Direction/Street/City Type AND SECTION (First 7 lines only) Cod mainly classified as MUNICPL with a(n) Stree 41 Item xmpt Traffi Block Lopo 001 NARRATIVE DESCRIPTION Amount OTHER ASSESSMENTS Owner CITY OF WALTHAM PROPERTY LOCATION PROPERTY FACTORS

Ite Code Descip % Cutr Cutr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Use Description LUC Iwn/Cit WALTHAM Descrip/No Alt No **OWNERSHIP** R045 est 914 STATE DO Map St/Prov MA Census Flood Haz St/Prov Street Twn/Cit Owner Street Owner Owner Owner Postal 0 o

TOTAL ASSESSED:

2017

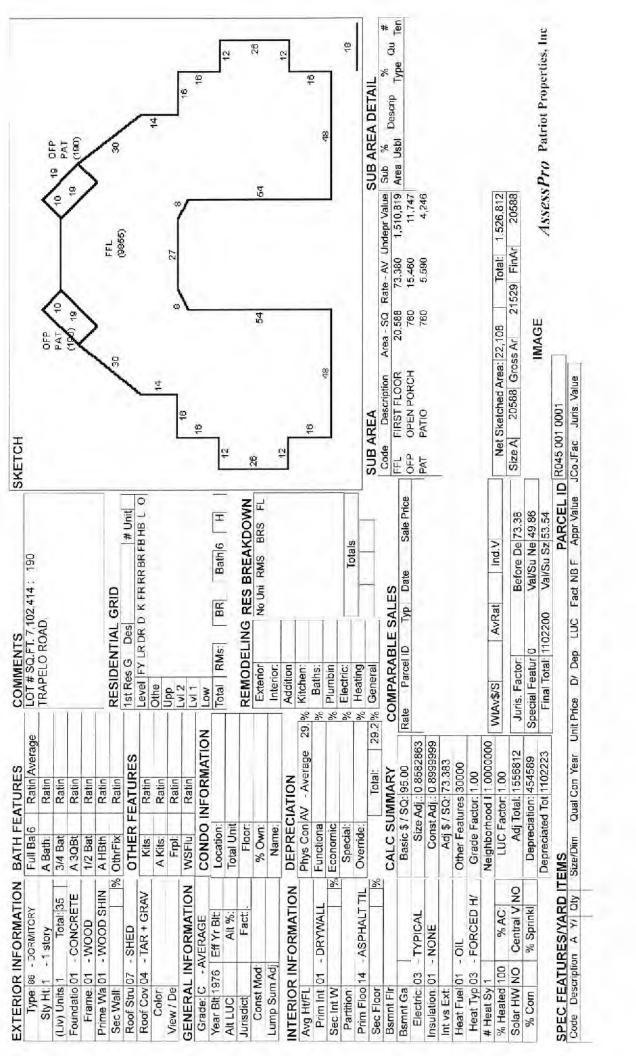
Total:

Spl Cre

Total

apro

Database: AssessPro


Disclaimen. This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total AC/H 0.00000

Prime NB D N4

Parcel LU 903 MUNICPL

Total Special Featue

Total:

More N

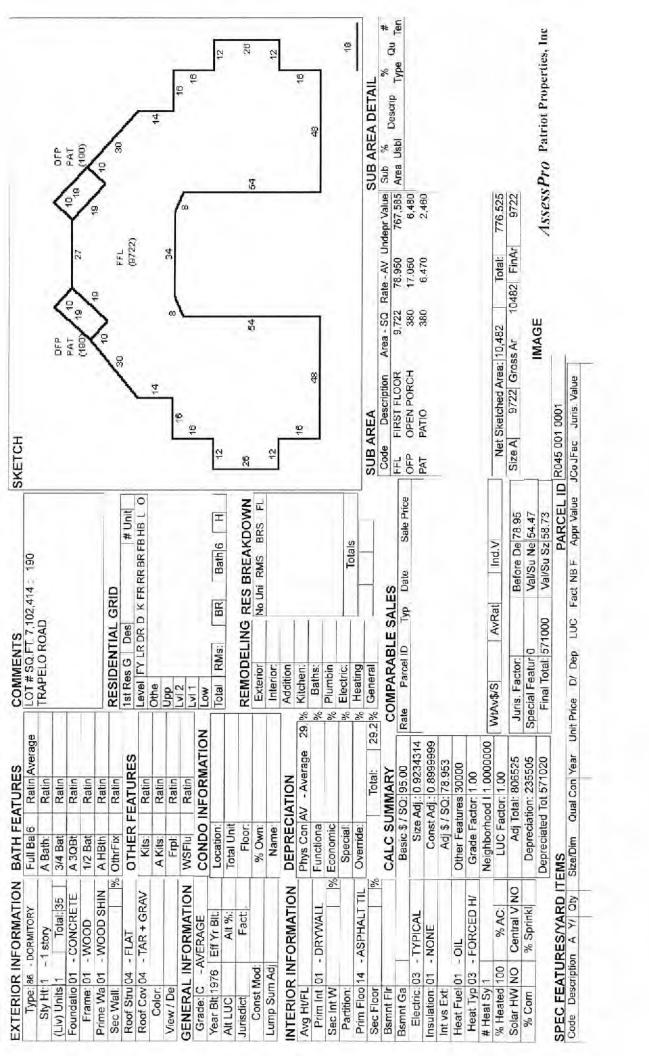
Total Yard Item

Properties Inc. Datriot USER DEFINED Notes Name LandReas Year BldReason Prior Id# Prior Id# ASR Map Reval Dis Prior Id# Fact Dist Fact Use Value 8 Time 14:23:3 14:17:3 Time Insp Date User Acct GIS Ref GIS Ref 112899 bvazquez 112899 ACTIVITY INFORMATION
Date Result AST R 05/04/1 02/10/1 Date Date PRINT Land Code Notes 1112899! Spec Date Legal Description PAT ACCT 8 **Entered Lot Size** Class ¥ Sale Price V Tst Verif Assoc PCL Value Sign City of Waltham Total Land: Land Unit Type: Appraised Value Parcel ID R045 001 0001 Notes Comment % Infl 3 571,000 55,843,400 /Parc|63.3 PREVIOUS ASSESSMENT

Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Valu 571,000 Total Value % Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 % Use Code Building Value Yard Items Land Size Land Value Source: Market Adj Co Total Value per SQ unit /Card 58.73 Infl 1 Sale Code TAX DISTRIC Influ eigh 0.000 0.000 156.600 Neigh Legal Ref Typ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 0.000 N4 ó Price SALES INFORMATION Pit 571,000 571,000 54,303,700 BUILDING PERMITS Base Value Unit Number Grantor Facto Total Parcel Total Card Date Price Unit Type Land Type 914 SITE Ę Descrip DORMITORY Building Built about 1976, Having Primarily WOOD SHING Exterior and TAR + GRAVEL Roof Cover, with 1 Units, 6 Baths. 0 HalfB Com. Inf SO FT Own Oc This Parcel contains 6,821,497 SQ, FT, of land mainly classified as MUNICPL with a(n) Direction/Street/City TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only) PoS Stree 41 Unit # Block tem xmpt odal Traffi NARRATIVE DESCRIPTION Amount 0 OTHER ASSESSMENTS Owner CITY OF WALTHAM No of PROPERTY LOCATION PROPERTY FACTORS
Its Code Descip % Units Cntr Cutr PREVIOUS OWNER Street 610 MAIN ST Postal: 02452-5552 Use Description Fact **IWN/Cit WALTHAM** Descrip/No OWNERSHIP ise Map 914 STATE DO St/Prov MA Census: Flood Haz St/Prov Street Street Twn/Cit Owner Owner Owner Owner Postal Z E 0

55,843,400

TOTAL ASSESSED:


65 of 66 COMMERCIAL

0001

001

R045

2017 Total Spl Cre apro Total: Database: AssessPro Prime NB D N4 Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed. Parcel LU 903 MUNICPL Total SF/S 0.00 Total AC/H 0.00000

Total Yard Item

Total Special Featue

Total:

More N

Properties Inc. USER DEFINED Datriot Notes Name LandReas BidReason ASR Map Reval Dis Prior Id# Fact Dist Fact Use Value By Time 02/10/1 14:23:3 Time 14:17:4 Insp Date User Acct GIS Ref GIS Ref 112899 pvazquez 112899 ACTIVITY INFORMATION AST R Date Land Code Date 05/04/1 PRINT Notes 1112899! Spec Date Legal Description PAT ACCT 8 **Entered Lot Size** Class A Sale Price V Tst Verif Assoc PCL Value Sign Date City of Waltham Land Unit Type: Total Land: Appraised Value Parcel ID R045 001 0001 Notes 8 Comment Infl 3 572,500 PREVIOUS ASSESSMENT
Tax Yr Use Cat Bidg Value Yrd Item Land Size Land Value Total Value Asses'd Valu 572,500 55,843,400 /Parc 63.3 Total Value 8 Descrip Amount C/O Last Visit Fed Cod F. Descrip Infl 2 1,539,400 % Source: Market Adj Co | Total Value per SQ unit /Card 58.70 Use Code Building Value Yard Items Land Size Land Value Infl 1 Sale Code TAX DISTRIC Influ eigh 0.000 0.000 156.600 Neigh Typ Date IN PROCESS APPRAISAL SUMMAR Adj Neigh 300 0.000 N4 Legal Ref Chit Price SALES INFORMATION 572,500 572,500 54,303,700 BUILDING PERMITS
Date Number Desc Base Value Sit PriceUnits Unit Type Land Type Facto Grantor = Total Parcel Total Card Ę Descrip GRAVEL Roof Cover, with 1 Units, 6 Baths, 0 HalfB Com, Int SO. FT. DORNITORY Building Built about 1976, Having Primarily WOOD SHING Exterior and TAR + NARRATIVE DESCRIPTION
This Parcel contains 6,821,497 SQ. FT. of land Own Oc Direction/Street/City TRAPELO RD, WALTHAM Type AND SECTION (First 7 lines only)
Jse Item Cod mainly classified as MUNICPL with a(n) Topo Stree 41 Unit #. Traffi Block xmpt Amount OTHER ASSESSMENTS Owner CITY OF WALTHAM Units PROPERTY FACTORS

Ite | Code | Descip | % PROPERTY LOCATION Cutr Cntr PREVIOUS OWNER Street 610 MAIN ST Use Description Fact Postal: 02452-5552 Twn/Cit WALTHAM Descrip/No OWNERSHIP test 914 STATE DO Map St/Prov MA Census: Flood Haz Twn/Cit Street Street StyProv Owner Postal Owner Owner Owner 0 Code 0

55,843,400

TOTAL ASSESSED:

66 of 66 COMMERCIAL

0001

001

R045

2017

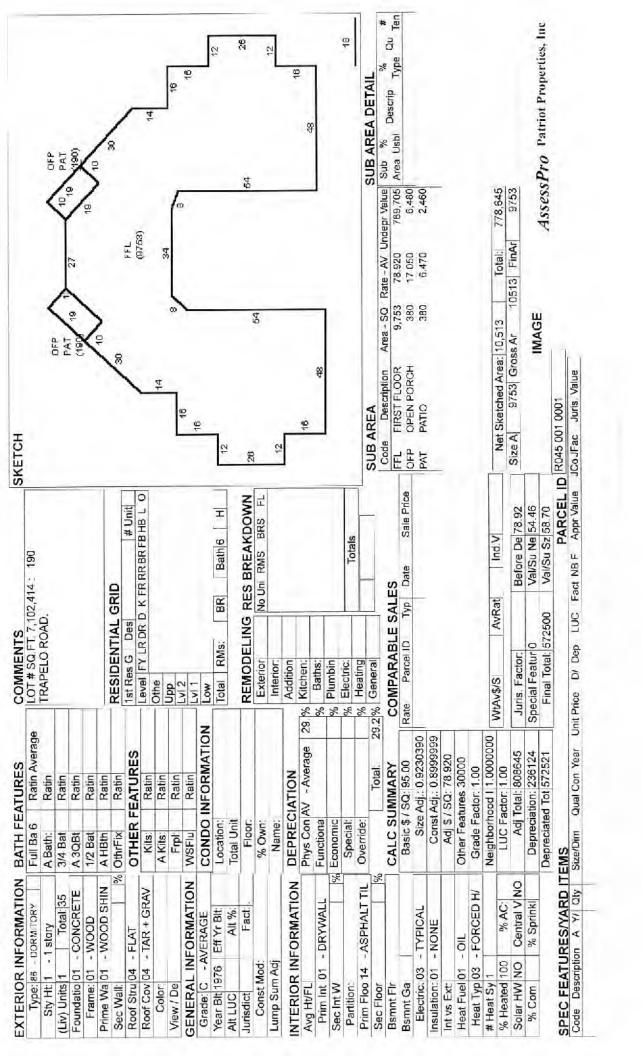
Total:

Spl Cre

Total:

apro

Database: AssessPro


Disclaimer: This Information is believed to be correct but is subject to change and is not warranteed.

Total SF/S 0.00

Total AC/H 0.00000

Prime NB D N4

Parcel LU 903 MUNICPL

Total:

Total Special Featue

me

Total Yard Item

More N

APPENDIX B

Photographs

PHOTO #1 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: View of
Exterior Western Side of

Building #12

PHOTO #2 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: Interior of

PHOTO #3 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: Interior of

Building #12

PHOTO #4 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny

DATE: 5/4/16
DETAILS: Interior of

PHOTO #5 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: Interior of

Building #12

PHOTO #6 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny

DATE: 5/4/16
DETAILS: Transformer to the North of Building

#12

PHOTO #7 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: View of
Exterior Western Side of

Building #15

PHOTO #8 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny
DATE: 5/4/16
DETAILS: Concrete
Enclosure Labeled
"Waste Oil" at the
Northwestern Corner of

PHOTO #9 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: Floor of
Concrete Enclosure
Labeled "Waste Oil" at
the Northwestern Corner

of Building #15

PHOTO #10 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny
DATE: 5/4/16
DETAILS: Empty
Containers in Building

#15

PHOTO #11 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16

DETAILS: Floor Drain in

Building #15

PHOTO #12 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny DATE: 5/4/16

DETAILS: View of Exterior Southern Side of

PHOTO #13 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: View of
Exterior Northern Side of

Building #16

PHOTO #14 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny DATE: 5/4/16

DETAILS: View of Exterior Northern Side of

Building #16

PHOTO #15 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16 DETAILS: First Floor Interior of Building #16

PHOTO #16 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny

DATE: 5/4/16
DETAILS: Basement
Interior of Building #16

PHOTO #17 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: Empty
Containers in Building

#16

PHOTO #18 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: Empty
Containers in Building

#16

PHOTO #19 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: Empty
Containers in Building

#16

PHOTO #20 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny

DATE: 5/4/16

DETAILS: Empty Spray Paint Cans in Building

#16

PHOTO #21 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: View of
Exterior Northern &
Western Side of Building

#17

PHOTO #22 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny DATE: 5/6/16

DETAILS: View of Exterior Southern Side of

Building #17

PHOTO #23 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny
DATE: 5/6/16
DETAILS: View of
Exterior Southern Side of
Building #17 – AST Vent

& Fill Pipes

PHOTO #24 FACILITY: South Portion of Former Fernald **Developmental Center** 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny DATE: 5/6/16 **DETAILS:** View of Exterior Northern Side of Building #18 PHOTO #25 FACILITY: South Portion of Former Fernald **Developmental Center** 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny DATE: 5/6/16 DETAILS: View of Exterior Eastern Side of Building #18 - AST Vent & Fill Pipes

PHOTO #26 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: View of

Exterior Southern Side of

Building #19

PHOTO #27 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: View of
Exterior Northern Side of

Building #19

PHOTO #28 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: First Floor
Interior of Building #19

PHOTO #29 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny

DATE: 5/4/16
DETAILS: First Floor
Interior of

Building #19

PHOTO #30 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: View of

Exterior Southern Side of

PHOTO #31 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: View of
Exterior Northern Side of

Building #20

PHOTO #32 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny DATE: 5/4/16

DETAILS: View of Exterior Northern Side of

Building #21

PHOTO #33 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: View of

Exterior Southern Side of

PHOTO #34 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: Basement
Interior of Building #21

PHOTO #35 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16 DETAILS: First Floor Interior of Building #21

PHOTO #36 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16 DETAILS: First Floor Interior of Building #21

PHOTO #37 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: View of
Exterior Northern Side of

Building #22

PHOTO #38 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: View of
Exterior Southern Side of

PHOTO #39 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: First Floor
Interior of Building #22

PHOTO #40 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny
DATE: 5/4/16

DETAILS: First Floor Interior of Building #22

PHOTO #41 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: View of
Exterior Northern Side of

PHOTO #42 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: View of
Exterior Western Side of

Building #23

PHOTO #43 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny DATE: 5/4/16

DETAILS: View of Exterior Eastern Side of

Building #24

PHOTO #44 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: Empty
Containers & Floor
Staining in Building #24

PHOTO #45 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16 DETAILS: First Floor Interior of Building #24

PHOTO #46 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: View of
Exterior Northern Side of

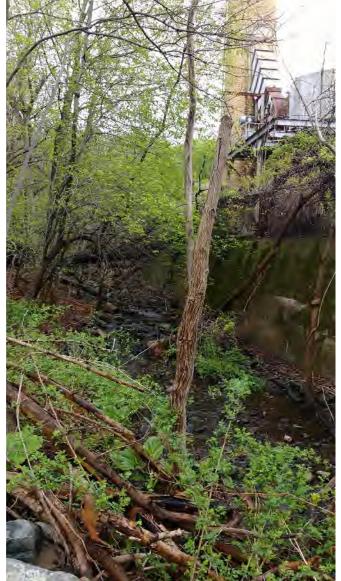
PHOTO #47 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

Konetzny DATE: 5/6/16

DETAILS: View of Exterior Southern Side of

Building #26


PHOTO #48 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny

DATE: 5/6/16 DETAILS: Stream West

of Building #26

PHOTO #49 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16

DETAILS: Stream West

of Building #26

PHOTO #50 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny

DATE: 5/6/16 DETAILS: LPG Tanks West of Building #26

PHOTO #51 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny
DATE: 5/4/16
DETAILS: View of
Exterior Southern Side of

PHOTO #52 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16

DETAILS: Gas Canisters

in Building #28

PHOTO #53 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16

DETAILS: Empty Drum East of Building #28

PHOTO #54 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: View of
Exterior Western Side of

Building #32

PHOTO #55 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny DATE: 5/6/16

DETAILS: Interior of Building #32

PHOTO #56 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: Interior of

Building #32

PHOTO #57 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny DATE: 5/6/16 DETAILS: Interior of

PHOTO #58 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: View of
Exterior Northern Side of

Building #33

PHOTO #59 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny DATE: 5/6/16

DETAILS: View of Exterior Western Side of

Building #33

PHOTO #60 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: View of
Exterior Northern &
Western Sides of Building

#34

PHOTO #61 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16

DETAILS: Pole Mounted Transformers South of

Building #34

PHOTO #62 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny
DATE: 5/6/16
DETAILS: View of
Exterior Northern Side of

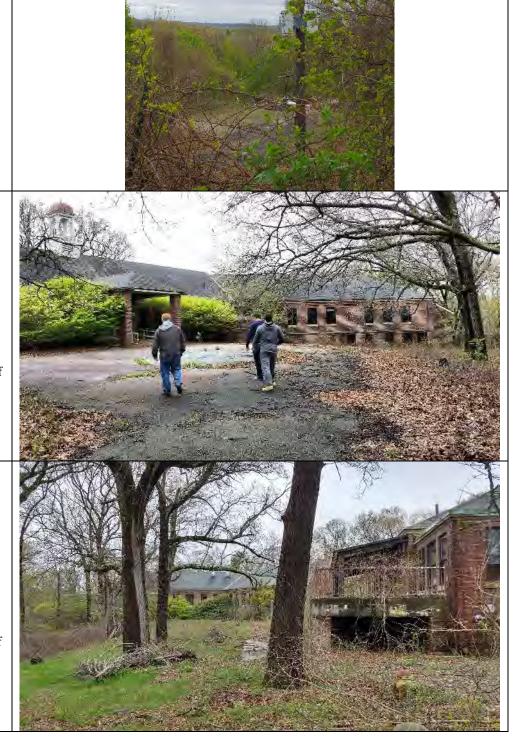

Building #35

PHOTO #63 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

Konetzi DATE: 5/6/16

DETAILS: View of Exterior Southern Side of

PHOTO #64 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16 DETAILS: First Floor Interior of Building #35

PHOTO #65 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny
DATE: 5/6/16
DETAILS: First Floor
Interior of Building #35

PHOTO #66 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16 DETAILS: First Floor Interior of Building #35

PHOTO #67 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16

DETAILS: Floor Drain in Basement of Building

#35

PHOTO #68 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: Pad Mounted
Transformer East of

Building #35

PHOTO #69 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: View of
Exterior Western Side of

Building #36

PHOTO #70 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16

DETAILS: Second Floor Interior of Building #36

PHOTO #71 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: Interior of

Building #36

PHOTO #72 FACILITY:

South Portion of
Former Fernald
Developmental Center
200 Trapelo Rd.
Waltham, MA
INSPECTOR: Lauren
Konetzny

DATE: 5/6/16
DETAILS: View of
Exterior Western Side of

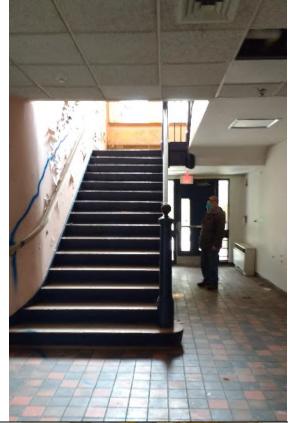


PHOTO #73 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny DATE: 5/6/16

DETAILS: First Floor Interior of Building #37

PHOTO #74 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny

DATE: 5/6/16
DETAILS: Interior of

PHOTO #75 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: Basement
Interior of Building #37

PHOTO #76 FACILITY:

> South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny

DATE: 5/6/16 DETAILS: Basement Interior of Building #37

PHOTO #77 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: Pad Mounted
Transformer South of

Building #37

PHOTO #78 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16 DETAILS: View of

Exterior Northern Side of

PHOTO #79 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny DATE: 5/4/16

DETAILS: View of Exterior Southern Side of

Building #46

PHOTO #80 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: First Floor
Interior of Building #46

PHOTO #81 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16 DETAILS: First Floor Interior of Building #46

PHOTO #82 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny

DATE: 5/4/16

DETAILS: Pad Mounted Transformer Northwest

of Building #46

PHOTO #83 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16
DETAILS: View of
Exterior Western Side of

Building #49

PHOTO #84 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny
DATE: 5/4/16

DETAILS: View of Exterior Northern Side of

Building #49

PHOTO #85 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: View of
Exterior Northern Side of

PHOTO #86 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny DATE: 5/4/16 DETAILS: Interior of

Building #56

PHOTO #87 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: View of
Exterior Northwestern &
Southwestern Sides of

PHOTO #88 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny DATE: 5/4/16

DETAILS: Interior of

Building #57

PHOTO #89 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny DATE: 5/6/16

DETAILS: View of Exterior Southern Side of

PHOTO #90 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16 DETAILS: View of

Exterior Northern Side of

Building #120

PHOTO #91 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny

DATE: 5/6/16 DETAILS: First Floor Interior of Building #120

PHOTO #92 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: View of
Exterior Northern Side of

PHOTO #93 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: View of
Exterior Western &
Southern Sides of
Building #121

PHOTO #94 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: Sign Stating
"Contains PCBs" on
Building #121

PHOTO #95 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16 DETAILS: Crushed Empty Drum South of

Building #121

PHOTO #96 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny DATE: 5/6/16 DETAILS: View of Western Side of Transformer Pad at Building #122

PHOTO #97 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: View of
Southern & Eastern Sides
of Transformer Pad at

PHOTO #98 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16 DETAILS: View of Exterior Eastern Side of

Building #123

PHOTO #99 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny
DATE: 5/4/16
DETAILS: First Floor
Interior of Building #123

PHOTO #100 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny DATE: 5/4/16

DETAILS: Empty Containers East of Building #123

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny

DATE: 5/6/16 DETAILS: View of Exterior Eastern Side of

PHOTO #102 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: View of
Exterior Northern Side of

Building #124

PHOTO #103 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny DATE: 5/6/16

DETAILS: Propane Tank South of Building #124

PHOTO #104 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16 DETAILS: Empty Drum Northeast of Building

#124

PHOTO #105 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: Piles of Brick

& Ashphalt East of Building #124

PHOTO #106 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny

DATE: 5/6/16

DETAILS: Grounds Dept. Garage South of Building

#124

PHOTO #107 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16

DETAILS: Barn West of

PHOTO #108 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: Former
Butcher Shop North of

Building #124

PHOTO #109 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA

INSPECTOR: Lauren Konetzny

DATE: 5/6/16

DETAILS: Partially Filled Drum North of Butcher Shop North of Building

#124

PHOTO #110 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16
DETAILS: Burried Drums & Tank in Foundation
North of Former Butcher
Shop North of Building

#124

PHOTO #111 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny
DATE: 5/6/16
DETAILS: Burried Tank
in Foundation North of
Former Butcher Shop
North of Building #124

PHOTO #112 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/4/16 DETAILS: Mobile Home South of Building #123

PHOTO #113 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16

DETAILS: Steamhouse & Concrete Pipe Subway South of Building #121

PHOTO #114 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny

DATE: 5/6/16
DETAILS: Concrete Pipe
Subway West of Building

#120

PHOTO #115 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren Konetzny

DATE: 5/6/16 DETAILS: Debris Discarded in Wooded Areas Throughout Site

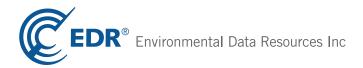
PHOTO #116 FACILITY:

South Portion of Former Fernald Developmental Center 200 Trapelo Rd. Waltham, MA INSPECTOR: Lauren

Konetzny
DATE: 5/6/16
DETAILS: Debris
Discarded in Wooded
Areas Throughout Site

APPENDIX C

Environmental Database Report Executive Summary


South Section-Former Fernald Development Center

200 Trapelo Road Waltham, MA 02452

Inquiry Number: 4607751.2s

May 02, 2016

The EDR Radius Map™ Report with GeoCheck®

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary	ES1
Overview Map.	2
Detail Map.	
Map Findings Summary.	4
Map Findings.	8
Orphan Summary	
Government Records Searched/Data Currency Tracking.	GR-1
GEOCHECK ADDENDUM	
Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting Source Map	A-7
Physical Setting Source Map Findings.	A-8
Physical Setting Source Records Searched.	PSGR-1

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2016 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-13) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

200 TRAPELO ROAD WALTHAM, MA 02452

COORDINATES

Latitude (North): 42.3876420 - 42° 23' 15.51" Longitude (West): 71.2082010 - 71° 12' 29.52"

Universal Tranverse Mercator: Zone 19 UTM X (Meters): 318226.9 UTM Y (Meters): 4694965.0

Elevation: 108 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: 5646205 LEXINGTON, MA

Version Date: 2012

South Map: 5646211 NEWTON, MA

Version Date: 2012

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from: 20120710, 20120713

Source: USDA

MAPPED SITES SUMMARY

Target Property Address: 200 TRAPELO ROAD WALTHAM, MA 02452

Click on Map ID to see full detail.

MAP ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	RELATIVE ELEVATION	DIST (ft. & mi.) DIRECTION
A1	WITHIN COMPLEX ON CH	200 TRAPELO RD	RGA HWS		TP
A2		200 TRAPELO RD	ERNS		TP
A3	REAR GATE OFF WAVERL	200 TRAPELO RD	RGA HWS		TP
A4	THOM BUILDING	FERNALD CENER 200 TR	SHWS, RELEASE		TP
A5	POWER PLANT NEAR WAV	200 TRAPELO RD	RGA LUST		TP
A6	MALONE PARK BLDG NO	200 TRAPELO RD	RGA LUST		TP
A7	MALONE PARK BLDG NO	200 TRAPELO RD	RGA LUST		TP
A8		200 TRAPELO RD	ERNS		TP
A9	SHRIVER CTR	200 TRAPELO ROAD	RCRA-SQG, US AIRS, FINDS, ECHO		TP
A10	COMMONWEALTH OF MA.	FERNALD CENTER, 200	PCB TRANSFORMER		TP
A11	FERNALD STATE SCHOOL	200 TRAPELO RD	RGA HWS		TP
A12	COMMONWEALTH OF MA.	FERNALD CENTER, 200	PCB TRANSFORMER		TP
A13	POWERPLANT	200 TRAPELO RD	RGA HWS		TP
A14	FERNALD STATE SCHOOL	200 TRAPELO RD	RGA LUST		TP
A15	POWERPLANT	200 TRAPELO RD	RGA LUST		TP
A16		FERNALD SCHOOL, 200	DOT OPS		TP
A17	FERNALD SCHOOL	200 TRAPELO RD	RGA HWS		TP
A18		200 TRAPELO RD	LEAD		TP
A19	EUNICE KENNEDY SHRIV	200 TRAPELO ROAD	MLTS		TP
A20	FERNALD STATE SCHOOL	200 TRAPELO RD	SHWS, LUST, INST CONTROL, SPILLS, RELEASE, AIRS	5,	TP
A21	WALTER E FERNALD DEV	200 TRAPELO RD	UST, Financial Assurance		TP
B22	SHELL PRODUCT DIST P	313 WAVERLEY OAKS RD	SHWS, LUST, LAST, INST CONTROL, RELEASE	Lower	39, 0.007, SE
B23	DUFFY ASSOCIATES	313 WAVERLY OAKS RD	UST, RCRA NonGen / NLR, Financial Assurance	Lower	39, 0.007, SE
B24	PEIRCE BROTHERS OIL	329 WAVERLEY OAKS RD	RCRA NonGen / NLR, FINDS, ECHO	Lower	40, 0.008, SE
B25	GAS STATION	277 WAVERLEY OAKS RD	SHWS, RELEASE	Lower	40, 0.008, SSE
C26	BEAVER VISITEC INTER	411 WAVERLEY OAKS RD	RCRA-SQG	Lower	545, 0.103, East
C27	NO LOCATION AID	411 WAVERLY OAKS ROA	SHWS, RELEASE, HW GEN, LEAD	Lower	545, 0.103, East
C28	BEAVER VISITEC INTER	411 WAVERLEY OAKS RD	SHWS, LAST, BROWNFIELDS, RELEASE, ENF, HW GE	N Lower	545, 0.103, East
C29	DUFFY BROS CONSTRUCT	411 WAVERLEY OAKS RD	RCRA-CESQG, FINDS, ECHO	Lower	545, 0.103, East
C30	DUFFY BROS CONSTRUCT	411 WAVERLEY OAKS RD	SEMS	Lower	545, 0.103, East
C31	COMPUTER DESIGN & AP	411 WAVERLEY OAKS RD	RCRA NonGen / NLR	Lower	545, 0.103, East
D32	MOTIVA ENTERPRISES L	225 WAVERLY OAKS RD	RCRA NonGen / NLR	Lower	696, 0.132, SSW
D33	SHELL SERVICE STATIO	225 WAVERLY OAKS	RCRA-CESQG	Lower	696, 0.132, SSW
D34	SHELL #73	225 WAVERLY OAKS RD	SHWS, LUST, UST, RELEASE, Financial Assurance, HW	Lower	696, 0.132, SSW
35	OFF RTE 60	54 SHAWMUT ST	LUST, RELEASE	Higher	754, 0.143, ENE
36	UNIVERSITY OF MASSAC	225-227 BEAVER ST	SHWS, RELEASE	Lower	841, 0.159, SW
E37	XEROX REPRODUCTION C	135 BEAVER ST	RCRA NonGen / NLR, FINDS, ECHO	Lower	862, 0.163, South
E38	INTERLEUKIN GENETICS	135 BEAVER ST	HW GEN	Lower	862, 0.163, South
E39	GEORGE MORE FACILITY	110 BEAVER ST	SHWS, INST CONTROL, RELEASE	Lower	908, 0.172, South

MAPPED SITES SUMMARY

Target Property Address: 200 TRAPELO ROAD WALTHAM, MA 02452

Click on Map ID to see full detail.

MAP ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	RELATIVE ELEVATION	DIST (ft. & mi.) DIRECTION
E40	AZKO NOBEL COATINGS	117 BEAVER ST	SHWS, RELEASE, HW GEN	Lower	920, 0.174, South
E41	ANGIO MEDICAL	100 BEAVER STREET	RCRA-CESQG, FINDS, ECHO	Lower	927, 0.176, South
E42	DESCARTES THERAPEUTI	100 BEAVER ST	HW GEN	Lower	927, 0.176, South
E43	MOORE GEORGE W INC	100 BEAVER ST	RCRA NonGen / NLR	Lower	927, 0.176, South
E44	X CHEM INC	100 BEAVER ST	HW GEN	Lower	927, 0.176, South
E45	X BODY	100 BEAVER ST	HW GEN	Lower	927, 0.176, South
E46	GENOME THERAPEUTIC C	100 BEAVER ST	RCRA NonGen / NLR	Lower	927, 0.176, South
E47	ANGIO MEDICAL CORP	100 BEAVER ST @ SHRI	RCRA NonGen / NLR	Lower	927, 0.176, South
E48	KALA PHARMACEUTICALS	100 BEAVER ST	RCRA NonGen / NLR, FINDS, ECHO	Lower	927, 0.176, South
E49	ADNEXUS, A BRISTOL-M	100 BEAVER STREET	HW GEN, TIER 2	Lower	927, 0.176, South
E50	PROTEIN FOREST INC	100 BEAVER ST	RCRA NonGen / NLR	Lower	927, 0.176, South
E51	AVILA THERAPEUTICS I	100 BEAVER ST	RCRA NonGen / NLR	Lower	927, 0.176, South
E52	LEXICON INC	100 BEAVER ST	RCRA NonGen / NLR	Lower	927, 0.176, South
E53	EPITOME BIOSYSTEMS I	100 BEAVER ST	HW GEN	Lower	927, 0.176, South
E54	BRISTOL MYERS SQUIBB	100 BEAVER ST	RCRA-SQG	Lower	927, 0.176, South
F55	ELECTRO PAINTERS INC	97 BEAVER ST	RCRA NonGen / NLR, FINDS, ECHO	Lower	952, 0.180, South
G56	CERAMEM CORPORATION	12 CLEMATIS AVE	HW GEN	Lower	999, 0.189, SSE
G57	CERAMEM CORPORATION	12 CLEMATIS AVE	RCRA-CESQG	Lower	999, 0.189, SSE
G58	CITIUS PRINTING & GR	20 CLEMATIS AVE	HW GEN	Lower	1001, 0.190, SSE
F59	THORNTON ASSOCIATES	87 BEAVER ST	RCRA NonGen / NLR, FINDS, ECHO	Lower	1003, 0.190, SSE
G 60	KANS ENGINEERING & M	83 BREAVER ST	RCRA NonGen / NLR, FINDS, ECHO	Lower	1013, 0.192, SSE
G61	RIVER AUTO	10 CLEMATIS AVE	LUST, RELEASE, HW GEN	Lower	1021, 0.193, SSE
H62	LIGHT METAL PLATERS	70 TO 74 CLEMATIS AV	SHWS, RELEASE	Lower	1051, 0.199, SSE
H63	CLEMATIS MACHINE	42 CLEMATIS AVE	HW GEN	Lower	1075, 0.204, SSE
64	GIRL SCOUTS OF EASTE	265 BEAVER ST	HW GEN	Lower	1108, 0.210, SW
165	LIGHT METAL PLATERS	70 CLEMATIS AVENUE	RCRA-SQG, RAATS, US AIRS, FINDS, ECHO	Lower	1146, 0.217, SE
166	GREEN JACKET INC	62 CLEMATIS AVE	HW GEN	Lower	1146, 0.217, SE
167	LIGHT METAL PLATERS	70 CLEMATIS AVE	HW GEN, TIER 2	Lower	1176, 0.223, SE
168	INDUSTRIAL PROPERTY	70-74 CLEMATIS AVE	SHWS, LAST, RELEASE	Lower	1176, 0.223, SE
I69	CERAMICS GRINDING CO	74 CLEMATIS AVE	RCRA NonGen / NLR, FINDS, ECHO	Lower	1192, 0.226, SE
J70	LIGHT METAL PLATERS	96 CLEMATIS AVE	RCRA NonGen / NLR	Lower	1274, 0.241, SE
J71	MANHOLE HALFWAT DOWN	102 CLEMATIS AVE	SHWS, LAST, RELEASE	Lower	1294, 0.245, SE
72	POLE #31	264 BEAL ST	SHWS, RELEASE	Lower	1644, 0.311, SSE
73	MASSACHUSETTS MEDICA	108 CLEMATIS AVE	SHWS, RELEASE, HW GEN	Lower	1675, 0.317, ESE
74	UMASS AMHERST AGRICU	240 BEAVER ST	SHWS, LUST, SPILLS, RELEASE, HW GEN	Lower	1790, 0.339, WSW
75	FITZGERALD SCHOOL	BEAL RD	LUST, RELEASE	Lower	1837, 0.348, South
76	WALTHAM PUBLIC SCHOO	258 TRAPELO RD	SHWS, LUST, RELEASE, ENF, HW GEN	Higher	1985, 0.376, North
77	BENTLEY COLLEGE	400 BEAVER ST	LUST, RELEASE	Lower	2313, 0.438, WSW
78	FMR HEATING PLANT SO	333 FOREST ST	SHWS, INST CONTROL, RELEASE, ENF, HW GEN	Higher	2518, 0.477, NW

MAPPED SITES SUMMARY

Target Property Address: 200 TRAPELO ROAD WALTHAM, MA 02452

Click on Map ID to see full detail.

MAP ID	SITE NAME	ADDRESS		ELATIVE LEVATION	DIST (ft. & mi.) DIRECTION
K79	SYCAMORE AUTO SERVIC	257 SYCAMORE ST	LUST, RELEASE	Lower	2543, 0.482, ESE
K80	1072 BELMONT STREET	1072 BELMONT STREET	US BROWNFIELDS, FINDS, ECHO	Lower	2555, 0.484, ESE
K81	NO LOCATION AID	1060 BELMONT ST	SHWS, LUST, RELEASE	Lower	2614, 0.495, ESE
82	BETWEEN BLDG 148 AND	175 FOREST ST	SHWS, RELEASE, HW GEN	Higher	2737, 0.518, WNW
83	NSTAR UTILITY POLE #	NEAR 21 DWIGHT ST	SHWS, RELEASE	Lower	2786, 0.528, ESE
L84	MURPHY FEDERAL CENTE	424 TRAPELO RD	SHWS, LUST, RELEASE, SPILLS	Higher	2866, 0.543, NNW
L85	NO LOCATION AID	426 TRAPELO RD	SHWS, RELEASE	Higher	2879, 0.545, NNW
86	INTERSECTION	WARREN ST AND CHAFFE	SHWS, RELEASE	Lower	3301, 0.625, South
87	NO LOCATION AID	563 TRAPELO RD	SHWS, LUST, RELEASE, HW GEN	Lower	3349, 0.634, East
88	METROPOLITAN STATE C	475 TRAPELO RD	SHWS, LUST, INST CONTROL, RELEASE, SPILLS, ENF	Higher	3380, 0.640, North
89	DANA ATHLETIC CTR OF	500 BEAVER ST	SHWS, INST CONTROL, RELEASE	Lower	3380, 0.640, WSW
90	MCLEAN HOSPITAL	115 MILL ST	SHWS, SWF/LF, LUST, RELEASE, SPILLS, HW GEN, LEAD) Higher	3384, 0.641, NE
91	FORMER MOBIL STN 117	27 LEXINGTON ST	SHWS, RELEASE, SPILLS	Lower	3649, 0.691, East
92	GASOLINE STATION FMR	127-131 LINDEN ST	SHWS, RELEASE	Lower	3660, 0.693, SW
93	STAR MARKET	TRAPELO RD	SHWS, RELEASE	Lower	3753, 0.711, East
94	BELMONT	145 BROOKSIDE AVE	SHWS, RELEASE, LEAD	Higher	3768, 0.714, NNE
M95	FORMER DRY CLEANER	14 WARREN ST	SHWS, RELEASE, ENF	Lower	3770, 0.714, South
M96	JIMMY KS DRYCLEANERS	10 WARREN ST	SHWS, RELEASE, RCRA NonGen / NLR, FINDS, ECHO	Lower	3800, 0.720, South
M97	SHELL #72	65 MAIN ST	SHWS, LUST, UST, RELEASE, ENF, Financial Assurance	Lower	3920, 0.742, South
98	WALGREENS 3251	15-21 MAIN ST	SHWS, INST CONTROL, RELEASE, ENF, HW GEN	Lower	4127, 0.782, South
99	AT INTERSECTION OF L	MAIN ST	SHWS, RELEASE	Lower	4151, 0.786, South
100	ORCHARD ST	917 BELMONT ST	SHWS, RELEASE	Lower	4237, 0.802, ESE
N101	PETER FULLER DODGE I	1000 PLEASANT ST	SHWS, UST, INST CONTROL, RELEASE, Financial	Lower	4249, 0.805, East
102	WHITE STREET GARAGE	43 WHITE ST	SHWS, UST, RELEASE, Financial Assurance, LEAD	Lower	4261, 0.807, East
103	ASTON MARTIN OF NEW	85 LINDEN ST	SHWS, RELEASE, HW GEN	Lower	4291, 0.813, SW
N104	WAVERLY LANDSCAPE	1010 PLEASANT ST	SHWS, LUST, RELEASE, HW GEN	Lower	4384, 0.830, East
O105	AA AUTO CLINIC	600 MAIN ST	SHWS, LUST, UST, RELEASE, ENF, Financial Assurance	Lower	4720, 0.894, SSE
O106	NSTAR UTILITY POLE #	NEAR 600 MAIN ST	SHWS, RELEASE	Lower	4720, 0.894, SSE
107	RESIDENCE	73 ELLISON PARK	SHWS, RELEASE	Lower	4844, 0.917, WSW
108	PROPERTY	249 LEXINGTON ST	SHWS, RELEASE, SPILLS	Higher	4877, 0.924, SE
109	WALTHAM HIGH SCHOOL	617 LEXINGTON ST	SHWS, LUST, RELEASE, FTTS, HIST FTTS, HW GEN, ECH	O Higher	5221, 0.989, WNW
110	GROVE ST @ GORE ST	GROVE ST @ GORE ST	SHWS, RELEASE	Lower	5230, 0.991, SSW
111	NO LOCATION AID	BCH AND MAPLE	SHWS, RELEASE	Lower	5252, 0.995, East

TARGET PROPERTY SEARCH RESULTS

The target property was identified in the following records. For more information on this property see page 8 of the attached EDR Radius Map report:

Site	Database(s)	EPA ID
WITHIN COMPLEX ON CH 200 TRAPELO RD WALTHAM, MA	RGA HWS Facility ID: 3-0010367	N/A
200 TRAPELO RD 200 TRAPELO RD WALTHAM, MA 02154	ERNS EDR ID:: 485409	N/A
REAR GATE OFF WAVERL 200 TRAPELO RD WALTHAM, MA	RGA HWS Facility ID: 3-0011878	N/A
THOM BUILDING FERNALD CENER 200 TR WALTHAM, MA 02454	SHWS Release Tracking Number / Current Status: 3-0021380 RELEASE Release Tracking Number / Current Status: 3-0021380	
POWER PLANT NEAR WAV 200 TRAPELO RD WALTHAM, MA	RGA LUST Facility ID: 3-0013467	N/A
MALONE PARK BLDG NO 200 TRAPELO RD WALTHAM, MA	RGA LUST Facility ID: 3-0021892	N/A
MALONE PARK BLDG NO 200 TRAPELO RD WALTHAM, MA	RGA LUST Facility ID: 3-0021893	N/A
200 TRAPELO RD 200 TRAPELO RD WALTHAM, MA	ERNS EDR ID:: 480306	N/A
SHRIVER CTR 200 TRAPELO ROAD WALTHAM, MA 02452	RCRA-SQG EPA ID:: MAD073798720 US AIRS	MAD073798720

EPA plant ID:: 110003715560

FINDS

Registry ID:: 110003715560

ECHO

COMMONWEALTH OF MA. PCB TRANSFORMER FERNALD CENTER, 200 WALTHAM, MA 02154

N/A

FERNALD STATE SCHOOL 200 TRAPELO RD WALTHAM, MA RGA HWS Facility ID: 3-0010725 Facility ID: 3-0010367

N/A

COMMONWEALTH OF MA. FERNALD CENTER, 200 WALTHAM, MA 02154 **PCB TRANSFORMER**

N/A

POWERPLANT 200 TRAPELO RD WALTHAM, MA RGA HWS Facility ID: 3-0015442

N/A

FERNALD STATE SCHOOL 200 TRAPELO RD WALTHAM, MA

RGA LUST Facility ID: 3-0010725 N/A

POWERPLANT 200 TRAPELO RD WALTHAM, MA RGA LUST Facility ID: 3-0015149 N/A

FERNALD SCHOOL, 200 FERNALD SCHOOL, 200 WALTHAM, MA 02154 DOT OPS

N/A

FERNALD SCHOOL 200 TRAPELO RD WALTHAM, MA

RGA HWS Facility ID: 3-0015121 N/A

200 TRAPELO RD 200 TRAPELO RD WALTHAM, MA 02452 LEAD

Inspector License Number: 1196

N/A

EUNICE KENNEDY SHRIV 200 TRAPELO ROAD WALTHAM, MA 02254 **MLTS**

N/A

License Number:: 20-18423-01

FERNALD STATE SCHOOL 200 TRAPELO RD WALTHAM, MA 02154 SHWS N/A
Release Tracking Number / Current Status: 3-0015442 / RAO
Release Tracking Number / Current Status: 3-0015121 / RAO
Release Tracking Number / Current Status: 3-0010367 / RAO
Release Tracking Number / Current Status: 3-0011878 / RAO

LUST
Release Tracking Number / Current Status: 3-0010725 / RAO
Release Tracking Number / Current Status: 3-0013467 / RAO
Release Tracking Number / Current Status: 3-0015149 / RAO
Release Tracking Number / Current Status: 3-0021892 / RAO
Release Tracking Number / Current Status: 3-0021893 / RAO

INST CONTROL

Release Tracking Number: 3-0013467

SPILLS

Facility Id: 0000 Case Closed: YES Spill ID: N80-5148 Spill ID: N86-0944 Spill ID: N92-0350 Spill ID: N92-0797

RELEASE

Release Tracking Number / Current Status: 3-0010367 / RAO Release Tracking Number / Current Status: 3-0010725 / RAO Release Tracking Number / Current Status: 3-0011878 / RAO Release Tracking Number / Current Status: 3-0013467 / RAO Release Tracking Number / Current Status: 3-0015121 / RAO *Additional key fields are available in the Map Findings section

AIRS

Facility Status: APPROV Date Closed: 06/02/2009 Date Closed: 04/22/2004

HW GEN

State Generator Status: SQG-MA State Generator Status: VQG-MA EPA Id: MV7818943600 EPA Id: MAD073798720

LEAD

Inspector License Number: 2006

WALTER E FERNALD DEV 200 TRAPELO RD WALTHAM, MA 02452 UST Tank Status: Tank Removed

Facility Id: 11192

Financial Assurance Facility Id: 11192 N/A

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list	
NPLProposed NPLNPL LIENS	Proposed National Priority List Sites
Federal Delisted NPL site lis	t
Delisted NPL	National Priority List Deletions
Federal CERCLIS list	
FEDERAL FACILITY	Federal Facility Site Information listing
Federal CERCLIS NFRAP sit	re list
SEMS-ARCHIVE	Superfund Enterprise Management System Archive
Federal RCRA CORRACTS for	acilities list
CORRACTS	Corrective Action Report
Federal RCRA non-CORRAC	CTS TSD facilities list
RCRA-TSDF	RCRA - Treatment, Storage and Disposal
Federal RCRA generators lis	st .
RCRA-LQG	RCRA - Large Quantity Generators
Federal institutional controls	s / engineering controls registries
US ENG CONTROLS	Land Use Control Information System Engineering Controls Sites List Sites with Institutional Controls
State and tribal landfill and/o	or solid waste disposal site lists
SWF/LF	Solid Waste Facility Database/Transfer Stations
State and tribal leaking store	age tank lists
INDIAN LUST	Leaking Underground Storage Tanks on Indian Land

State and tribal registered storage tank lists

FEMA UST...... Underground Storage Tank Listing AST..... Aboveground Storage Tank Database INDIAN UST...... Underground Storage Tanks on Indian Land

State and tribal voluntary cleanup sites

INDIAN VCP..... Voluntary Cleanup Priority Listing

ADDITIONAL ENVIRONMENTAL RECORDS

Local Lists of Landfill / Solid Waste Disposal Sites

INDIAN ODI...... Report on the Status of Open Dumps on Indian Lands

ODI_____Open Dump Inventory
DEBRIS REGION 9_____Torres Martinez Reservation Illegal Dump Site Locations

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL..... Delisted National Clandestine Laboratory Register US CDL...... National Clandestine Laboratory Register

Local Land Records

LIENS..... Liens Information Listing LIENS 2..... CERCLA Lien Information

Records of Emergency Release Reports

HMIRS_____ Hazardous Materials Information Reporting System SPILLS 90...... SPILLS 90 data from FirstSearch SPILLS 80..... SPILLS 80 data from FirstSearch

Other Ascertainable Records

FUDS..... Formerly Used Defense Sites DOD...... Department of Defense Sites

SCRD DRYCLEANERS...... State Coalition for Remediation of Drycleaners Listing

US FIN ASSUR..... Financial Assurance Information

EPA WATCH LIST..... EPA WATCH LIST

2020 COR ACTION...... 2020 Corrective Action Program List

TSCA...... Toxic Substances Control Act
TRIS....... Toxic Chemical Release Inventory System

RMP..... Risk Management Plans

RAATS...... RCRA Administrative Action Tracking System

PRP..... Potentially Responsible Parties PADS...... PCB Activity Database System

ICIS..... Integrated Compliance Information System

Act)/TSCA (Toxic Substances Control Act)

COAL ASH DOE..... Steam-Electric Plant Operation Data

COAL ASH EPA..... Coal Combustion Residues Surface Impoundments List

RADINFO...... Radiation Information Database

HIST FTTS..... FIFRA/TSCA Tracking System Administrative Case Listing

CONSENT...... Superfund (CERCLA) Consent Decrees

INDIAN RESERV..... Indian Reservations

FUSRAP..... Formerly Utilized Sites Remedial Action Program

UMTRA...... Uranium Mill Tailings Sites
LEAD SMELTERS.... Lead Smelter Sites
US MINES..... Mines Master Index File

MERCURY..... Mercury Product Recyling Drop-Off Locations Listing

NPDES Permit Listing
TIER 2 Tier 2 Information Listing

TSD..... TSD Facility

FUELS PROGRAM..... EPA Fuels Program Registered Listing

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP...... EDR Proprietary Manufactured Gas Plants
EDR Hist Auto..... EDR Exclusive Historic Gas Stations
EDR Hist Cleaner... EDR Exclusive Historic Dry Cleaners

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STANDARD ENVIRONMENTAL RECORDS

Federal CERCLIS list

SEMS: SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly know as CERCLIS, renamed to SEMS by the EPA in 2015. The list contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This dataset also contains sites which are either proposed to or on the National Priorities List (NPL) and the sites which are in the screening and assessment phase for possible inclusion on the NPL.

A review of the SEMS list, as provided by EDR, and dated 03/07/2016 has revealed that there is 1 SEMS

site within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
DUFFY BROS CONSTRUCT	411 WAVERLEY OAKS RD	E 0 - 1/8 (0.103 mi.)	C30	139

Federal RCRA generators list

RCRA-SQG: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

A review of the RCRA-SQG list, as provided by EDR, and dated 12/09/2015 has revealed that there are 3 RCRA-SQG sites within approximately 0.25 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
BEAVER VISITEC INTER	411 WAVERLEY OAKS RD	E 0 - 1/8 (0.103 mi.)	C26	102
BRISTOL MYERS SQUIBB	100 BEAVER ST	S 1/8 - 1/4 (0.176 mi.)	E54	195
LIGHT METAL PLATERS	70 CLEMATIS AVENUE	SE 1/8 - 1/4 (0.217 mi.)	<i>165</i>	212

RCRA-CESQG: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

A review of the RCRA-CESQG list, as provided by EDR, and dated 12/09/2015 has revealed that there are 4 RCRA-CESQG sites within approximately 0.25 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
DUFFY BROS CONSTRUCT	411 WAVERLEY OAKS RD	E 0 - 1/8 (0.103 mi.)	C29	136
SHELL SERVICE STATIO	225 WAVERLY OAKS	SSW 1/8 - 1/4 (0.132 mi.)	D33	144
ANGIO MEDICAL	100 BEAVER STREET	S 1/8 - 1/4 (0.176 mi.)	E41	174
CERAMEM CORPORATION	12 CLEMATIS AVE	SSE 1/8 - 1/4 (0.189 mi.)	G57	203

State- and tribal - equivalent CERCLIS

SHWS: Contains information on releases of oil and hazardous materials that have been reported to DEP.

A review of the SHWS list, as provided by EDR, and dated 01/08/2016 has revealed that there are 47 SHWS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
WALTHAM PUBLIC SCHOO Release Tracking Number / Current Statu	258 TRAPELO RD s: 3-0029265 / RAO	N 1/4 - 1/2 (0.376 mi.)	76	261
FMR HEATING PLANT SO	333 FOREST ST	NW 1/4 - 1/2 (0.477 mi.)	78	267

•		MAIM 4/0 4 (0.540 mil)	00	070
Release Tracking Number / Current Status: Release Tracking Number / Current Status:	3-0022285 / RAO 3-0022284 / RAO	WNW 1/2 - 1 (0.518 MI.)	82	279
Release Tracking Number / Current Status:		NNW 1/2 - 1 (0.543 mi.)	L84	284
	426 TRAPELO RD 3-0015749 / RAO	NNW 1/2 - 1 (0.545 mi.)	L85	292
Release Tracking Number / Current Status:		N 1/2 - 1 (0.640 mi.)	88	298
Release Tracking Number / Current Status: Release Tracking Number / Current Status:	3-0020406 / RAO	NE 1/2 - 1 (0.641 mi.)	90	310
	145 BROOKSIDE AVE 3-0001628 / RAO	NNE 1/2 - 1 (0.714 mi.)	94	326
	249 LEXINGTON ST 3-0004323 / RAO	SE 1/2 - 1 (0.924 mi.)	108	396
	617 LEXINGTON ST 3-0011491 / RAO	WNW 1/2 - 1 (0.989 mi.)	109	397
Lower Elevation	Address	Direction / Distance	Map ID	Page
Cower Elevation SHELL PRODUCT DIST P Release Tracking Number / Current Status: Release Tracking Number / Current Status: Release Tracking Number / Current Status:	313 WAVERLEY OAKS RD 3-0003078 / RAO 3-0018952 / RAONR	Direction / Distance SE 0 - 1/8 (0.007 mi.)	Map ID B22	Page 69
SHELL PRODUCT DIST P Release Tracking Number / Current Status: Release Tracking Number / Current Status:	313 WAVERLEY OAKS RD 3-0003078 / RAO 3-0018952 / RAONR 3-0020538 / RAONR 277 WAVERLEY OAKS RD			
SHELL PRODUCT DIST P Release Tracking Number / Current Status: Release Tracking Number / Current Status: Release Tracking Number / Current Status: GAS STATION	313 WAVERLEY OAKS RD 3-0003078 / RAO 3-0018952 / RAONR 3-0020538 / RAONR 277 WAVERLEY OAKS RD 3-0013458 / RAO 411 WAVERLY OAKS ROA 3-0025816 / RAONR	SE 0 - 1/8 (0.007 mi.)	B22	69
SHELL PRODUCT DIST P Release Tracking Number / Current Status: Release Tracking Number / Current Status: Release Tracking Number / Current Status: GAS STATION Release Tracking Number / Current Status: NO LOCATION AID Release Tracking Number / Current Status:	313 WAVERLEY OAKS RD 3-0003078 / RAO 3-0018952 / RAONR 3-0020538 / RAONR 277 WAVERLEY OAKS RD 3-0013458 / RAO 411 WAVERLY OAKS ROA 3-0025816 / RAONR 3-0031506 / PSNC 411 WAVERLEY OAKS RD 3-0000454 / RAO	SE 0 - 1/8 (0.007 mi.) SSE 0 - 1/8 (0.008 mi.)	B22	69
SHELL PRODUCT DIST P Release Tracking Number / Current Status: Release Tracking Number / Current Status: Release Tracking Number / Current Status: GAS STATION Release Tracking Number / Current Status: NO LOCATION AID Release Tracking Number / Current Status: Release Tracking Number / Current Status: Release Tracking Number / Current Status: BEAVER VISITEC INTER Release Tracking Number / Current Status:	313 WAVERLEY OAKS RD 3-0003078 / RAO 3-0018952 / RAONR 3-0020538 / RAONR 277 WAVERLEY OAKS RD 3-0013458 / RAO 411 WAVERLY OAKS ROA 3-0025816 / RAONR 3-0031506 / PSNC 411 WAVERLEY OAKS RD 3-0000454 / RAO 3-0010717 / RAO 225 WAVERLY OAKS RD	SE 0 - 1/8 (0.007 mi.) SSE 0 - 1/8 (0.008 mi.) E 0 - 1/8 (0.103 mi.)	B22 B25 C27	69 101 107
Release Tracking Number / Current Status: Release Tracking Number / Current Status: NO LOCATION AID Release Tracking Number / Current Status: Release Tracking Number / Current Status: BEAVER VISITEC INTER Release Tracking Number / Current Status:	313 WAVERLEY OAKS RD 3-0003078 / RAO 3-0018952 / RAONR 3-0020538 / RAONR 277 WAVERLEY OAKS RD 3-0013458 / RAO 411 WAVERLY OAKS ROA 3-0025816 / RAONR 3-0031506 / PSNC 411 WAVERLEY OAKS RD 3-0000454 / RAO 3-0010717 / RAO 225 WAVERLY OAKS RD 3-0027761 / RAO 225-227 BEAVER ST	SE 0 - 1/8 (0.007 mi.) SSE 0 - 1/8 (0.008 mi.) E 0 - 1/8 (0.103 mi.) E 0 - 1/8 (0.103 mi.)	B22 B25 C27	69 101 107 112
SHELL PRODUCT DIST P Release Tracking Number / Current Status: NO LOCATION AID Release Tracking Number / Current Status: SHELL #73 Release Tracking Number / Current Status:	313 WAVERLEY OAKS RD 3-0003078 / RAO 3-0018952 / RAONR 3-0020538 / RAONR 277 WAVERLEY OAKS RD 3-0013458 / RAO 411 WAVERLY OAKS ROA 3-0025816 / RAONR 3-0031506 / PSNC 411 WAVERLEY OAKS RD 3-0000454 / RAO 3-0010717 / RAO 225 WAVERLY OAKS RD 3-0027761 / RAO 225-227 BEAVER ST 3-0028049 / RAO 110 BEAVER ST 3-0018647 / RAO 3-0017435 / RAONR 3-0002923 / RAO	SE 0 - 1/8 (0.007 mi.) SSE 0 - 1/8 (0.008 mi.) E 0 - 1/8 (0.103 mi.) E 0 - 1/8 (0.103 mi.) SSW 1/8 - 1/4 (0.132 mi.)	B22 B25 C27 C28	69 101 107 112 145
Release Tracking Number / Current Status: NO LOCATION AID Release Tracking Number / Current Status: SHELL #73 Release Tracking Number / Current Status: CUNIVERSITY OF MASSAC Release Tracking Number / Current Status:	313 WAVERLEY OAKS RD 3-0003078 / RAO 3-0018952 / RAONR 3-0020538 / RAONR 277 WAVERLEY OAKS RD 3-0013458 / RAO 411 WAVERLY OAKS ROA 3-0025816 / RAONR 3-0031506 / PSNC 411 WAVERLEY OAKS RD 3-0000454 / RAO 3-0010717 / RAO 225 WAVERLY OAKS RD 3-0027761 / RAO 225-227 BEAVER ST 3-0028049 / RAO 110 BEAVER ST 3-0018647 / RAO 3-0017435 / RAONR 3-0002923 / RAO 3-0017779 / RAO 117 BEAVER ST	SE 0 - 1/8 (0.007 mi.) SSE 0 - 1/8 (0.008 mi.) E 0 - 1/8 (0.103 mi.) E 0 - 1/8 (0.103 mi.) SSW 1/8 - 1/4 (0.132 mi.) SW 1/8 - 1/4 (0.159 mi.)	B22 B25 C27 C28 D34 36	69 101 107 112 145 159
	Release Tracking Number / Current Status: MURPHY FEDERAL CENTE Release Tracking Number / Current Status: Release Tracking Number / Current Status: NO LOCATION AID Release Tracking Number / Current Status: METROPOLITAN STATE C Release Tracking Number / Current Status: PROPERTY Release Tracking Number / Current Status:	Release Tracking Number / Current Status: 3-0022285 / RAO Release Tracking Number / Current Status: 3-0022284 / RAO Release Tracking Number / Current Status: 3-0004230 / DEPNDS MURPHY FEDERAL CENTE	Release Tracking Number / Current Status: 3-0022285 / RAO Release Tracking Number / Current Status: 3-0022284 / RAO Release Tracking Number / Current Status: 3-0022284 / RAO Release Tracking Number / Current Status: 3-0004230 / DEPNDS MURPHY FEDERAL CENTE	BETWEEN BLDG 148 AND 175 FOREST ST WNW 1/2 - 1 (0.518 mi.) 82 Release Tracking Number / Current Status: 3-0022285 / RAO Release Tracking Number / Current Status: 3-0022284 / RAO Release Tracking Number / Current Status: 3-0004230 / DEPNDS MURPHY FEDERAL CENTE 424 TRAPELO RD NNW 1/2 - 1 (0.543 mi.) L84 Release Tracking Number / Current Status: 3-0017581 / RAO NO LOCATION AID 426 TRAPELO RD NNW 1/2 - 1 (0.545 mi.) L85 Release Tracking Number / Current Status: 3-0015749 / RAO METROPOLITAN STATE C 475 TRAPELO RD N 1/2 - 1 (0.640 mi.) 88 Release Tracking Number / Current Status: 3-0018280 / RAO MCLEAN HOSPITAL 115 MILL ST NE 1/2 - 1 (0.641 mi.) 90 Release Tracking Number / Current Status: 3-002406 / RAO Release Tracking Number / Current Status: 3-0023234 / RAO BELMONT 145 BROOKSIDE AVE NNE 1/2 - 1 (0.714 mi.) 94 Release Tracking Number / Current Status: 3-0001628 / RAO PROPERTY 249 LEXINGTON ST SE 1/2 - 1 (0.924 mi.) 108 Release Tracking Numbe

Release Tracking Number / Current Status	: 3-0016864 / RAONR			
INDUSTRIAL PROPERTY Release Tracking Number / Current Status	70-74 CLEMATIS AVE : 3-0000501 / RAO	SE 1/8 - 1/4 (0.223 mi.)	<i>1</i> 68	231
MANHOLE HALFWAT DOWN Release Tracking Number / Current Status	102 CLEMATIS AVE : 3-0013361 / RAO	SE 1/8 - 1/4 (0.245 mi.)	J71	245
POLE #31 Release Tracking Number / Current Status	264 BEAL ST : 3-0011166 / RAO	SSE 1/4 - 1/2 (0.311 mi.)	72	249
MASSACHUSETTS MEDICA Release Tracking Number / Current Status	108 CLEMATIS AVE : 3-0032643 / PSNC	ESE 1/4 - 1/2 (0.317 mi.)	73	251
UMASS AMHERST AGRICU Release Tracking Number / Current Status Release Tracking Number / Current Status		WSW 1/4 - 1/2 (0.339 mi.)	74	252
NO LOCATION AID Release Tracking Number / Current Status	1060 BELMONT ST : 3-0029029 / RAO	ESE 1/4 - 1/2 (0.495 mi.)	K81	275
NSTAR UTILITY POLE # Release Tracking Number / Current Status	NEAR 21 DWIGHT ST : 3-0025095 / RAO	ESE 1/2 - 1 (0.528 mi.)	83	282
INTERSECTION Release Tracking Number / Current Status	WARREN ST AND CHAFFE : 3-0022872 / RAO	S 1/2 - 1 (0.625 mi.)	86	294
NO LOCATION AID Release Tracking Number / Current Status	563 TRAPELO RD : 3-0022478 / RAO	E 1/2 - 1 (0.634 mi.)	87	295
DANA ATHLETIC CTR OF Release Tracking Number / Current Status	500 BEAVER ST : 3-0024981 / RAO	WSW 1/2 - 1 (0.640 mi.)	89	306
FORMER MOBIL STN 117 Release Tracking Number / Current Status	27 LEXINGTON ST : 3-0025391 / RAO	E 1/2 - 1 (0.691 mi.)	91	321
GASOLINE STATION FMR Release Tracking Number / Current Status	127-131 LINDEN ST : 3-0000942 / DEPNFA	SW 1/2 - 1 (0.693 mi.)	92	323
STAR MARKET Release Tracking Number / Current Status	TRAPELO RD : 3-0003417 / RAO	E 1/2 - 1 (0.711 mi.)	93	324
FORMER DRY CLEANER Release Tracking Number / Current Status	14 WARREN ST : 3-0029191 / RAO	S 1/2 - 1 (0.714 mi.)	M95	327
JIMMY KS DRYCLEANERS Release Tracking Number / Current Status	10 WARREN ST : 3-0003582 / RAO	S 1/2 - 1 (0.720 mi.)	M96	330
SHELL #72 Release Tracking Number / Current Status	: 3-0030040 / RAONR : 3-0027973 / TMPS	S 1/2 - 1 (0.742 mi.)	M97	333
WALGREENS 3251 Release Tracking Number / Current Status	15-21 MAIN ST : 3-0015699 / RAO	S 1/2 - 1 (0.782 mi.)	98	349
AT INTERSECTION OF L Release Tracking Number / Current Status	MAIN ST : 3-0023097 / RAO	S 1/2 - 1 (0.786 mi.)	99	353
ORCHARD ST Release Tracking Number / Current Status	917 BELMONT ST : 3-0018880 / RAO	ESE 1/2 - 1 (0.802 mi.)	100	355
PETER FULLER DODGE I Release Tracking Number / Current Status	1000 PLEASANT ST : 3-0030513 / RAO	E 1/2 - 1 (0.805 mi.)	N101	356
WHITE STREET GARAGE Release Tracking Number / Current Status	43 WHITE ST : 3-0026011 / RAO	E 1/2 - 1 (0.807 mi.)	102	361
ASTON MARTIN OF NEW	85 LINDEN ST	SW 1/2 - 1 (0.813 mi.)	103	364

Release Tracking Number / Current Status	: 3-0019801 / RAO			
WAVERLY LANDSCAPE Release Tracking Number / Current Status Release Tracking Number / Current Status Release Tracking Number / Current Status	: 3-0014403 / RAO	E 1/2 - 1 (0.830 mi.)	N104	365
AA AUTO CLINIC Release Tracking Number / Current Status Release Tracking Number / Current Status		SSE 1/2 - 1 (0.894 mi.)	O105	374
NSTAR UTILITY POLE # Release Tracking Number / Current Status	NEAR 600 MAIN ST : 3-0024606 / RAO	SSE 1/2 - 1 (0.894 mi.)	O106	389
RESIDENCE Release Tracking Number / Current Status	73 ELLISON PARK : 3-0021082 / RAO	WSW 1/2 - 1 (0.917 mi.)	107	390
GROVE ST @ GORE ST Release Tracking Number / Current Status	GROVE ST @ GORE ST : 3-0033188 / UNCLSS	SSW 1/2 - 1 (0.991 mi.)	110	403
NO LOCATION AID Release Tracking Number / Current Status	BCH AND MAPLE : 3-0018823 / RAO	E 1/2 - 1 (0.995 mi.)	111	404

State and tribal leaking storage tank lists

LAST: The Leaking Aboveground Storage Tanks database

A review of the LAST list, as provided by EDR, and dated 01/08/2016 has revealed that there are 4 LAST sites within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
SHELL PRODUCT DIST P Release Tracking Number / Current	313 WAVERLEY OAKS RD Status: 3-0003078 / RAO	SE 0 - 1/8 (0.007 mi.)	B22	69
BEAVER VISITEC INTER Release Tracking Number / Current	411 WAVERLEY OAKS RD Status: 3-0000454 / RAO	E 0 - 1/8 (0.103 mi.)	C28	112
INDUSTRIAL PROPERTY Release Tracking Number / Current	70-74 CLEMATIS AVE Status: 3-0000501 / RAO	SE 1/8 - 1/4 (0.223 mi.)	168	231
MANHOLE HALFWAT DOWN Release Tracking Number / Current	102 CLEMATIS AVE Status: 3-0013361 / RAO	SE 1/8 - 1/4 (0.245 mi.)	J71	245

LUST: Sites within the Releases Database that have a UST listed as its source.

A review of the LUST list, as provided by EDR, and dated 01/08/2016 has revealed that there are 10 LUST sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
OFF RTE 60 Release Tracking Number / Currer	54 SHAWMUT ST nt Status: 3-0011729 / RAO	ENE 1/8 - 1/4 (0.143 mi.)	35	157
WALTHAM PUBLIC SCHOO Release Tracking Number / Currer	258 TRAPELO RD nt Status: 3-0029265 / RAO	N 1/4 - 1/2 (0.376 mi.)	76	261
Lower Elevation	Address	Direction / Distance	Map ID	Page
SHELL PRODUCT DIST P	313 WAVERLEY OAKS RD	SE 0 - 1/8 (0.007 mi.)	B22	69

Release Tracking Number / Current Status	: 3-0003078 / RAO			
SHELL #73 Release Tracking Number / Current Status Release Tracking Number / Current Status		SSW 1/8 - 1/4 (0.132 mi.)	D34	145
RIVER AUTO Release Tracking Number / Current Status	10 CLEMATIS AVE : 3-0010289 / RAO	SSE 1/8 - 1/4 (0.193 mi.)	G61	208
UMASS AMHERST AGRICU Release Tracking Number / Current Status	240 BEAVER ST : 3-0015883 / RAO	WSW 1/4 - 1/2 (0.339 mi.)	74	252
EITTOED 41 D 0011001		.		
FITZGERALD SCHOOL Release Tracking Number / Current Status	BEAL RD : 3-0019560 / RAO	S 1/4 - 1/2 (0.348 mi.)	75	259
	: 3-0019560 / RAO 400 BEAVER ST	S 1/4 - 1/2 (0.348 mi.) WSW 1/4 - 1/2 (0.438 mi.)		259 265
Release Tracking Number / Current Status BENTLEY COLLEGE	: 3-0019560 / RAO 400 BEAVER ST : 3-0020750 / RAO 257 SYCAMORE ST	,		

State and tribal registered storage tank lists

UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the Department of Environmental Protection's Summary Listing of all the Tanks Registered in the State of Massachusetts.

A review of the UST list, as provided by EDR, and dated 01/29/2016 has revealed that there are 2 UST sites within approximately 0.25 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
DUFFY ASSOCIATES Tank Status: Tank Removed Facility Id: 11240	313 WAVERLY OAKS RD	SE 0 - 1/8 (0.007 mi.)	B23	91
SHELL #73 Tank Status: Tank Removed Tank Status: In Use Facility Id: 11216	225 WAVERLY OAKS RD	SSW 1/8 - 1/4 (0.132 mi.)	D34	145

State and tribal institutional control / engineering control registries

INST CONTROL: Activity and Use Limitations establish limits and conditions on the future use of contaminated property, and therefore allow cleanups to be tailored to these uses.

A review of the INST CONTROL list, as provided by EDR, and dated 01/08/2016 has revealed that there are 3 INST CONTROL sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
FMR HEATING PLANT SO Release Tracking Number: 3-0022303	333 FOREST ST	NW 1/4 - 1/2 (0.477 mi.)	78	267
Lower Elevation	Address	Direction / Distance	Map ID	Page
SHELL PRODUCT DIST P	313 WAVERLEY OAKS RD	SE 0 - 1/8 (0.007 mi.)	B22	69

Release Tracking Number: 3-0003078

GEORGE MORE FACILITY 110 BEAVER ST \$ 1/8 - 1/4 (0.172 mi.) E39 164

Release Tracking Number: 3-0017779 Release Tracking Number: 3-0018647 Release Tracking Number: 3-0002923

State and tribal Brownfields sites

BROWNFIELDS: Under Massachusetts law, M.G.L. c. 21E is the statute that governs the cleanup of releases of oil and/or hazardous material to the environment. The Brownfields Act of 1998 amended M.G.L. c. 21E by establishing significant liability relief and financial incentives to spur the redevelopment of brownfields, while ensuring that the Commonwealth's environmental standards are met. Most brownfields are redeveloped with the benefit of liability protections that operate automatically under M.G.L. c. 21E.

A review of the BROWNFIELDS list, as provided by EDR, and dated 12/31/2015 has revealed that there is 1 BROWNFIELDS site within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
BEAVER VISITEC INTER MCP Status: RAO	411 WAVERLEY OAKS RD	E 0 - 1/8 (0.103 mi.)	C28	112
RTN: 3-0000454				

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS: The EPA's listing of Brownfields properties from the Cleanups in My Community program, which provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs.

A review of the US BROWNFIELDS list, as provided by EDR, and dated 12/22/2015 has revealed that there is 1 US BROWNFIELDS site within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
1072 BELMONT STREET	1072 BELMONT STREET	ESE 1/4 - 1/2 (0.484 mi.)	K80	272

Other Ascertainable Records

RCRA NonGen / NLR: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

A review of the RCRA NonGen / NLR list, as provided by EDR, and dated 12/09/2015 has revealed that

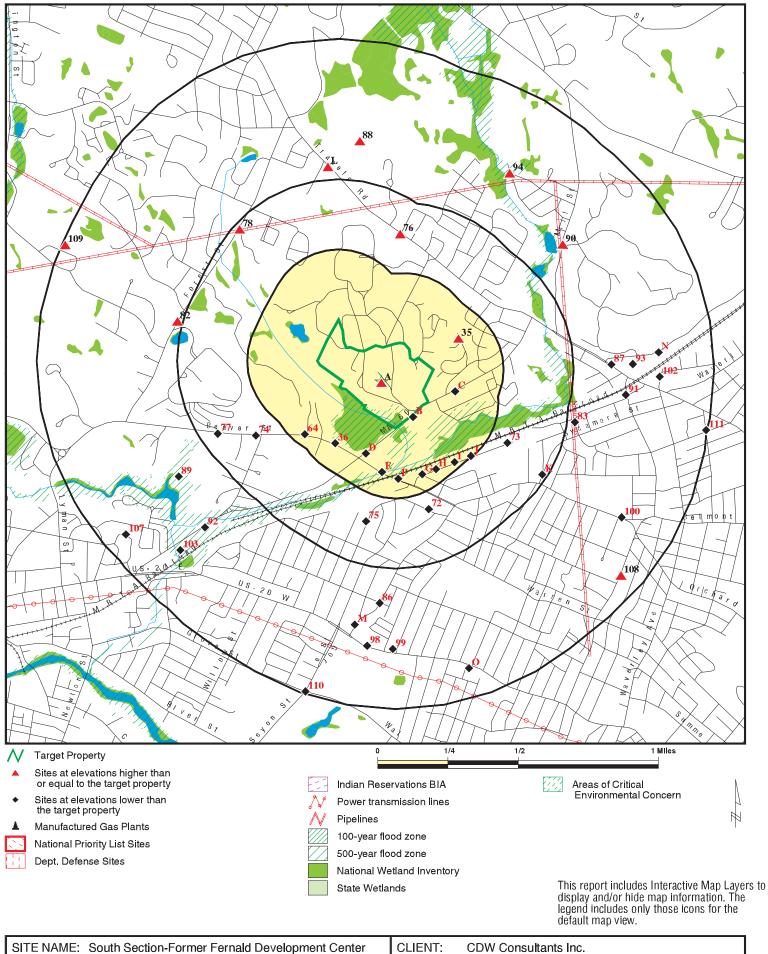
there are 17 RCRA NonGen / NLR sites within approximately 0.25 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
DUFFY ASSOCIATES	313 WAVERLY OAKS RD	SE 0 - 1/8 (0.007 mi.)	B23	91
PEIRCE BROTHERS OIL	329 WAVERLEY OAKS RD	SE 0 - 1/8 (0.008 mi.)	B24	99
COMPUTER DESIGN & AP	411 WAVERLEY OAKS RD	E 0 - 1/8 (0.103 mi.)	C31	141
MOTIVA ENTERPRISES L	225 WAVERLY OAKS RD	SSW 1/8 - 1/4 (0.132 mi.)	D32	142
XEROX REPRODUCTION C	135 BEAVER ST	S 1/8 - 1/4 (0.163 mi.)	E37	161
MOORE GEORGE W INC	100 BEAVER ST	S 1/8 - 1/4 (0.176 mi.)	E43	178
GENOME THERAPEUTIC C	100 BEAVER ST	S 1/8 - 1/4 (0.176 mi.)	E46	180
ANGIO MEDICAL CORP	100 BEAVER ST @ SHRI	S 1/8 - 1/4 (0.176 mi.)	E47	182
KALA PHARMACEUTICALS	100 BEAVER ST	S 1/8 - 1/4 (0.176 mi.)	E48	184
PROTEIN FOREST INC	100 BEAVER ST	S 1/8 - 1/4 (0.176 mi.)	E50	190
AVILA THERAPEUTICS I	100 BEAVER ST	S 1/8 - 1/4 (0.176 mi.)	E51	191
LEXICON INC	100 BEAVER ST	S 1/8 - 1/4 (0.176 mi.)	E52	193
ELECTRO PAINTERS INC	97 BEAVER ST	S 1/8 - 1/4 (0.180 mi.)	F55	201
THORNTON ASSOCIATES	87 BEAVER ST	SSE 1/8 - 1/4 (0.190 mi.)	F59	205
KANS ENGINEERING & M	83 BREAVER ST	SSE 1/8 - 1/4 (0.192 mi.)	G60	207
CERAMICS GRINDING CO	74 CLEMATIS AVE	SE 1/8 - 1/4 (0.226 mi.)	169	240
LIGHT METAL PLATERS	96 CLEMATIS AVE	SE 1/8 - 1/4 (0.241 mi.)	J70	242

HW GEN: Permanent generator identification numbers for all Massachusetts generators of hazardous waste and waste oil that have registered with or notified MassDEP of their hazardous waste activities.

A review of the HW GEN list, as provided by EDR, and dated 03/28/2016 has revealed that there are 17 HW GEN sites within approximately 0.25 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
NO LOCATION AID State Generator Status: VQG-MA EPA Id: MV6178919400 EPA Id: MV7814190232	411 WAVERLY OAKS ROA	E 0 - 1/8 (0.103 mi.)	C27	107
BEAVER VISITEC INTER State Generator Status: LQG-MA EPA Id: MAD047058243 EPA Id: MAD019685577 EPA Id: MV7817888777	411 WAVERLEY OAKS RD	E 0 - 1/8 (0.103 mi.)	C28	112
SHELL #73 State Generator Status: VQG-MA EPA Id: MAC300011046	225 WAVERLY OAKS RD	SSW 1/8 - 1/4 (0.132 mi.)	D34	145
INTERLEUKIN GENETICS EPA Id: MV7813980700	135 BEAVER ST	S 1/8 - 1/4 (0.163 mi.)	E38	164
AZKO NOBEL COATINGS State Generator Status: VQG-MA EPA Id: MV7816472400 EPA Id: MAC300101565	117 BEAVER ST	S 1/8 - 1/4 (0.174 mi.)	E40	173
DESCARTES THERAPEUTI EPA ld: MV7814194000	100 BEAVER ST	S 1/8 - 1/4 (0.176 mi.)	E42	177
X CHEM INC State Generator Status: VQG-MA State Generator Status: SQG-MA	100 BEAVER ST	S 1/8 - 1/4 (0.176 mi.)	E44	179

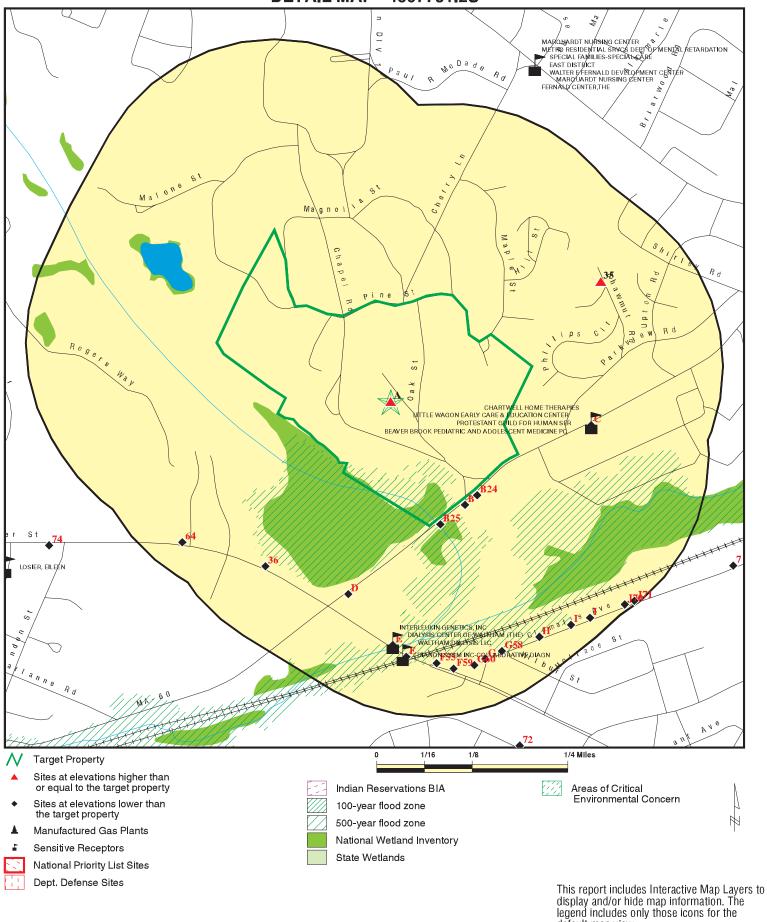

EPA Id: MAD985269836 EPA Id: MAC300012341 EPA Id: MAC300100252				
X BODY State Generator Status: VQG-MA EPA ld: MV7814196990	100 BEAVER ST	S 1/8 - 1/4 (0.176 mi.)	E45	179
ADNEXUS, A BRISTOL-M State Generator Status: VQG-MA EPA Id: MV7813142900 EPA Id: MV7819965252	100 BEAVER STREET	S 1/8 - 1/4 (0.176 mi.)	E49	187
EPITOME BIOSYSTEMS I State Generator Status: VQG-MA EPA ld: MV7814781418	100 BEAVER ST	S 1/8 - 1/4 (0.176 mi.)	E53	195
CERAMEM CORPORATION EPA Id: MAR000511709	12 CLEMATIS AVE	SSE 1/8 - 1/4 (0.189 mi.)	G56	202
CITIUS PRINTING & GR EPA ld: MV7815475550	20 CLEMATIS AVE	SSE 1/8 - 1/4 (0.190 mi.)	G58	205
RIVER AUTO State Generator Status: SQG-MA EPA Id: MV7818932777	10 CLEMATIS AVE	SSE 1/8 - 1/4 (0.193 mi.)	G61	208
CLEMATIS MACHINE EPA ld: MV7818940777	42 CLEMATIS AVE	SSE 1/8 - 1/4 (0.204 mi.)	H63	212
GIRL SCOUTS OF EASTE EPA ld: MV6174388536	265 BEAVER ST	SW 1/8 - 1/4 (0.210 mi.)	64	212
GREEN JACKET INC State Generator Status: SQG-MA EPA Id: MV7818948807	62 CLEMATIS AVE	SE 1/8 - 1/4 (0.217 mi.)	166	221
LIGHT METAL PLATERS State Generator Status: SQG-MA EPA Id: MAD001013515	70 CLEMATIS AVE	SE 1/8 - 1/4 (0.223 mi.)	<i>1</i> 67	221

Due to poor or inadequate address information, the following sites were not mapped. Count: 7 records.

Site Name Database(s)

CUSHING VILLAGE BRIGHTON ST. INTERSECTION SUBSURFACE PTC OUTFALL #12 PARCEL # 807 1B 1 NO LOCATION AID PARCEL # 807 1B 1 SHWS, RELEASE SHWS, RELEASE SHWS, RELEASE SHWS, RELEASE SHWS, INST CONTROL, RELEASE SHWS, INST CONTROL, RELEASE

OVERVIEW MAP - 4607751.2S



ADDRESS: 200 Trapelo Road

Wolthow MA 02452

Waltham MA 02452 LAT/LONG: 42.387642 / 71.208201 CLIENT: CDW Consultants Inc.
CONTACT: Lauren Konetzny
INQUIRY #: 4607751.2s
DATE: May 02, 2016 5:35 pm

DETAIL MAP - 4607751.2S

SITE NAME: South Section-Former Fernald Development Center
ADDRESS: 200 Trapelo Road
Waltham MA 02452
LAT/LONG: 42.387642 / 71.208201

CLIENT: CDW Consultants Inc.
CONTACT: Lauren Konetzny
INQUIRY #: 4607751.2s
DATE: May 02, 2016 5:35 pm

default map view.

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
STANDARD ENVIRONMENT	TAL RECORDS							
Federal NPL site list								
NPL Proposed NPL NPL LIENS	1.000 1.000 TP		0 0 NR	0 0 NR	0 0 NR	0 0 NR	NR NR NR	0 0 0
Federal Delisted NPL sit	e list							
Delisted NPL	1.000		0	0	0	0	NR	0
Federal CERCLIS list								
FEDERAL FACILITY SEMS	0.500 0.500		0 1	0 0	0 0	NR NR	NR NR	0 1
Federal CERCLIS NFRA	P site list							
SEMS-ARCHIVE	0.500		0	0	0	NR	NR	0
Federal RCRA CORRAC	TS facilities li	st						
CORRACTS	1.000		0	0	0	0	NR	0
Federal RCRA non-COR	RACTS TSD f	acilities list						
RCRA-TSDF	0.500		0	0	0	NR	NR	0
Federal RCRA generator	rs list							
RCRA-LQG RCRA-SQG RCRA-CESQG	0.250 0.250 0.250	1	0 1 1	0 2 3	NR NR NR	NR NR NR	NR NR NR	0 4 4
Federal institutional con engineering controls reg								
LUCIS US ENG CONTROLS US INST CONTROL	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
Federal ERNS list								
ERNS	TP	2	NR	NR	NR	NR	NR	2
State- and tribal - equiva	alent CERCLIS	3						
SHWS	1.000	2	4	7	6	30	NR	49
State and tribal landfill a solid waste disposal site								
SWF/LF	0.500		0	0	0	NR	NR	0
State and tribal leaking	storage tank l	ists						
LAST LUST INDIAN LUST	0.500 0.500 0.500	1	2 1 0	2 3 0	0 6 0	NR NR NR	NR NR NR	4 11 0
State and tribal registere	ed storage tar	nk lists						
FEMA UST	0.250		0	0	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
UST AST INDIAN UST	0.250 0.250 0.250	1	1 0 0	1 0 0	NR NR NR	NR NR NR	NR NR NR	3 0 0
State and tribal institutio control / engineering con		s						
INST CONTROL	0.500	1	1	1	1	NR	NR	4
State and tribal voluntary	/ cleanup site	es .						
INDIAN VCP	0.500		0	0	0	NR	NR	0
State and tribal Brownfie	lds sites							
BROWNFIELDS	0.500		1	0	0	NR	NR	1
ADDITIONAL ENVIRONMEN	TAL RECORDS	;						
		-						
Local Brownfield lists								
US BROWNFIELDS	0.500		0	0	1	NR	NR	1
Local Lists of Landfill / S Waste Disposal Sites	olid							
INDIAN ODI	0.500		0	0	0	NR	NR	0
ODI DEBRIS REGION 9	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
Local Lists of Hazardous Contaminated Sites	waste /							
US HIST CDL US CDL	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
Local Land Records								
LIENS LIENS 2	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
Records of Emergency R	Release Repoi	rts						
HMIRS SPILLS	TP TP	1	NR NR	NR NR	NR NR	NR NR	NR NR	0 1
RELEASE	TP	2	NR	NR	NR	NR	NR	2
SPILLS 90 SPILLS 80	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
Other Ascertainable Rec			1414	1411	1411	1417	1414	Ü
RCRA NonGen / NLR	0.250		3	14	NR	NR	NR	17
FUDS	1.000		0	0	0	0	NR	0
DOD SCRD DRYCLEANERS	1.000 0.500		0 0	0 0	0 0	0 NR	NR NR	0 0
US FIN ASSUR	TP		NR	NR	NR	NR	NR	0
EPA WATCH LIST 2020 COR ACTION	TP 0.250		NR 0	NR 0	NR NR	NR NR	NR NR	0 0
TSCA	TP		NR	NR	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
TDIO		<u> </u>		NE	NE	- NE	AUD.	
TRIS SSTS	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
ROD	1.000		0	0	0	0	NR	0
RMP	TP		NR	NR	NR	NR	NR	0
RAATS	TP		NR	NR	NR	NR	NR	Ö
PRP	TP		NR	NR	NR	NR	NR	0
PADS	TP		NR	NR	NR	NR	NR	0
ICIS	TP		NR	NR	NR	NR	NR	0
FTTS	TP		NR	NR	NR	NR	NR	0
MLTS	TP	1	NR	NR	NR	NR	NR	1
COAL ASH DOE COAL ASH EPA	TP 0.500		NR 0	NR 0	NR 0	NR NR	NR NR	0 0
PCB TRANSFORMER	0.500 TP	2	NR	NR	NR	NR	NR	2
RADINFO	TP	2	NR	NR	NR	NR	NR	0
HIST FTTS	TP		NR	NR	NR	NR	NR	Ö
DOT OPS	TP	1	NR	NR	NR	NR	NR	1
CONSENT	1.000		0	0	0	0	NR	0
INDIAN RESERV	1.000		0	0	0	0	NR	0
FUSRAP	1.000		0	0	0	0	NR	0
UMTRA	0.500		0	0	0	NR	NR	0
LEAD SMELTERS	TP	4	NR	NR	NR	NR	NR	0
US AIRS US MINES	TP 0.250	1	NR 0	NR 0	NR NR	NR NR	NR NR	1 0
FINDS	TP	1	NR	NR	NR	NR	NR	1
AIRS	TP	1	NR	NR	NR	NR	NR	1
DRYCLEANERS	0.250	·	0	0	NR	NR	NR	Ö
ENF	TP		NR	NR	NR	NR	NR	0
Financial Assurance	TP	1	NR	NR	NR	NR	NR	1
GWDP	TP		NR	NR	NR	NR	NR	0
HW GEN	0.250	1	2	15	NR	NR	NR	18
LEAD	TP	2	NR	NR	NR	NR	NR	2
MERCURY NPDES	0.500		0 NR	0 ND	0 NR	NR NR	NR NB	0 0
TIER 2	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0
TSD	0.500		0	0	0	NR	NR	0
FUELS PROGRAM	0.250		0	Ö	NR	NR	NR	0
ECHO	TP	1	NR	NR	NR	NR	NR	1
EDR HIGH RISK HISTORIC	AL RECORDS							
EDR Exclusive Records	,							
EDR MGP	1.000		0	0	0	0	NR	0
EDR Hist Auto	0.125		Ő	NR	NR	NR	NR	ő
EDR Hist Cleaner	0.125		0	NR	NR	NR	NR	0
EDR RECOVERED GOVER	NMENT ARCHIV	/ES						
Exclusive Recovered Go	ovt. Archives							
RGA HWS	TP	5	NR	NR	NR	NR	NR	5
=		-		·= =				-

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
RGA LUST	TP	5	NR	NR	NR	NR	NR	5
- Totals		33	18	48	14	30	0	143

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

APPENDIX D

Select Pages of March 2005 SPPC Plan

	r :	TABLE 1 -	TOTAL PET	ROLEUM	PRODUCT BUI	LK STORAGE		
Tank Location	Tank No.	Cap. (gal.)	Content	Туре	Material	Corrosion Protection	Secondary Contain.	Installed
Shriver Center	1U	750	Diesel	UST	Steel	No	No	1970
Farrell Hall	2U	1,000	Diesel	UST	Steel	No	No	1980
Greene Unit	3U	548	Diesel	UST	Fiberglass	No	No	1981
Withington*	8U	500	Gasoline	UST	Steel	No	No	1955
ICF 21	4U	500	No. 2	UST	Steel	No	No	1984
ICF 22	5U	500	No. 2	UST	Steel	No	No	1984
ICF 23	6U	500	No. 2	UST	Steel	No	No	1984
ICF 24	7 U	500	No. 2	UST	Steel	No	No	1984
Power Plant	9U	22,000	No. 6	UST	Steel	No	No	Pre- 1959
Power Plant	10U	24,000	No. 6	UST	Steel	No	No	Pre- 1959
Power Plant	11U	27,000	No. 6	UST	Steel	No	No	Pre- 1959
Power Plant*	12U	NI	Diesel	UST	Steel	, No	No	Pre- 1978
Power Plant*	13U	NI	Gasoline	UST	Steel	No	No	Pre- 1978
Farm & Grounds	14U	4,000	Gasoline	UST	Steel	No	No	Pre- 1978
Farm & Grounds	15U	4,000	Gasoline	UST	Steel	No	No	Pre- 1978
Site 7	16U	10,000	No. 2	UST	Fiberglass	No	No	1984
Site 5	17U	10,000	No. 2	UST	Fiberglass	No	No	1984
Thom	18U	1,500	Diesel	UST	Steel-Resin	No	No	1985
Howe Hall	19U	NI	Diesel	UST	NI	No	No	1981
Activity Center	20U	4,000	No. 2	UST	Fiberglass	No	No	1981
Power Plant*	1A	275	Empty	AST	Steel	No	No	1975

TABLE 1 - TOTAL PETROLEUM PRODUCT BULK STORAGE								
Farm & Grounds	2A	275	Diesel	AST	Steel	No	No	1975
Farm & Grounds	3A	50	Diesel	AST	Steel	No	No	1975
Day Care	4A	275	No. 2	AST	Steel	No	No	1975
Volunteer Center	5A	550	No. 2	AST	Steel	No	No	1975
Wallace - Generator	6A	100	Diesel	AST	Steel	No	No	1984
Sequin - Generator	7A	100	Diesel	AST	Steel	No	No	1984
Cottage 11 - Generator	8A	85	Diesel	AST	Steel	No	No	1995
Pearlman Center	9A	5,000	Diesel	AST	Steel	No	Yes	1992
Winn - Generator	10A	30	Diesel	AST	Steel	No	No	1980
Cottage 17	11A	275	No. 2	AST	Steel	No	No	1975
Cottage 18	12A	275	No. 2	AST	Steel	No	No	1975
Garage	13A	2-275	Used Motor Oil	AST	Steel	No	Yes	1980
Greene	14A	80	Diesel	AST	Steel	No	No	1981
Howe Hall	15A	50	Diesel	AST	Steel	No	No	1981
Thom	16A	80	Diesel	AST	Steel	No	No	1985

Notes:

1. Tank location and number corresponds to those on the attached Site Plan (Figure 2).

2. UST: Underground storage tank.

3. AST: Aboveground storage tank.

4. NI: No information exists.

USTs No. 1, 2, and 3 provide fuel for emergency generators. USTs No. 4, 5, 6, and 7 provide heating fuel for residential buildings. UST No. 8 is an out of service gasoline tank. USTs No. 9, 10, and 11 provide fuel at the power plant to operate the boilers which produce steam for heat. USTs No. 12 and 13 are out of service diesel and gasoline tanks, respectively. USTs No. 14 and 15 provide gasoline for facility vehicles. USTs 16 and 17 provide heating fuel for Sites 5 and 7. USTs No. 18 and 19 provide fuel for emergency generators. UST No. 20 provides heating fuel for the activity center. AST No. 1 is out of service. ASTs No. 2 and 3 provide diesel fuel for farm and grounds equipment. ASTs No. 4 and 5 provide heating fuel for the Day Care and Volunteer Centers. ASTs No. 6, 7, and 8, provide diesel fuel for day-tank generators. AST No. 9 provides diesel fuel for the Pearlman Center emergency generator. AST No. 10 provides diesel fuel for a portable generator. ASTs No. 11 and 12 provide heating fuel for Cottages 17 and 18. AST No. 13 provides storage for waste oil at the Garage. ASTs No. 14, 15, and 16 provide diesel fuel for day-tank generators.

	TABLE 2	- TOTA	L PETROLE FDC TRA			K STORAGE		
Transformer Location	Transformer No.	Cap. (gal.)	Content	Туре	Material	Corrosion Protection	Secondary Contain.	Installed
Farm & Grounds	T1	15	Oil	Pole	Steel	Painted	No	NI
Chapel	T2	25	Oil	Pole	Steel	Painted	No	NI
Maintenance	Т3	35	Oil	Pole	Steel	Painted	No	NI
Belmont	T4-T6	70	Oil	Pole	Steel	Painted	No	NI
Cottage 18	T7	25	Oil	Pole	Steel	Painted	No	NI
Tarbell	Т8	219	Oil	Pad	Steel	Painted	No	NI
Sequin	Т9	229	Oil	Pad	Steel	Painted	No	NI
Dolan	T10	219	Oil	Pad	Steel	Painted	No	NI
Farrell Hall	T11	229	Oil	Pad	Steel	Painted	No	NI
Greene	T12	401	Oil	Pad	Steel	Painted	No	NI
Site 5	T13	350	Oil	Pad	Steel	Painted	No	NI
Training/ Activity Center	T14	219	Oil	Pad	Steel	Painted	No	NI
Brookside	T15	300	Oil	Pad	Steel	Painted	No	NI
North Building	T16	0	Oil	Pad	Steel	Painted	No	NI
Withington	T17	370	Oil	Pad	Steel	Painted	No	NI

	TABLE 2	- TOTA	L PETROLE FDC TRA			K STORAGE		
Manual	T18	300	Oil	Pad	Steel	Painted	No	NI
School House	T19	400	Oil	Pad	Steel	Painted	No	NI
South Nurse	T20	213	Oil	Pad	Steel	Painted	No	NI
Wallace	T21	213	Oil	Pad	Steel	Painted	No	NI
Farm & Grounds	T22-T23**	800	Oil	Pad	Steel	Painted	No	NI
Power Plant	T24-T26	30	Oil	Pad	Steel	Painted	No	NI
Building 14*	T27-T35	136	Oil	Pad	Steel	Painted	No	NI
Shriver*	T36-T47	13	Oil	Wall	Steel	Painted	No	NI
Kelly Hall*	T48-T50	3	Oil	Wall	Steel	Painted	No	NI
Waverly Hall*	T51-T53	3	Oil	Wall	Steel	Painted	No	NI
Farm & Grounds	T54-T56	3	Oil	Pad	Steel	Painted	No	NI
Main Transformer Pad	T57	1,090	Oil	NI	Steel	Painted	No	NI
Building 55	T58-T61	220¹	Oil	Pad	Steel	Painted	No	NI
Building 14	T62-T64	NA	Oil	Pad	Steel	Painted	No	NI
Power Plant	T65-T67	NA	Oil	Pad	Steel	Painted	No	NI
Malone	T68	200	Oil	Pad	Steel	Painted	No	NI
Cottages 3-13	T69-T73	1,540	Oil	Pad	Steel	Painted	No	NI
Woodside	T74	NA	Oil	Pad	Steel	Painted	No	NI
Site 7	T75	NA	Oil	Pad	Steel	· Painted	No	NI
East Dowling	T76	151	Oil	Pad	Steel	Painted	No	NI
Howe Hall	T77	NA	Oil	Pad	Steel	Painted	No	NI
New Service Bldg. (Pearlman)	. T78	260	Oil	Pad	Steel	Painted	No	NI
Cerc*	T79-T81	NA	Oil	Wall	Steel	Painted	No	NI
Kelly**	T82-T86	855	Oil	NI	Steel	Painted	No	NI

Notes:	
NT A	

Not Available. NA NI No Information.

Electrical switches containing approximately 1 gallon of oil are not shown on the site plan.

Out of service.

Volume of T58 is 220-gallons; volume of T59-61 not available.

Pad Pad-mounted. Pole Pole-mounted. Wall-mounted. Wall

There are 86 electrical transformers and/or electrical switches located at the facility. The locations of the transformers are shown on Figure 2. Electrical switches contain approximately one gallon of oil and are located in Building 14, the Shriver building, Waverly, CERC, and Kelly Hall. Please note that electrical switches have not been identified on Figure 2; however, they are typically wall-mounted units located in the basements of the buildings.

Listed below are spill scenarios which have the greatest potential for a significant release or spill of product. Possible spill scenarios include leaking ASTs or USTs and spillage during fuel delivery, loading or unloading.

	TAB	LE 3 - POTENTIAL SP	ILLS		
Potential Spill Type of Source Failure		Quantity (gal)	Direction of Flow	Secondary Containment	
Power Plant USTs	Leak/rupture	27,000	Southwest approx. 10' to Clematis Brook via groundwater	No	
Fuel Delivery Tank	Tank overfill/ rupture	Maximum Delivery Truck volume = 8,000	Southwest approx. 10' to Clematis Brook via overland flow	No	
Site 5/Site 7	Leak/rupture	10,000	West approx. 200' to unnamed stream via groundwater	No	
Fuel Delivery Tank	Tank overfill/ rupture	Maximum Delivery Truck Volume = 8,000	Potential discharge to Clematis Brook via storm drain system	No	
Pearlman Building Fuel Delivery Tank	Tank overfill/ rupture	Maximum Delivery Truck Volume = 8,000	Potential discharge to Clematis Brook via storm drain system	No	

UST: Underground Storage Tank. 1. 2. AST: Aboveground Storage Tank.

Number of tanks, total volume.

2.3 Containment or Diversionary Structures

Pearlman Building - The Pearlman building contains a 5,000-gallon diesel AST (AST #9). Secondary containment for the AST consists of a concrete block structure surrounding the AST. The floor of the containment area is concrete. The containment capacity is approximately 100 percent.

Garage - Two 275-gallon waste oil ASTs (AST #13) and one 55-gallon drum containing waste oil are situated on a concrete pad within a concrete block secondary containment structure. The secondary containment appears capable of retaining greater than 100 percent of the volume of each AST and drum.

Volunteer Center and Day Care - 275-gallon fuel oil ASTs #4 and #5 are located within the concrete basements of the Volunteer Center and Day Care Center, respectively. In the event of a rupture, petroleum product would appear to be contained within the buildings' respective basements.

None of the other USTs or ASTs are provided with secondary containment or diversionary structures. Potential spills from refueling activities would be directed to the on-site catch basin system, bituminous asphalt or to gravel and grassy areas. Fuel entering the storm water drainage system would be directed to Clematis Brook at the southwestern boundary of the site.

Transformers - There are approximately 86 electrical transformers and/or electrical switches located on the Site. Electrical transformers located within Building #14 and the Power Plant are situated on concrete pads and enclosed by the masonry walls of the building; however, what appeared to be floor drains were observed in each building. The point of discharge of these floor drains is unknown. The remainder of the transformers and switches have no secondary containment or associated diversionary structures as they are either mounted on a telephone pole, a concrete pad or a building wall.

3.0 Operating Information

3.1 Facility Drainage

Stormwater Drainage Control - Stormwater runoff from paved areas of the Site is generally directed to catch basins which discharge to Clematis Brook and ultimately to Beaver Brook. Clematis Brook is located approximately 200 feet southwest of the Site at its closest point. According to Mr. Maurice O'Connell the Plant Superintendent the discharge point of several catch basins observed during the Site inspection were either unknown or discharge directly to the subsurface soils.

3.2 Bulk Storage Tanks

Other Storage of Oil - Oil and hazardous materials used for the boiler system and equipment maintenance are stored on the concrete floor of the Power Plant Building. Materials observed during a Site visit on May 23, 1996 were:

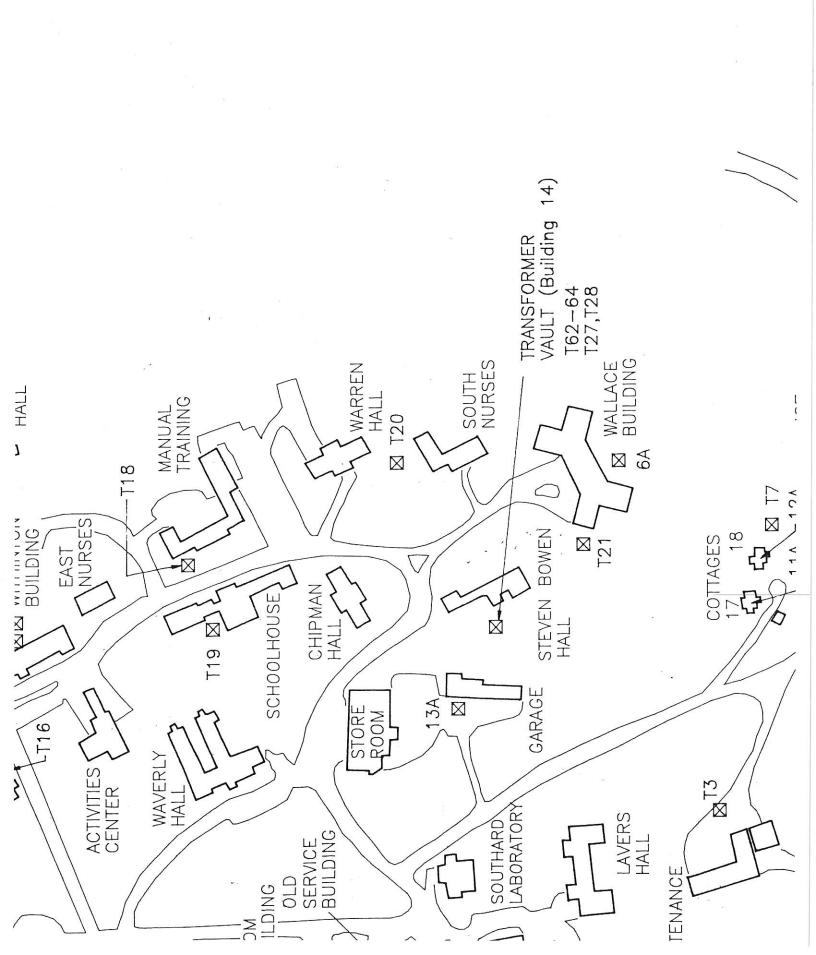
- (9) 55-gallon drums of sludge cutter
- (4) 55-gallon drums of steam condensate treatment
- (2) 55-gallon drums of #2 oil
- (7) 55-gallon drums of caustic soda
- (2) 55-gallon drums of turbine oil

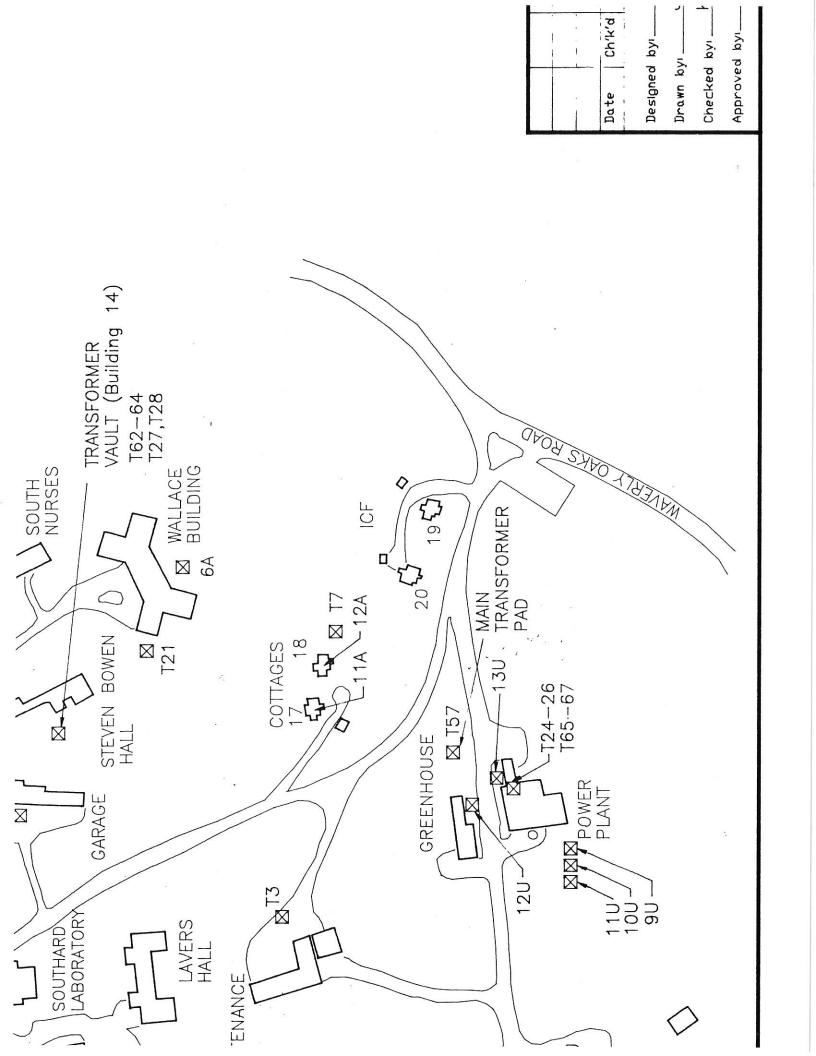
Materials observed at the garage included the following:

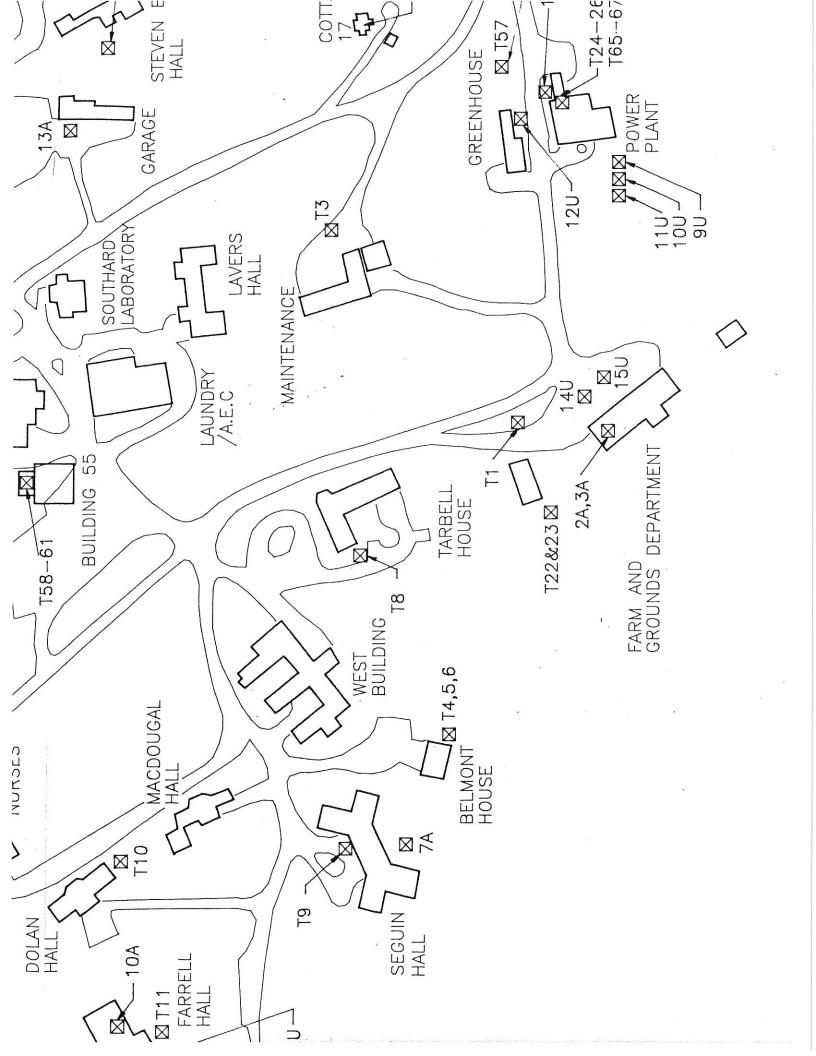
- (1) 16-gallon drum of grease
- (1) 16-gallon drum of parts cleaner
- (5) 1-gallon containers of battery acid Several cases of motor oil and antifreeze

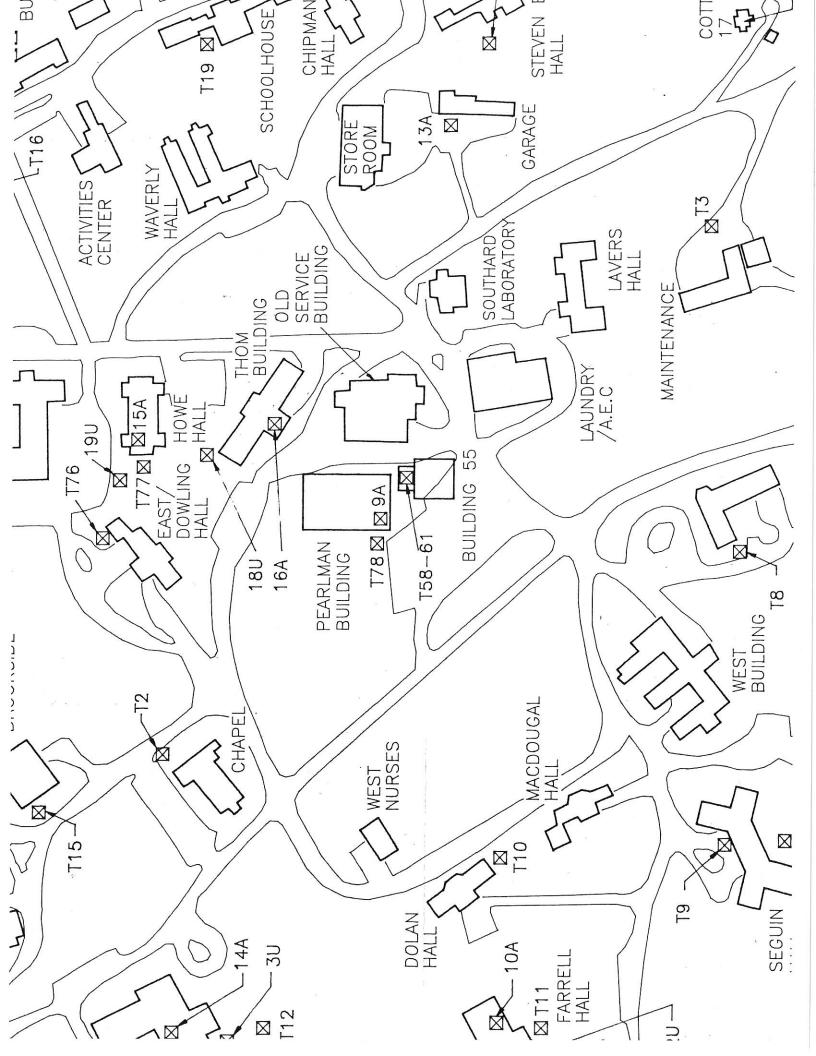
3.3 Transformers

Of the 84 electrical transformers and switches on the Site Transformers 3, 4, 5, 6, 7, 53, 57-64, and 67 contain PCBs at concentrations of 50 parts per million (ppm) or greater.


3.4 Facility Transfer Operations, Pumping and In-Plant Processes


Buried Pipelines - Buried pipeline locations and materials can not be determined due to the ages of the tanks and/or the lack of available information. Fuel feed lines are buried and are exposed within the buildings' basements.


Pipeline Terminal Connections - Pipeline connections for USTs and ASTs are capped when not in use.


Pipe Supports - Aboveground vent and fill pipes appeared to be sufficiently supported.

Aboveground Pipeline Inspection - All exterior piping shall be inspected by facility personnel on a periodic basis at least monthly. Scheduled maintenance inspections shall be conducted in accordance with Section 3.6.

APPENDIX E

EDR Certified Sanborn Maps Report

South Section-Former Fernald Development Center 200 Trapelo Road Waltham, MA 02452

Inquiry Number: 4607751.3

May 06, 2016

Certified Sanborn® Map Report

Certified Sanborn® Map Report

05/06/16

Site Name: Client Name:

South Section-Former Fernald CDW Consultants Inc. 40 Speen Street 200 Trapelo Road

Waltham, MA 02452 Framingham, MA 01701 EDR Inquiry # 4607751.3 Contact: Lauren Konetzny

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by CDW Consultants Inc. were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 8E4F-4C82-B011

PO# 1713

SMMA Waltham High School **Project**

Maps Provided:

1972

1950

1918 1911

1903

1897

Sanborn® Library search results

Certification #: 8E4F-4C82-B011

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

Library of Congress

University Publications of America

▼ EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

CDW Consultants Inc. (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2016 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Sanborn Sheet Key

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

1972 Source Sheets

Volume 1, Sheet 56 1972

1950 Source Sheets

Volume 1, Sheet 56 1950

1918 Source Sheets

Volume 1, Sheet 56 1918

1911 Source Sheets

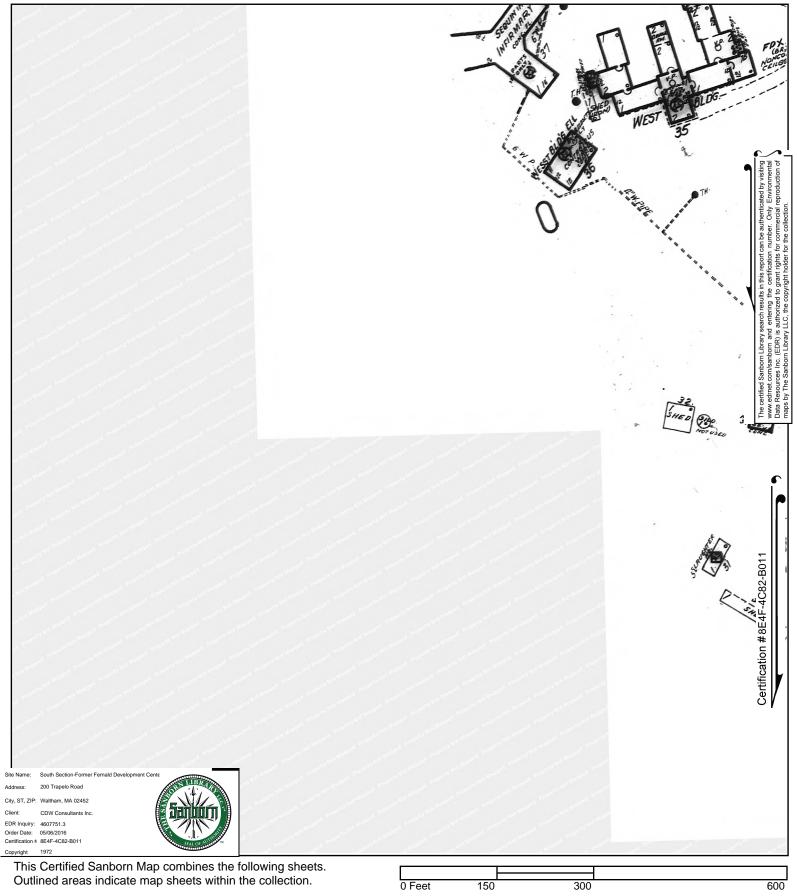
Volume 1, Sheet 40 1911

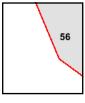
Sanborn Sheet Key

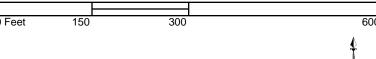
This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

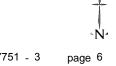
1903 Source Sheets

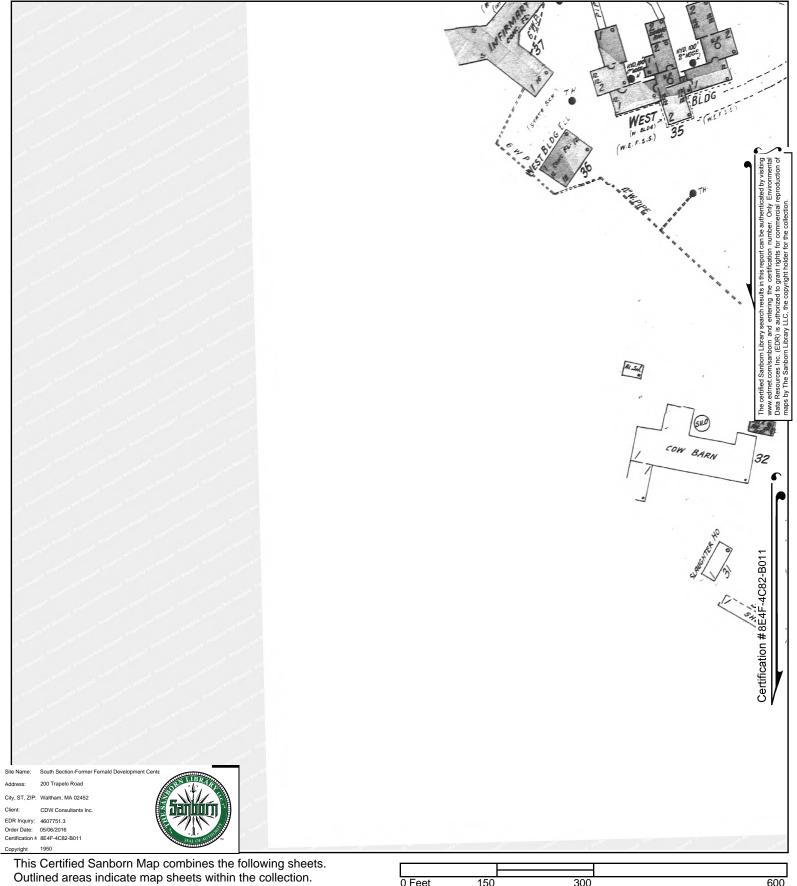
Volume 1, Sheet 32 1903

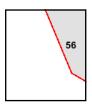

1897 Source Sheets

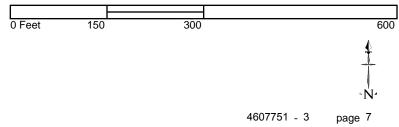

Volume 1, Sheet 28 1897



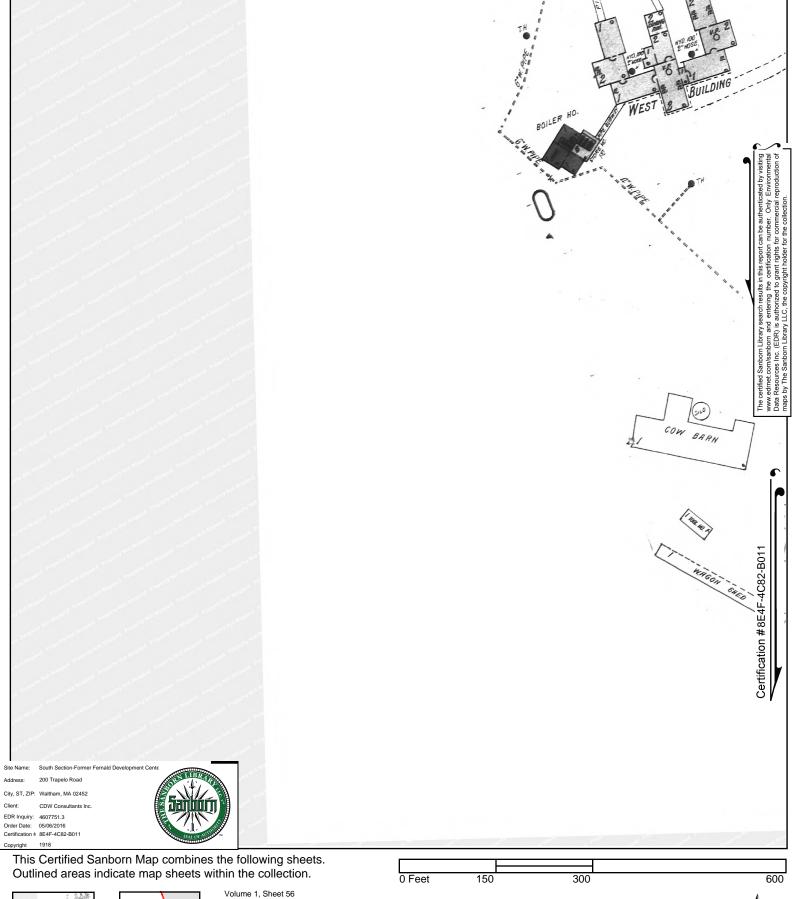

Certified Sanborn® Map

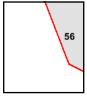


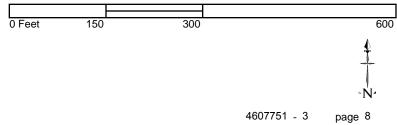


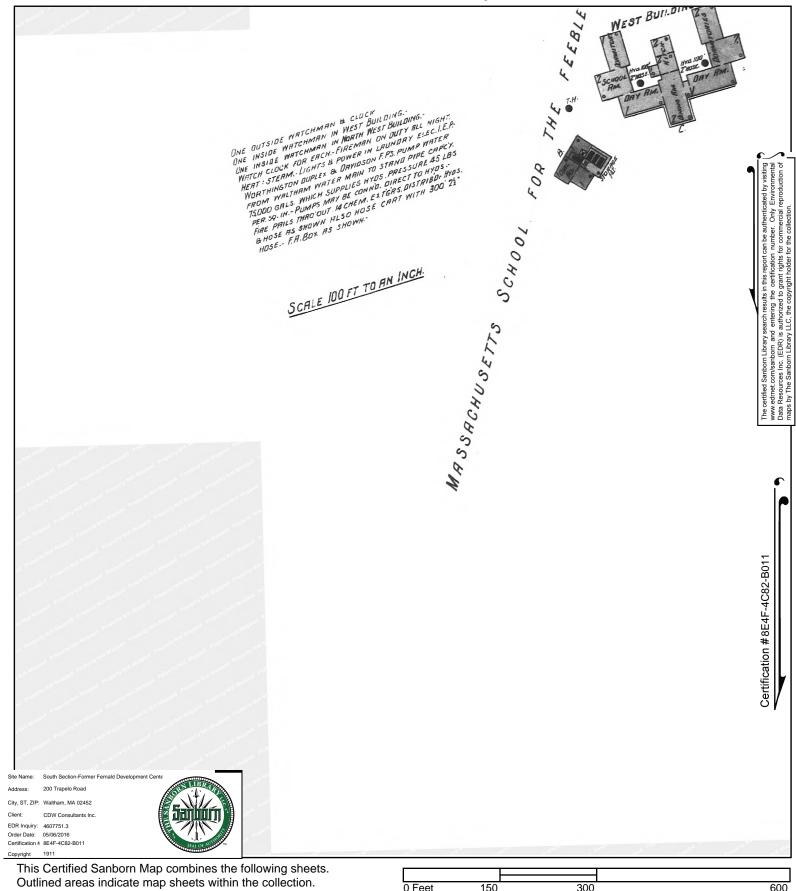


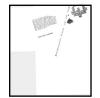
Certified Sanborn® Map

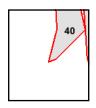




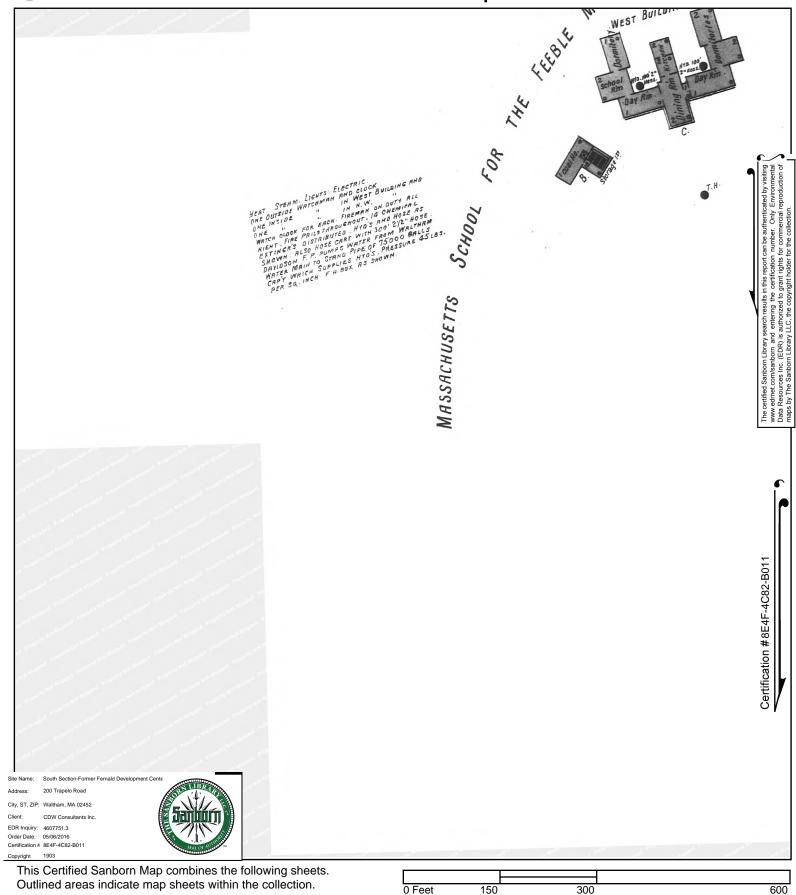


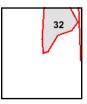


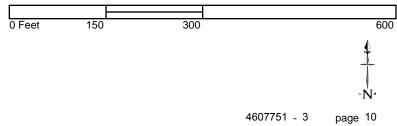


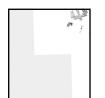













EDR Inquiry: 4607751.3

South Section-Former Fernald Development Cente CDW Consultants Inc.

This Certified Sanborn Map combines the following sheets. Outlined areas indicate map sheets within the collection.

South Section-Former Fernald Development Center 200 Trapelo Road Waltham, MA 02452

Inquiry Number: 4607751.3

May 06, 2016

Certified Sanborn® Map Report

Certified Sanborn® Map Report

05/06/16

Site Name: Client Name:

South Section-Former Fernald CDW Consultants Inc. 40 Speen Street 200 Trapelo Road

Waltham, MA 02452 Framingham, MA 01701 EDR Inquiry # 4607751.3 Contact: Lauren Konetzny

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by CDW Consultants Inc. were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 8E4F-4C82-B011

PO# 1713

SMMA Waltham High School **Project**

Maps Provided:

1972

1950

1918 1911

1903

1897

Sanborn® Library search results

Certification #: 8E4F-4C82-B011

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

Library of Congress

University Publications of America

▼ EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

CDW Consultants Inc. (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2016 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Sanborn Sheet Key

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

1972 Source Sheets

Volume 1, Sheet 56 1972

1950 Source Sheets

Volume 1, Sheet 56 1950

1918 Source Sheets

Volume 1, Sheet 56 1918

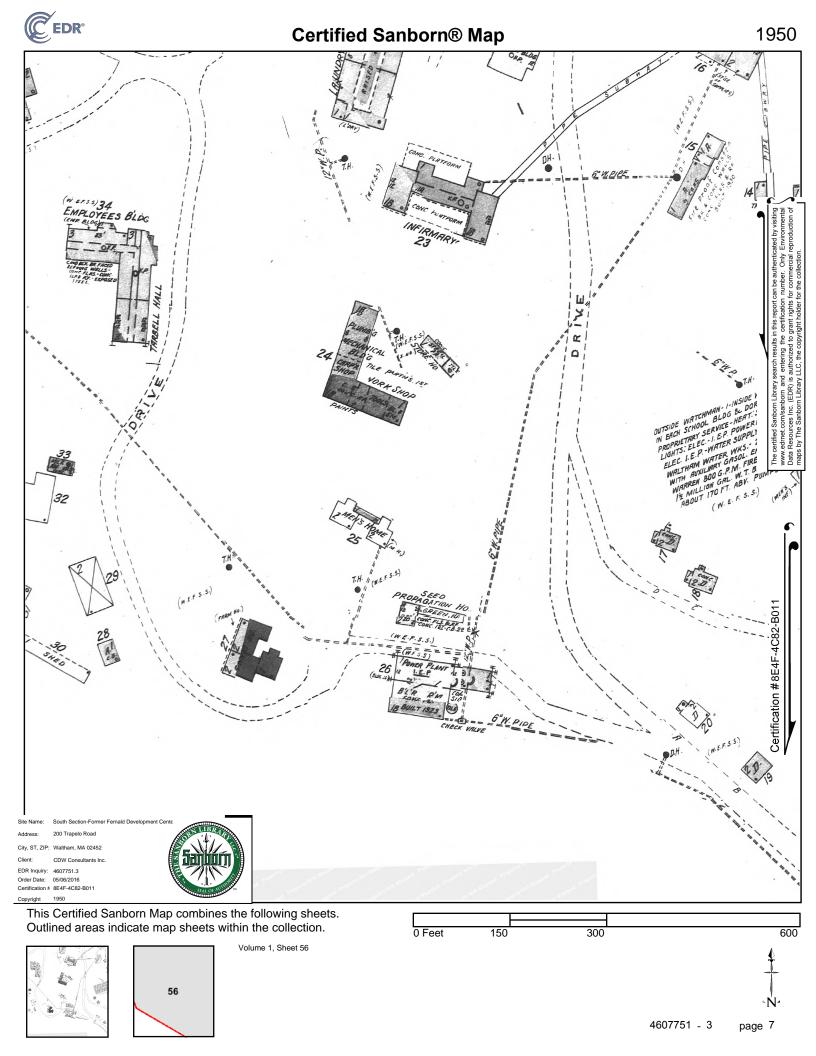
1911 Source Sheets

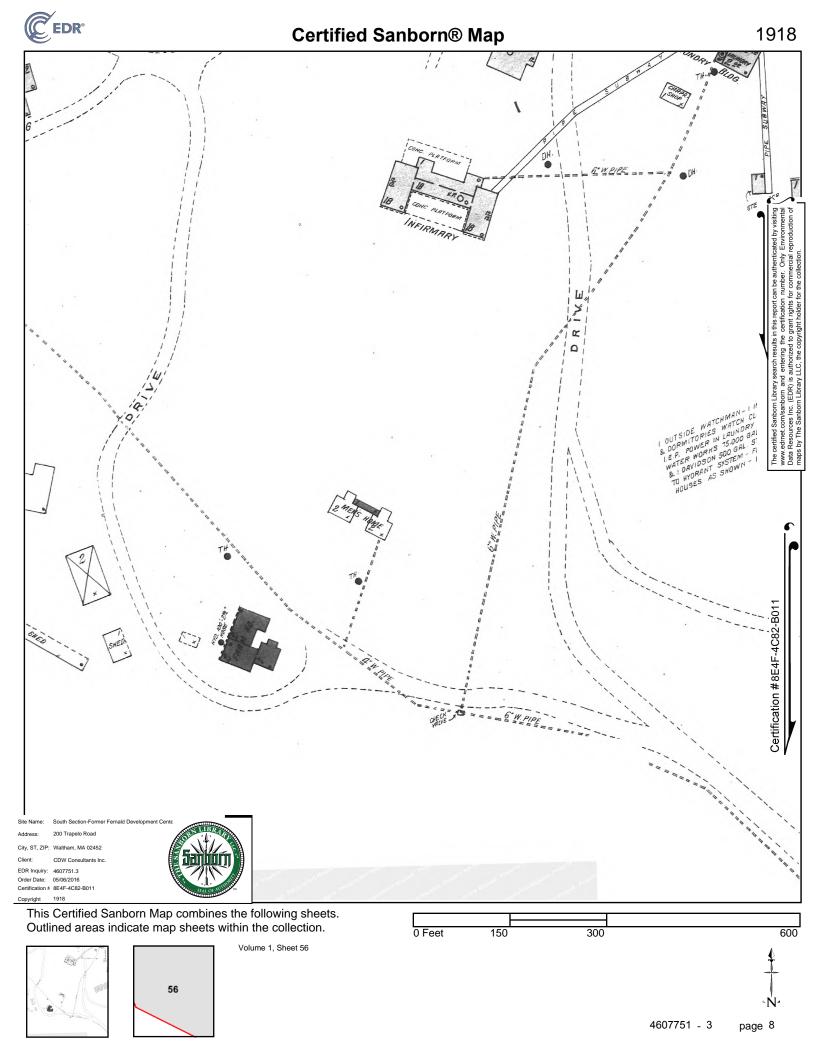
Volume 1, Sheet 40 1911

Sanborn Sheet Key

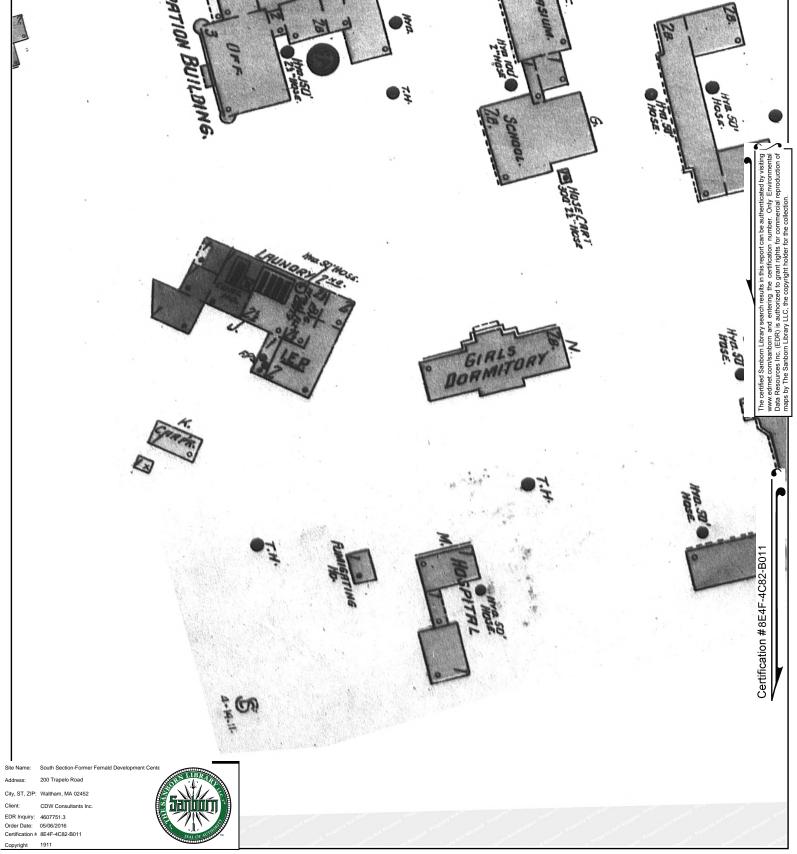
This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

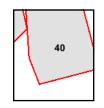
1903 Source Sheets

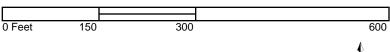

Volume 1, Sheet 32 1903

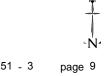

1897 Source Sheets

Volume 1, Sheet 28 1897

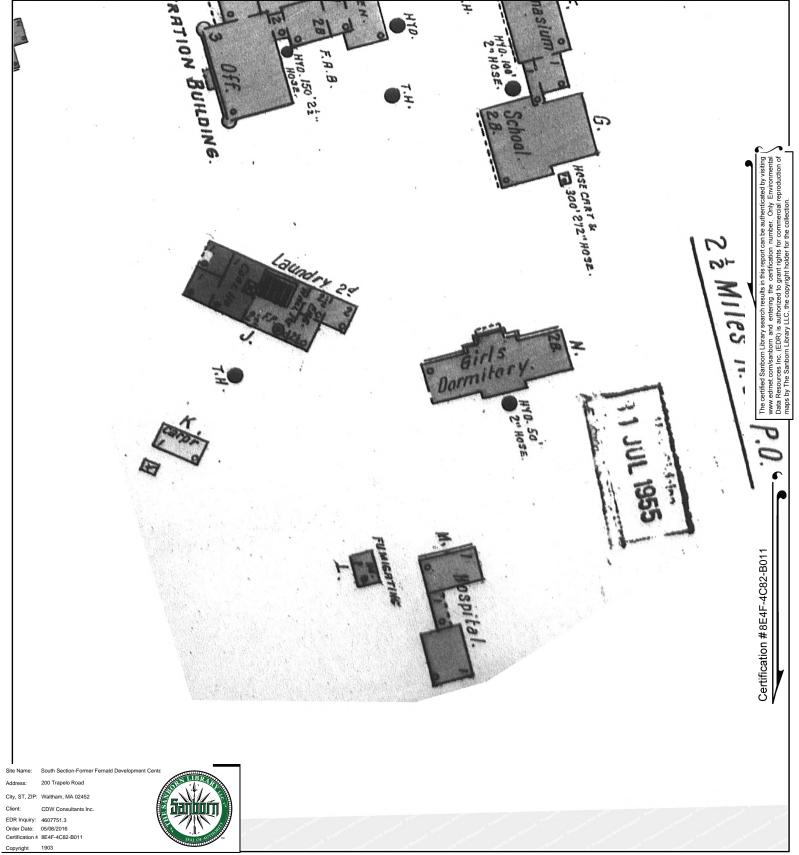

4607751 - 3 page 6

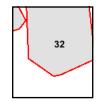


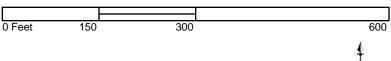

Certified Sanborn® Map

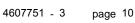


This Certified Sanborn Map combines the following sheets. Outlined areas indicate map sheets within the collection.

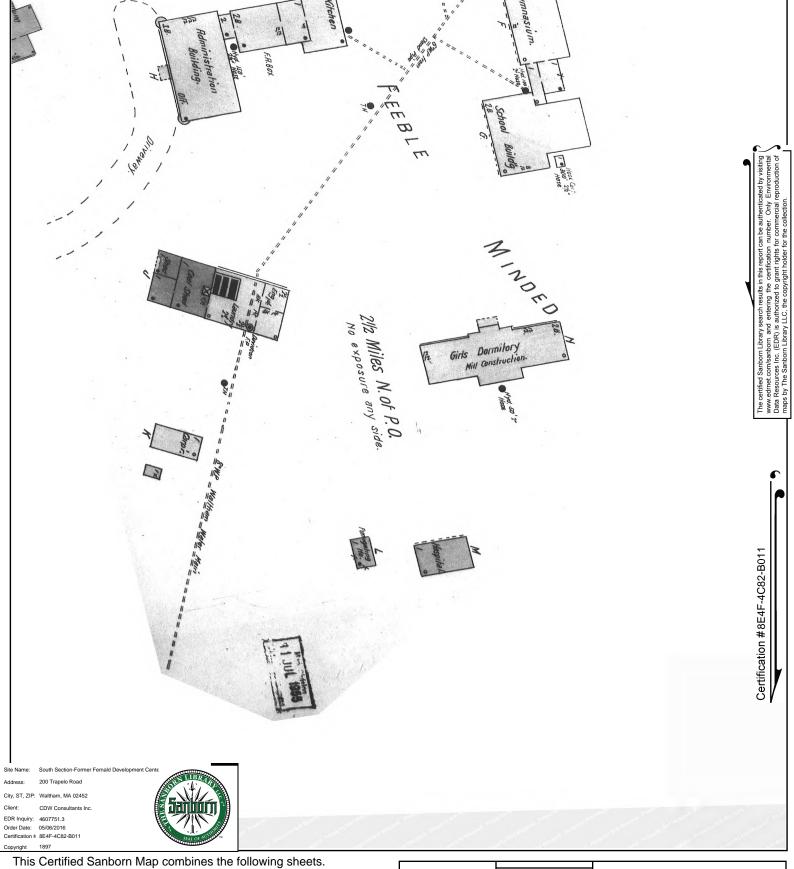


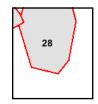


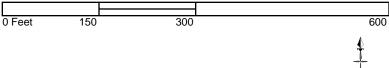




This Certified Sanborn Map combines the following sheets. Outlined areas indicate map sheets within the collection.







This Certified Sanborn Map combines the following sheets. Outlined areas indicate map sheets within the collection.

South Section-Former Fernald Development Center 200 Trapelo Road Waltham, MA 02452

Inquiry Number: 4607751.3

May 06, 2016

Certified Sanborn® Map Report

Certified Sanborn® Map Report

05/06/16

Site Name: Client Name:

South Section-Former Fernald CDW Consultants Inc. 40 Speen Street 200 Trapelo Road

Waltham, MA 02452 Framingham, MA 01701 EDR Inquiry # 4607751.3 Contact: Lauren Konetzny

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by CDW Consultants Inc. were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 8E4F-4C82-B011

PO# 1713

SMMA Waltham High School **Project**

Maps Provided:

1972

1950

1918

1911

1903

Sanborn® Library search results

Certification #: 8E4F-4C82-B011

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

Library of Congress

University Publications of America

▼ EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

CDW Consultants Inc. (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2016 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Sanborn Sheet Key

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

1972 Source Sheets

Volume 1, Sheet 56 1972

1950 Source Sheets

Volume 1, Sheet 56 1950

1918 Source Sheets

Volume 1, Sheet 56 1918

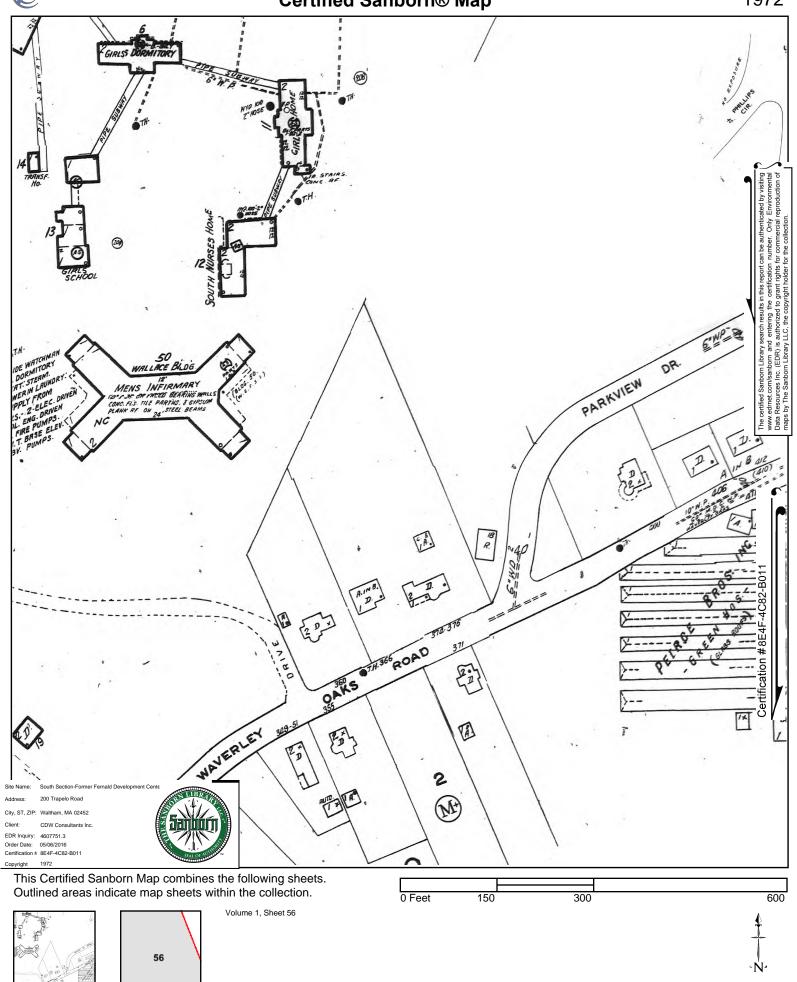
1911 Source Sheets

Volume 1, Sheet 40 1911

Sanborn Sheet Key

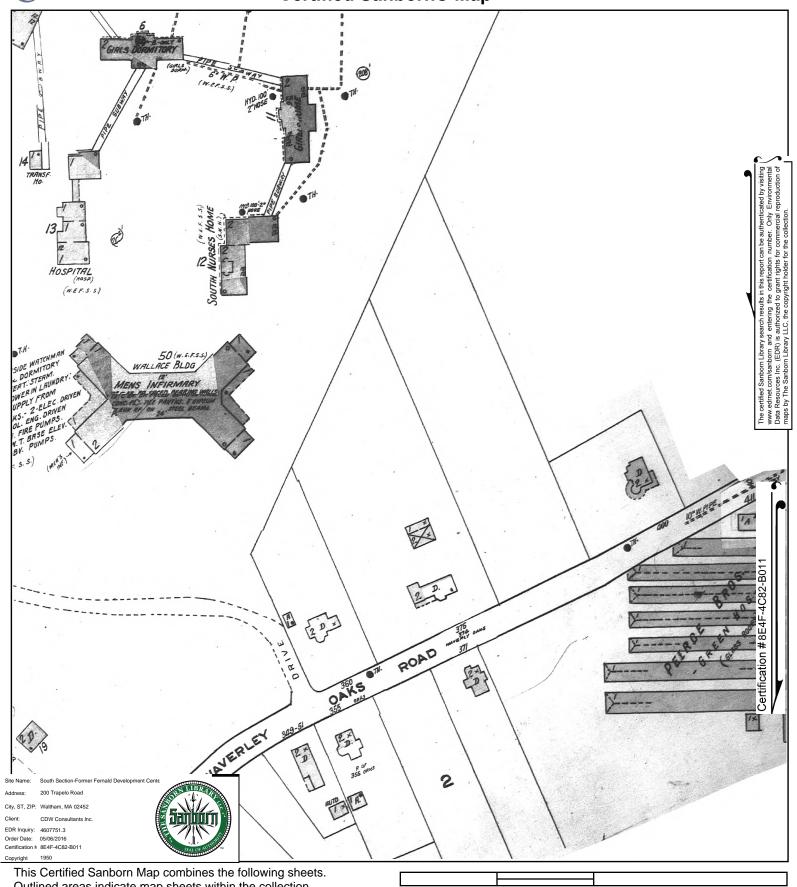
This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

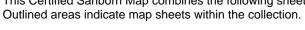
1903 Source Sheets

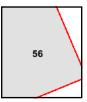

Volume 1, Sheet 32 1903

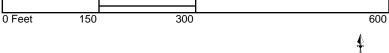
4607751 - 3

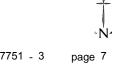
page 6

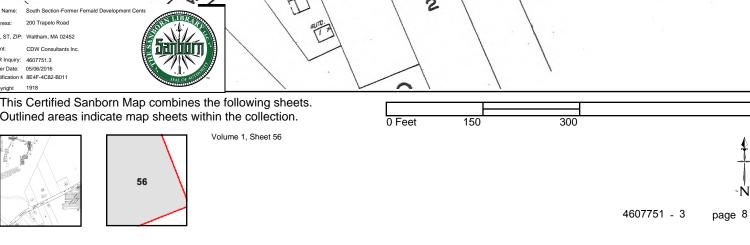


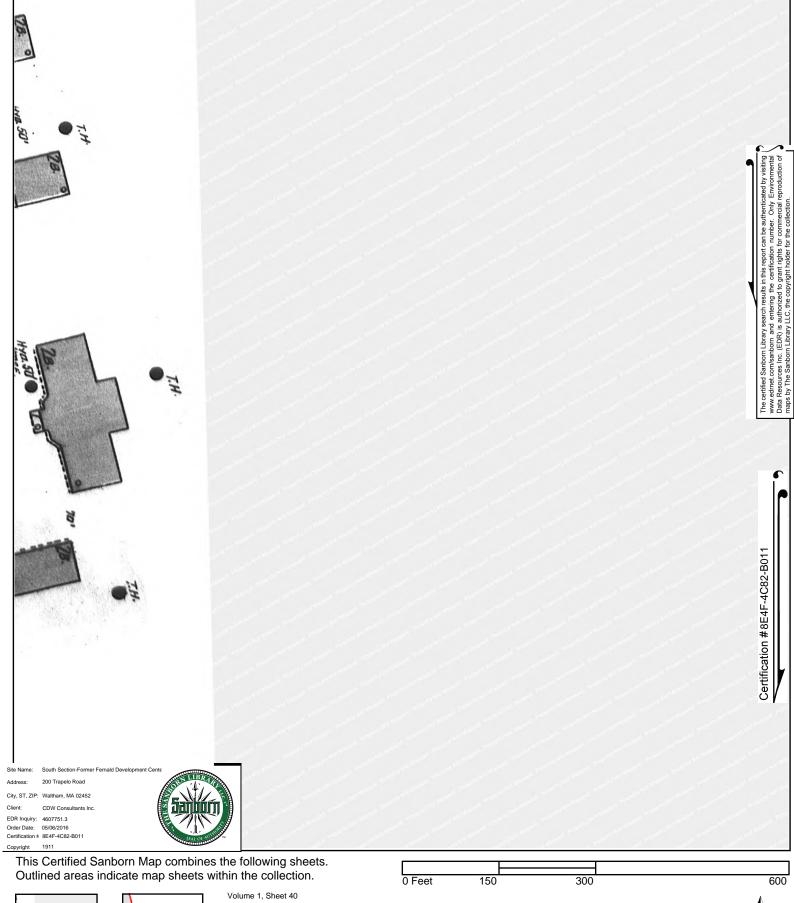


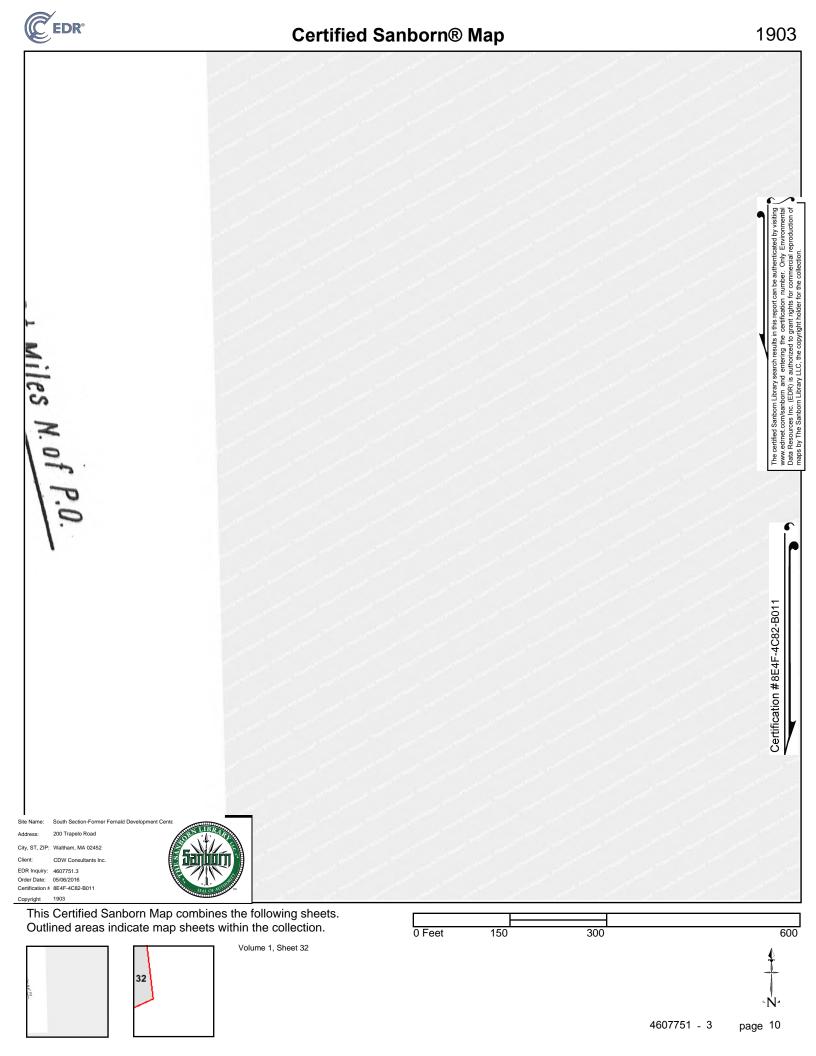












4607751 - 3 page 9

APPENDIX F

EDR Aerial Photo Decade Package Report

South Section-Former Fernald Development Center 200 Trapelo Road Waltham, MA 02452

Inquiry Number: 4607751.5

May 03, 2016

The EDR Aerial Photo Decade Package

EDR Aerial Photo Decade Package

05/03/16

Site Name: Client Name:

South Section-Former Fernald CDW Consultants Inc.
200 Trapelo Road 40 Speen Street
Waltham, MA 02452 Framingham, MA 01701

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

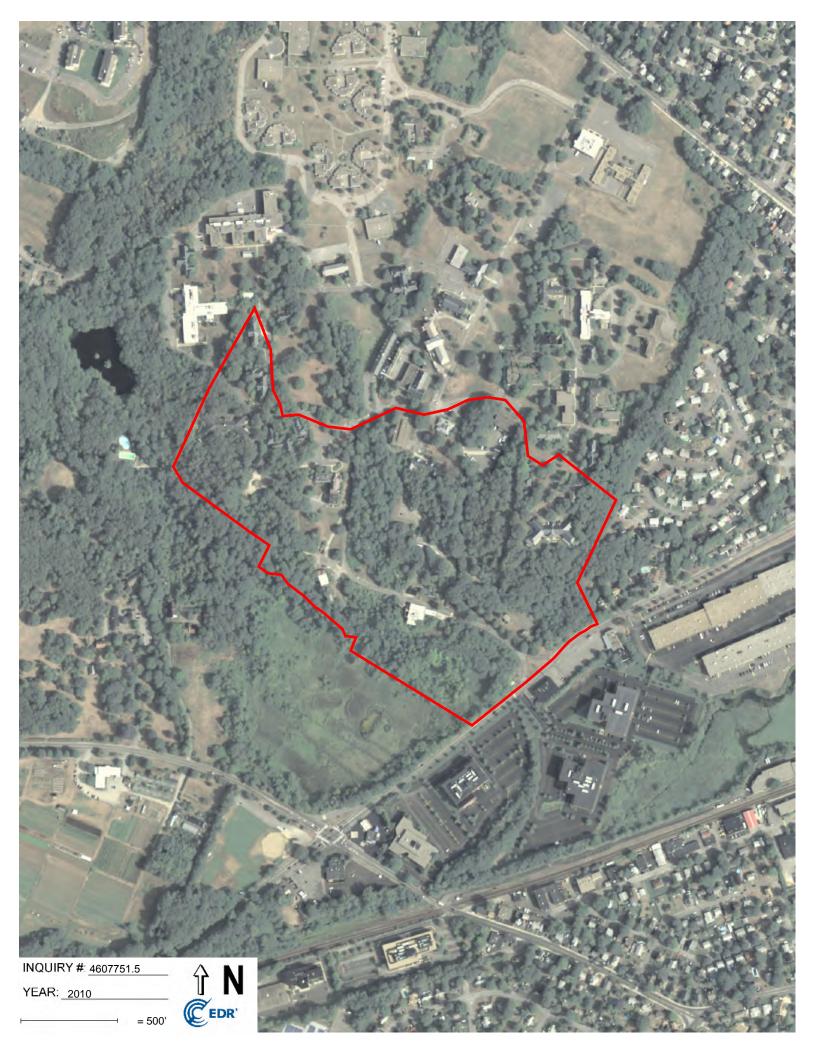
Contact: Lauren Konetzny

Search Results:

EDR Inquiry # 4607751.5

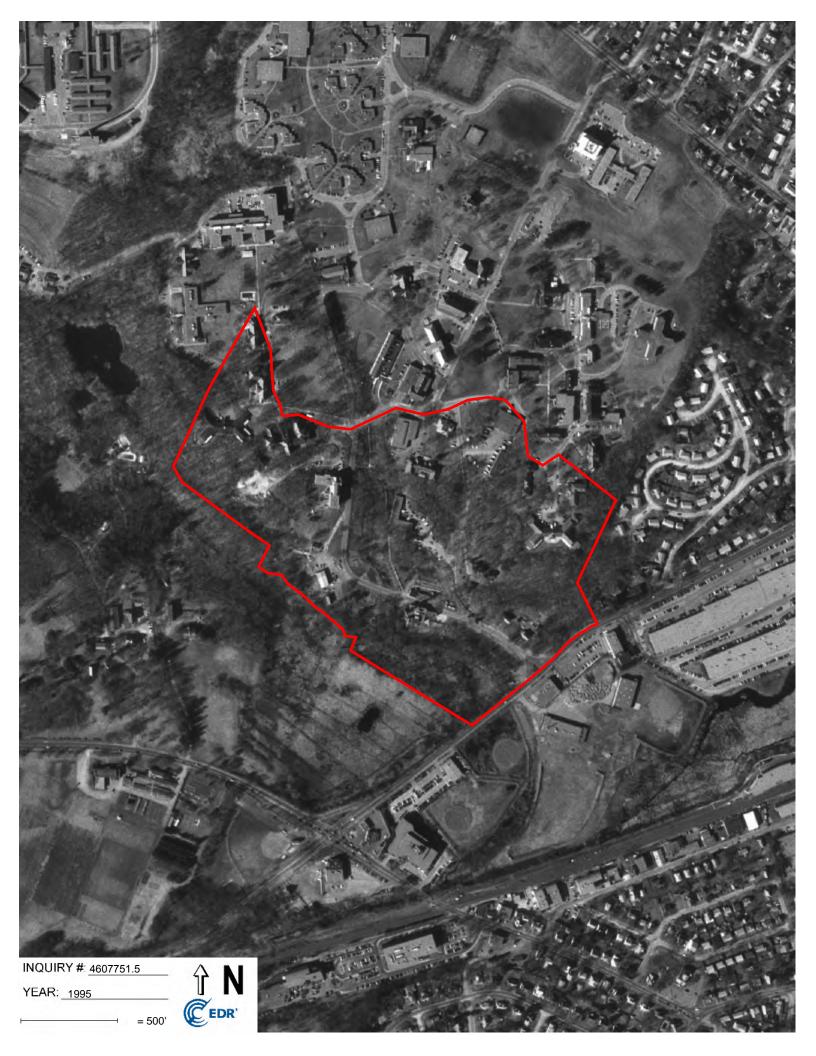
<u>Year</u>	<u>Scale</u>	<u>Details</u>	Source
2012	1"=500'	Flight Year: 2012	USDA/NAIP
2010	1"=500'	Flight Year: 2010	USDA/NAIP
2008	1"=500'	Flight Year: 2008	USDA/NAIP
2006	1"=500'	Flight Year: 2006	USDA/NAIP
1995	1"=500'	Acquisition Date: March, 29 1995	USGS/DOQQ
1986	1"=500'	Flight Date: March, 30 1986	USGS
1980	1"=500'	Flight Date: October, 10 1980	USGS
1978	1"=500'	Flight Date: April, 23 1978	USGS
1970	1"=500'	Flight Date: October, 29 1970	USGS
1969	1"=500'	Flight Date: April, 09 1969	USGS
1960	1"=500'	Flight Date: May, 05 1960	USGS
1957	1"=500'	Flight Date: April, 22 1957	USGS
1955	1"=500'	Flight Date: December, 01 1955	USGS
1938	1"=500'	Flight Date: December, 15 1938	USGS

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

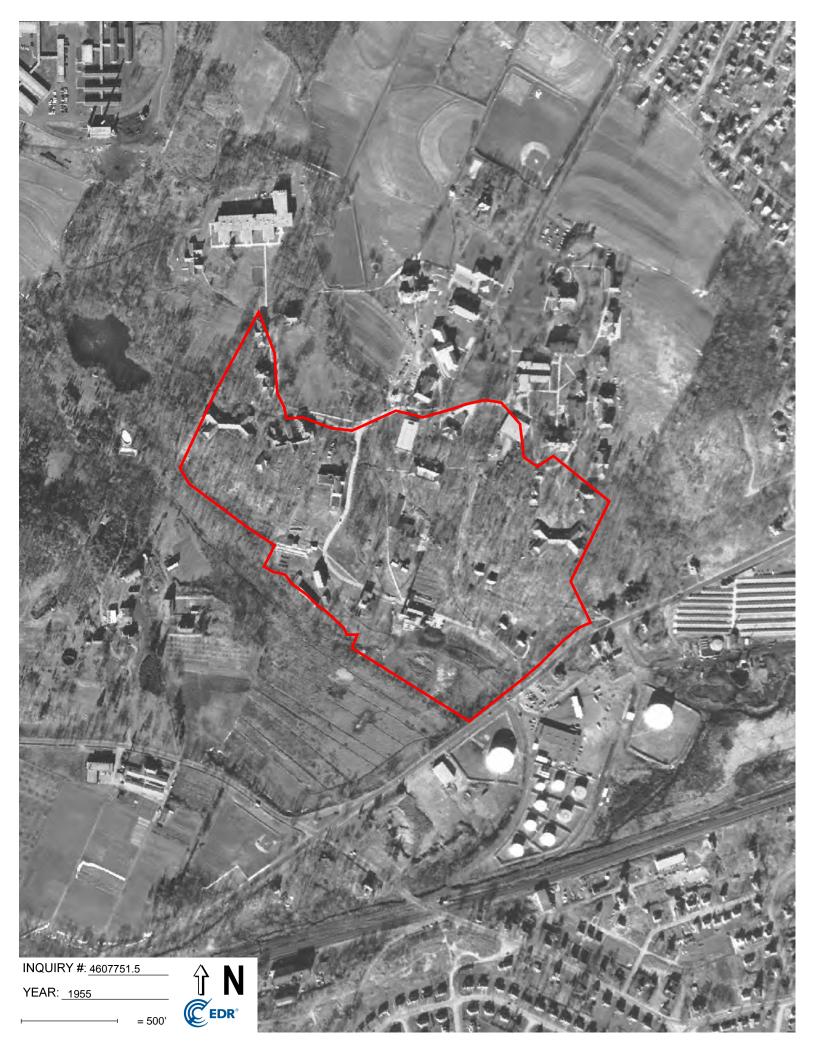

Disclaimer - Copyright and Trademark Notice

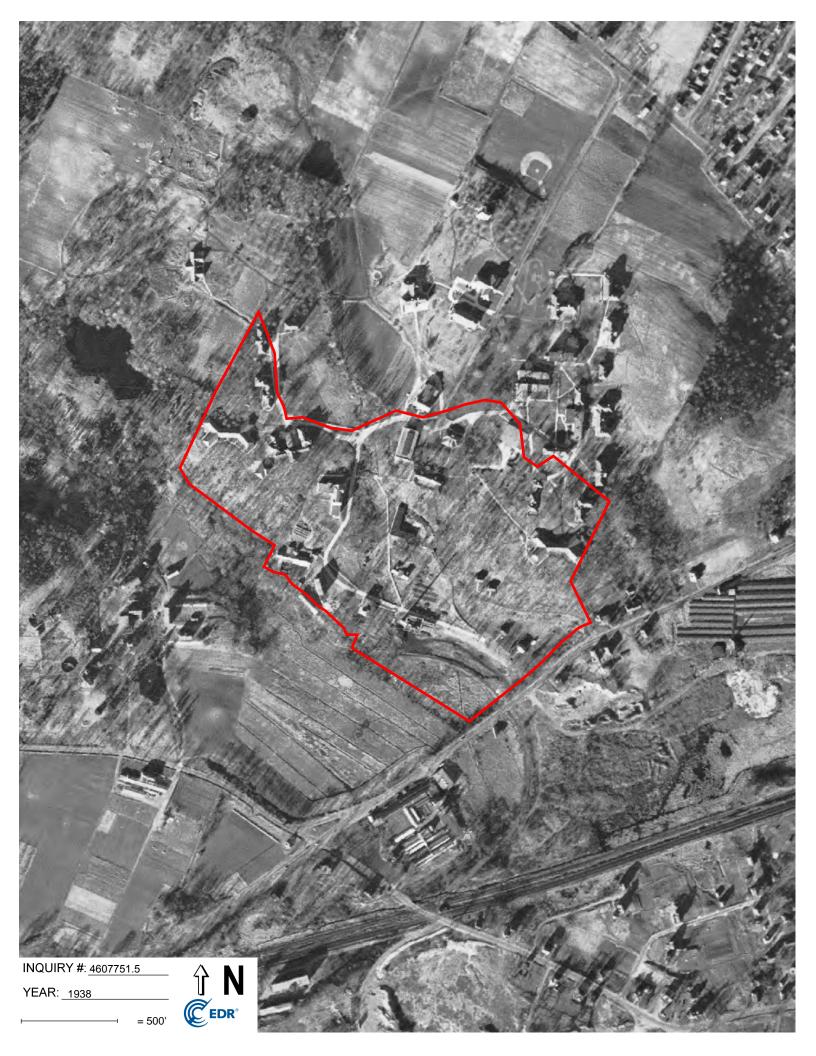
This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2016 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.


EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.







PHASE I ENVIRONMENTAL SITE ASSESSMENT (ASTM E 1527-13)

South Portion of Former Fernald Developmental Center 200 Trapelo Road Waltham, Massachusetts

May 20, 2016

Prepared for:

Symmes Maini and McKee 1000 Massachusetts Avenue Cambridge, Massachusetts

CDW Project #1713.00

TABLE OF CONTENTS

Ι ΕΣ	XECUTIVE SUMMARY	1
II SI'	TE DESCRIPTION	5
III US	SER-PROVIDED INFORMATION	<i>6</i>
IV SI	TE RECONNAISSANCE	7
1.0	General Exterior Observations	7
2.0	General Interior Observations of Building	7
3.0	Observations by Focus Area	8
4.0	Records Review	10
4.1	1 Standard Environmental Record Sources	11
4.2		
4.3		
4.4	j e	
4.5		
	ONCLUSIONS	
VI RI	ECOMMENDATIONS	36
VII LI	MITATIONS	37
1.0	Purpose	37
2.0	Detailed Scope of Services	38
3.0	Significant Assumptions	38
4.0	Limitations and Exceptions	38
5.0	Special Terms and Conditions	39
6.0	User Reliance	39
7.0	Additional Services	39
VIII RI	EFERENCES	40
IX SI	GNATURE AND QUALIFICATIONS OF ENVIRONMENTAL PROFESSIONAL	42

South Portion of Former Fernald Developmental Center May 2016 Page ii

FIGURES

Figure 1: Site Location Map

Figure 2: Site Map

Figure 3 Massachusetts 21E Map Figure 4: Resource Areas Map Figure 5: Hydrography Map

Figure 6: FEMA Map
Figure 7: Open Space Map

Figure 8: Natural Heritage Atlas Map

TABLES

Table 1 Site Building List

APPENDICES

Appendix A: Assessor's Map & Card

Appendix B: Photographs

Appendix C: Environmental Database Report Executive Summary

Appendix D: Select Pages of the March 2005 SPPC Plan Appendix E: EDR Certified Sanborn Maps Reports Appendix F EDR Aerial Photo Decade Package Report

I EXECUTIVE SUMMARY

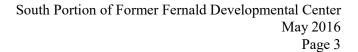

CDW Consultants, Inc. (CDW) conducted an environmental assessment of the south portion of the former Fernald Developmental Center (FDC) located at 200 Trapelo Road in Waltham, Massachusetts (the "Site"; Figure 1). The Site includes approximately 50 acres of land including roadways, buildings, and undeveloped and landscaped areas as shown on the attached Figure 2. The Site contains 34 buildings as well as numerous small steamhead houses which were utilized by the Former FDC.

The FDC opened at the Waltham location in 1889 as the Massachusetts School for the Feeble-Minded and the buildings within the Site boundaries were constructed between 1890 and 1973. The Site is a portion of a 156.6-acre parcel which was purchased from the Commonwealth of Massachusetts by the City of Waltham on December 23, 2014, and is shown on Assessors' Map R045, Block 001, Lot 0001, included in Appendix A.

On May 4, 2016 and May 6, 2016, CDW personnel performed a Site reconnaissance to conduct a general visual inspection of the Site, observe the interior of the Site buildings (when accessible), and document existing and observable uses of the Site and adjacent properties. Larger on-site buildings were typically of brick construction with three stories or fewer, with full or partial basements; these buildings included residences, a power plant, storage buildings, a laboratory/research building, and a laundry/therapeutic equipment manufacturing building. Maintenance/support buildings generally consisted of one story concrete block structures including a maintenance garage, parking garages, a greenhouse, workshops, storage sheds, and electrical distribution buildings. Four smaller two-story cottages with a basement, with stucco or wood shingles, are also located on the Site. Observed areas along roadways were typically wooded with debris such as appliances, furniture, and tires scattered throughout the woods. Many of the wooded areas of the Site contained steep slopes.

Approximately one-half of the buildings could not be entered due to structural concerns, vermin infestations, high voltage, asbestos concerns, and/or lack of proper safety clearance. In the buildings which were inspected, interior conditions were usually poor with significant damage due to vandalism, weather, burst pipes, and lack of maintenance. Ceiling panels were often broken resulting in ceiling and insulation debris covering floors. Paint was frequently peeling or chipping off of interior walls and windows, and floor tiles and lighting fixtures were commonly broken. Mold was observed on walls, ceilings, and floors. Floor drains were often observed in the bathrooms, kitchens, and basements of the buildings. The majority of the furnishings had been removed from the buildings.

The investigation conducted by CDW personnel included a review of available federal, state, and local environmental agency records, to identify the presence or likely presence of Recognized Environmental Conditions (RECs), Historical Recognized Environmental Condition (HRECs) and Controlled Recognized Environmental Condition (CRECs). The Site investigation was conducted in accordance with the ASTM International (ASTM) Standard Practice for Environmental Site



Assessments: Phase I Environmental Site Assessment Process (ASTM E1527-13) and the Massachusetts General Laws (MGL) Part I, Title II, Chapter 21E: Massachusetts Oil and Hazardous Material Release Prevention and Response Act

This assessment identified evidence of Recognized Environmental Conditions (RECs), Historical Recognized Environmental Conditions (HRECs), and Controlled Recognized Environmental Conditions (CRECs) in connection with the Site. The RECs include possible contamination from the following sources:

- the past use of Building #15 for vehicle maintenance;
- the past use of Building #16 as a laundry facility;
- the past presence of a fumigating house to the west of Building #49;
- the past use of Building #22 as a laundry and manufacturing facility;
- the past use of large quantities of paint in Building #24;
- the past use of Building #24 as a welding, carpentry, paint, and electrical shop;
- the past use of Building #34 and Building #26 as a power plant;
- the past use of Building #28 as a storage shed for Building #24;
- the past use of Building #120 as a greenhouse;
- the past use of Building #123 as a plumbing shop;
- the past use of Building #124 and surrounding structures for the storage of grounds maintenance equipment and supplies including the purported storage of petroleum products, acids, and batteries at Building #124;
- the past presence of a blacksmith shop northwest of Building #124;
- the purported past use of radioactive isotopes in medical experiments conducted at the former FDC;
- the past use and storage of # 6 fuel oil in USTs (40,000 gallons to 76,000 gallon cumulative storage capacity, with approximately 1,700,000 gallons/year being consumed in the mid-1990s) from 1954 to 2015;
- PCB containing equipment located within Building #26;
- storage of various petroleum products, acids, and batteries, within building #124;
- debris such as appliances, furniture, and tires scattered throughout the woods;
- a diesel fuel and a gasoline UST of unknown volume installed prior to 1978 at Building #26;
- two 4,000-gallon gasoline USTs installed prior to 1978 at Building #124 (removed in May 1997);
- an empty 27- gallon AST installed in 1975 at Building #26;
- a 275-gallon and a 50-gallon diesel fuel ASTs installed in 1975 at Building #124;
- a 100-gallon diesel fuel AST installed in 1984 at Building #35;
- a 100-gallon diesel fuel AST installed in 1984 at Building #46;
- a 275-gallon #2 fuel oil AST installed in 1975 at Building #17;
- a 275-gallon #2 fuel oil AST installed in 1975 at Building #18;
- two 275-gallon waste oil ASTs installed in 1980 at Building #15;
- past storage of waste oil within a 55-gallon drum at Building #15;
- a 15-gallon pole mounted transformer documented at Building #124;

- a 35-gallon pole mounted transformer containing PCBs at concentrations of 50 ppm or greater documented at Building #24;
- three pole mounted transformers with a capacity of 70-gallons containing PCBs at concentrations of 50 ppm or greater documented at Building #34;
- a 25-gallon pole mounted transformer containing PCBs at concentrations of 50 ppm or greater documented at Building #18;
- a 219-gallon pad mounted transformer documented at Building #32;
- a 229-gallon pad mounted transformer documented at Building #35;
- a 219-gallon pad mounted transformer documented at Building #37;
- a 213-gallon pad mounted transformer documented at Building #12;
- a 213-gallon pad mounted transformer documented at Building #46;
- two pad mounted transformers with a capacity of 800-gallons documented at Building #124;
- three pad mounted transformers with a capacity of 30-gallons and three pad mounted transforms of unknown capacity, one of which contained PCBs at concentrations of 50 ppm or greater, documented at Building #26;
- nine pad mounted transformers with a capacity of 30 gallons and three pad mounted transforms of unknown capacity, one of which contained PCBs at concentrations of 50 ppm or greater, documented at Building #121 and the presence of a "contains PCBs" sign on the door of Building #121 on May 6, 2016;
- a 1,090-gallon transformer containing PCBs at concentrations of 50 ppm or greater documented at Building #22;
- nine 55-gallon drums of sludge clutter, four 55-gallon drums of steam condensate treatment, two 55-gallon drums of #2 oil, seven 55-gallon drums of caustic soda, and two 55-gallon drums of turbine oil were stored on the concrete floor of Building #26 on May 23, 1996;
- one 16-gallon drum of grease, one 16-gallon drum of parts cleaner, one 1-gallon container of battery acid, and several cases of motor oil and antifreeze were observed at Building #15 on May 23, 1996;
- several empty containers of oil and antifreeze observed in Building #15 on May 4, 2016;
- at least eight 55-gallon drums observed at exterior locations throughout the Site on May 4, 2016 and May 6, 2016;
- a rusting steel tank estimated to be at least 500-gallons observed beneath debris within the former cow barn foundation north of Building #124 on May 6, 2016;
- several empty containers of lube oil, transmission fluid, bleach, lime away, wax striper, and spray paint observed in Building #16 on May 4, 2016;
- unknown/undocumented floor drain discharges from any of the numerous floor drains located at the Site, particularly those located within Building #15, #22, #24, and #26;
- numerous past releases of #6 fuel oil to the area west of Building #26 as reported by Mr. Maurice O'Connell, a former Plant Superintendent at the FDC, in 1997, including a release of approximately 100 gallons of #6 fuel oil to the surface around 1967;
- a November 1980 release of approximately 200 gallons of #6 fuel oil to the ground and brook west of Building #26; and

• a December 1993 release of approximately 300 gallons of # 6 fuel oil to the ground and brook west of building #26 for which documentation of closure was not on file at the MassDEP Searchable Site List.

The HRECs include:

- a release of oil "behind" Building #26 in June 1992 in which a buried drum and oil debris were discovered and cleaned up resulting in No Further Action designation by MassDEP;
- a release of gasoline to the soil and groundwater from one of the 4,000 gallon USTs located to the east of Building #124 identified in March 1994 which was closed out with a Class A-2 RAO Statement (a Permanent Solution remediated to a condition of No Significant Risk with residual contamination remaining);
- a release of approximately 30 gallons of #6 fuel oil to the paved area and stream west of Building #26 in November 1997 which was closed out with a Class A-1 RAO Statement (a Permanent Solution remediated to background conditions);
- a release of gasoline to the soil north of Building #26 from a 1,000 gallon UST discovered in May 1997 which was closed out with a Class B-1 RAO Statement (a Permanent Solution where a condition of No Significant Risk was achieved without remediation and where residual contamination remains); and
- a release of approximately 100 gallons of #6 fuel oil to the soil and stream bed west of Building #26 in August 1997 which was closed out with a Class A-2 RAO Statement (a Permanent Solution remediated to a condition of No Significant Risk with residual contamination remaining.

CDW has review each of these past releases in regards to changes in the regulatory criteria since their closure and has determined that they do not represent a REC at this time.

The CRECs include:

• a release of #6 fuel oil to the stream west of Building #26, and the soil and groundwater in the vicinity of Building #26 identified in February 1996 which was closed out with a Class A-3 RAO Statement (a Permanent Solution remediated to a condition of No Significant Risk with residual contamination remaining and future use of the area is restricted via an AUL).

CDW identify the following activities at neighboring properties that would indicate a significant potential for RECs, based on the information contained in the databases reviewed:

• the historic use of 313 Waverly Oak Road, located approximately 0.007 miles southeast of the Site as the former Shell Oil Bulk Storage Facility which stored a variety of petroleum products including kerosene, #2 fuel oil, aviation fuel, lube oil, leaded gasoline, and unleaded gasoline between approximately 1939 and 1992.

An asbestos survey was beyond the scope of this assessment. Due to the dates of construction, asbestos containing building materials (ACBMs) may be located on the property.

II SITE DESCRIPTION

CDW Consultants, Inc. (CDW) conducted an investigation of the south portion of the former Fernald Developmental Center (FDC) located at 200 Trapelo Road in Waltham, Massachusetts (the "Site"; Figure 1). The Site is defined as the land and improvements within property boundaries, including roadways, buildings, and undeveloped and landscaped areas as shown on the attached Figure 2. The approximately 50 acre Site currently contains 34 buildings as well as numerous small steamhead houses which were utilized by the Former FDC.

The FDC opened at the Waltham location in 1889 as the Massachusetts School for the Feeble-Minded and the buildings within the Site boundaries were constructed between 1890 and 1973. The Site is a portion of a 156.6-acre parcel which was purchased from the Commonwealth of Massachusetts by the City of Waltham on December 23, 2014, and is shown on Assessors' Map R045, Block 001, Lot 0001, included in Appendix A.

The Site buildings were previously connected to municipal water and sewer, but according to Mr. Paul Bermingham, Director of Campus Safety for the former FDC, the water lines for all on-site buildings have been cut and capped except for Building #124 (see Figure 2) which is still in use. Two residential cottages were heated with natural gas, two cottages were heated with #2 fuel oil, and the Grounds Department building is heated with propane. The remaining buildings on Site were previously heated by a steam generated at the on-site power plant using #6 fuel oil supplied by underground storage tanks (USTs). The power plant was shut down in April 2014. A list of the on-site buildings, their construction type, their gross square footage (GSF), their age, their heating type, their past use, and any observations of indications of possible oil/chemical storage or floor drains is included as Table 1. The Site is bound by Waverly Oaks Road and residential properties to the east, wetlands to the south, portions of the Former FDC to the north, and portions of the former FDC and the Girl Scout Museum and Cedar Hill Day Camp to the west.

The Site is located on the Boston North United States Geological Survey (USGS) 1985 Quadrangle Map at the following approximate location and elevation:

Universal Transverse Mercator (UTM) Zone 19 Coordinates			
4694965.0	UTM Y (Meters)		
318226.9	UTM X (Meters)		
Latitude/Longitude			
42.3876420	Latitude (North)		
71.2082010	Longitude (West)		
Elevation			
45 - 205	Feet above sea level		

III USER-PROVIDED INFORMATION

Mr. Paul Bermingham, Director of Campus Safety for the former FDC, was interviewed on May 4, 2016 and May 6, 2016 regarding the Site and accompanied CDW on the Site walk. He provided the following information:

- Mr. Paul Bermingham has been working at the FDC since 1979.
- Previous ESAs have been conducted for the Massachusetts Division of Capital Asset Management and Maintenance (DCAMM). These were not available for review.
- Within the last 20 years, DCAMM removed polychlorinated biphenyl (PCB) containing transformers and USTs of which they were aware.
- There are no private drinking water wells or irrigation wells located at the Site.
- The City of Waltham purchased the property on which the Site is located in 2014.
- The steam tunnels from the power plant are filled with friable asbestos and are accessible through several of the building and steamhead houses located on-site.
- To his knowledge, the Site has always been on the municipal sewer system.
- The Site previously was supplied with water from the Massachusetts Water Resource Authority (MWRA) which was pumped into a water tower located across Trapelo Road.
- Water service to all on-site buildings has been cut and capped except for Building #124 (see Figure 2) which is still in use.
- The Site has been utilized as the Massachusetts School for the Feeble-Minded/FDC since the late 1880s.
- Some vehicle maintenance including brakes, oil changes, and exhaust work were conducted within Building #15, but no vehicle fueling was conducted at Building #15.
- Material stored by the FDC in Building #16 primarily consisted of food, clothing, and furniture.
- The power plant (Building #26) was closed in April 2014; after the shutdown of the plant, the cooling steam pipes within the plant began to burst.
- Two approximately 20,000 gallon # 6 fuel oil USTs used to fuel the power plant, which were installed approximately 15 years ago, were removed in the summer or fall of 2015.
- Thousands of gallons of paint were used in Building #24.
- Mr. Bermingham thought there used to be a UST to the east of Building #26.
- PCB containing equipment is still located within Building #26.
- Storage within building #124 includes gasoline in <5 gal containers, 55 gal drums of diesel, petroleum greases, acids, lead acid batteries, NiCad batteries, and highway salt/sand.
- One gasoline and one diesel fuel UST were removed approximately 15 years ago northeast of Building#124; the gasoline tank leaked but was "mitigated."
- A cow barn which was located north of Building #124 burned prior to 1979.
- Building #34 was the original coal fired power plant for the facility.

IV SITE RECONNAISSANCE

On May 4, 2016 and May 6, 2016, CDW's inspector Lauren Konetzny performed an inspection of the Site. Due to the large size of the Site, the inspection consisted of driving along the roads and walking in areas surrounding, and where possible through, the buildings. CDW was accompanied by Mr. Paul Bermingham, Director of Campus Safety for the former FDC. The weather conditions were mild $(40^{\circ}F - 60^{\circ}F)$ and overcast at the time of the site inspection. Access was provided to approximately half of the Site buildings. Select photographs taken during the Site Reconnaissance are included as Appendix B.

1.0 General Exterior Observations

The Site is improved with 34 buildings as well as numerous small steamhead houses. Larger on-site buildings were typically of brick construction with three stories or fewer and full or partial basements; these buildings included residences, a power plant, storage buildings, a laboratory/research building, and a laundry/therapeutic equipment manufacturing building. Maintenance/support buildings generally consisted of one story concrete block structures including a maintenance garage, parking garages, a greenhouse, workshops, storage sheds, and electrical distribution buildings. Four smaller two-story cottages with a basement with stucco or wood shingles are also located on the Site. Areas along roadways were typically wooded with general debris such as appliances, furniture, and tires scattered throughout the woods. Many of the wooded areas of the Site contained steep slopes. A list of the on-site buildings, their construction type, their gross square footage (GSF), their age, their heating type, their past use, and any observations of indications of possible oil/chemical storage or floor drains is included as Table 1.

2.0 General Interior Observations of Building

Approximately half of the building could not be entered due to structural concerns, vermin infestations, high voltage, asbestos concerns, or lack of safe access. In those buildings which were inspected, interior conditions were usually poor with significant damage due to vandalism, weather, burst pipes, and lack of maintenance. Ceiling panels were often broken resulting in ceiling and insulation debris covering floors. Paint was frequently peeling or chipping off of interior walls and windows, and floor tiles and lighting fixtures were commonly broken. Mold was observed on walls, ceilings, and floors. Floor drains were often observed in the bathrooms, kitchens, and basements of the buildings. The majority of the furnishings had been removed from the buildings. A list of the on-site buildings, their construction type, their gross square footage (GSF), their age, their heating type, their past use, and any observations of indications of possible oil/chemical storage or floor drains is included as Table 1.

3.0 Observations by Focus Area

Underground Storage Tanks (UST's)/Aboveground Storage Tanks (AST's)

No evidence of existing USTs at the Site was observed during the Site walk. One approximately 1,000-gallon propane AST was observed to the south of Building #124. A rusting steel tank estimated to be at least 500 gallons was also observed beneath debris within the former cow barn foundation north of Building #124. Vent and fill pipes leading into the basements of Building #17 and Building #18, indicate that ASTs were once and may still be located within these building. A visual inspection to determine whether the ASTs are still present could not be conducted by CDW due to structural issues with these buildings. A concrete block walled area located at the northwestern corner of Building #15 had the words "Hazardous Waste Oil Toxic" painted above it and is likely the former location of waste oil tanks associated with the maintenance work previously conducted at the garage. CDW did not observe any other indications of prior USTs or ASTs at the Site.

Drums or Containers

The following drums and containers potentially containing oil or hazardous materials were observed by CDW during the Site Reconnaissance:

- several empty <5 gal containers of oil/antifreeze in Building #15;
- an empty 55 gal drum to east of Building #15;
- an empty 55 gal drum to south of Building #15;
- 2 small propane tanks south of Building #15;
- several empty 5 gal or less containers of lube oil, transmission fluid, bleach, lime away, wax striper, and spray paint in Building #16;
- 1 argon gas cylinder and small quantities of laundry detergent in Building #22;
- a small propane tank for grill outside Building #23;
- several empty <5 gal containers of motor oil, paint thinner, and brush cleaner in Building #24;
- 2 LPG tanks west of building #26;
- ~13 canisters of gas (legible cans labeled oxygen & acetylene), empty 5 gal containers of "dyed low sulfur kerosene", 5 gal unlabeled container, and 2 < 5 gal gas containers in Building #28;
- A discarded empty 55 gal drum, paint cans & 2 empty 5 gal containers (one labeled "dyed low sulfur kerosene") east of building #28;
- ~5 gal container identified as "corrosive" in the basement of Building #32, label illegible;
- <2 gal of dishwashing detergents in Building #46;
- small quantities of paint in Building #56;
- a crushed empty 55 gal drum south of Building #121;
- several <5 gal containers of household cleaners and paint in Building #123;
- 2 empty 5 gal containers discarded to east of Building #123;
- an empty 55 gal drum northeast of Building #124;
- a partially filled unlabeled 55 gal drum north of building #124; and

• at least 2 55 gal drums buried in debris within former cow barn foundation north of building #124.

Intermodal Shipping Containers

There was one intermodal shipping container observed at the Site; it was located to the east of Building #124, but the contents were not inspected by CDW.

Indications of Polychlorinated Biphenyls (PCBs)

The following indications of possible PCB use were observed by CDW during the Site Reconnaissance:

- a pole mounted transformer south of Building #19;
- 3 pole mounted transformers south of Building #34; and
- a sign on door of Building #121stating "contains PCBs".

Pits, Ponds & Lagoons

No evidence of pits, ponds and/or lagoons was noted on the Site.

Odors

Other than odors emanating from a decomposing animal carcass in Building #35, no significant odors were noted on the Site.

Stained Soil or Pavement

No evidence of significantly stained soil or pavement was noted on the Site. Some staining was observed on the ground within the concrete block enclosure labeled waste oil at the northwestern corner of Building #15. Some staining was also observed on the floor of Building #24. No additional areas of significant staining were noted by CDW during the Site Reconnaissance; however, interior areas were frequently covered by ceiling tiles and other debris, and exterior areas were primarily covered with leaf debris, limiting the visibility of the majority of the outdoor ground surfaces at the Site.

Pools of Liquid

No unidentified pools of liquid were noted on the Site.

Stressed Vegetation

No evidence of stressed vegetation anticipated to be caused by contamination was noted at the Site; however, the Site Reconnaissance was conducted in early May and much of the vegetation appeared brown and wilted due to the season.

Solid Waste Disposal

Debris such as appliances, furniture, and tires were scattered throughout the wooded areas of the Site and along the roadways.

Medical/biological wastes/X-ray or other radioactive activities

No medical/biological wastes or x-ray or other radioactive activities were observed at the Site.

Septic Systems

No septic systems are in use on the Site. Water service to all on-site buildings has been cut and capped except for Building #124 which is still in use. This building is also currently serviced by the City of Waltham sewer system.

Storm/Waste Water

Wastewater generated at the Site building #124 is limited to sinks and toilets and is disposed of via the municipal sewer system. Stormwater drainage may be directed to the on-site catch basins.

Wells

No evidence of drinking water wells, dry wells or monitoring wells or irrigation wells was noted on the Site.

4.0 Records Review

Relevant, readily available and practically reviewable documents, records, and other information were obtained and reviewed as part of this Phase I ESA. This chapter provides a list of sources of information and supporting documents.

Federal Source Records and Information:

- Environmental Data Resources (EDR), Inc. federal environmental record databases search report prepared for CDW
- U.S. Geological Survey (USGS), Topographic Map of Boston North, Massachusetts, 7.5-minute series quadrangle

Commonwealth of Massachusetts Source Records and Information:

- EDR, Inc. state environmental record databases search report prepared for CDW
- Records maintained by the Massachusetts Department of Environmental Protection; online database accessed at http://mass.gov/edep

Local (County and Municipal) Records and Information:

- City of Waltham Assessor parcel information and ownership history
- City of Waltham Fire Prevention Division
- City of Waltham Health Department
- Historical aerial photographs of the subject property and vicinity obtained from EDR, Inc.
- Historical Sanborn Fire Insurance maps of the subject property and vicinity researched by EDR Inc.

4.1 Standard Environmental Record Sources

CDW engaged EDR, Inc. to scan both federal and state environmental record databases and provide a summary of facilities that are identified on any of the lists searched. The federal databases searched, and specified search radii, are as follows:

List	Standard Search
	Radius (Miles)
Federal National Priority List (NPL)	1.0
Federal Comprehensive Environmental Response, Compensation, and	0.5
Liability Information System (CERCLIS) List	
CERCLIS No Further Remedial Action Planned (NFRAP) List	0.5
Resource Conservation and Recovery Act (RCRA) Corrective Action Sites	1.0
(CORRACTS)	
RCRA Non-CORRACTS	0.5
RCRA Generators	0.25
Emergency Response Notification System (ERNS)	Property Only
State-Equivalent CERCLIS	1.0
State Landfill and/or Solid Waste Disposal Site List	0.5
State Leaking Underground Storage Tank (LUST) List	0.5
State Leaking Above Ground Storage Tank (LAST) List	0.5
State Registered UST List	0.25
State Registered AST List	0.25
State Institutional Control Registry	0.5
State & Tribal Brownfields Sites	0.5

4.1.1 U.S. EPA CERCLIS List

The Comprehensive Environmental Response, Compensation and Liability Information System ("CERCLIS") is a list of potentially hazardous waste sites that have been reported to the EPA. Sites identified on the CERCLIS list are either on the National Priorities List ("NPL") or are proposed to be on the list. Before being added to the NPL, sites are assessed and categorized accordingly. The Site is not identified on the CERCLIS list. One CERCLA site is located within ½ mile of the Site. The table below summarizes the CERLA-listed properties.

CERCLIS ID	EPA ID	Site Name	Address	Distance (mi)
1000231138	MAD980916316	Duffy Bros Construction	411 Waverly	0.103 e
		Inc.	Oaks Rd.	

4.1.2 U.S. EPA National Priority List (NPL)

The EPA NPL identifies sites among the known releases and waste sites identified in the CERCLIS list. The sites are added to the NPL and prioritized based on the Hazard Ranking System ("HRS") for further investigation by the EPA. The NPL is part of the Federal Superfund program. The Site is not included on the NPL, and there are no NPL sites within 1 mile of the Site.

4.1.3 U.S. EPA CERCLIS NFRAP Site List

The EPA CERCLIS No Further Remedial Action Planned ("NFRAP") Site List includes sites that have been investigated and determined to pose no significant risk. This determination means that no further action is required under CERCLA. An NFRAP status means that a site is not a potential NPL site. The status does not mean that the site is not associated with a hazard. The Site is not included on the NFRAP list, and there are no NFRAP sites within ½ mile of the subject Site.

4.1.4 U.S. EPA RCRA CORRACTS Facilities List

The Corrective Action Sites ("CORRACTS") is a list of hazardous waste sites with Resource Conservation and Recovery Act ("RCRA") Corrective Action Activity. The CORRACTS list does not contain the subject Site and there are no sites within 1 mile of the subject Site on the CORRACTS list.

4.1.5 U.S.EPA RCRA non-CORRACTS TSD Facilities List

The RCRA list of Treatment, Storage and Disposal Facilities ("TSDF") identifies sites that generate, store, transport, treat or dispose of hazardous waste, according to RCRA designation of waste. The TSDF sites treat, dispose or transport hazardous waste. The non-CORRACTS TSDF list does not include the subject Site or any other non-CORRACT TSDF sites within ½ mile of the subject Site.

4.1.6 U.S. EPA RCRA Generators List

RCRA generators are sites that generate, store, transport, treat or dispose of hazardous waste. There are three categories of RCRA generators; large quantity generator ("LQGs"), small quantity generator ("SQGs"), and conditionally exempt small quantity generators ("CESQGs"). To be registered as a LQG, over 1,000 kg of hazardous waste or over 1 kg of acutely hazardous waste must be generated per month. There are no LQG within ½ mile of the Site.

To be listed as a SQG, less than 1,000 kg and more than 100 kg of hazardous waste must be generated. The site must also generate 100 kg or less hazardous waste in any calendar month. There can never be more than more than 6,000 kg on-site at any time. There are four SQGs listed within ½ mile of the Site, including one listing identified as the Site. However, the building which is listed as a SQG within the Target Property is actually located on the portion of the property outside the Site boundaries. The table below summarizes the SQGs listed.

EPA ID	Site Name	Address	Distance
MAD073798720	Shriver Center	200 Trapelo Rd.	Target Property*
MAD047058243	Beaver Visitec International Inc.	411 Waverly Oaks Rd.	0.103 e
MAC300012341	Bristol Myers Squibb	100 Beaver St.	0.176 s
MAD001013515	Light Metal Platers Inc.	70 Clematis Ave.	0.217 se

^{*}located outside of the Site boundaries

The CESQGs generate less than 1 kg of acutely hazardous waste and less than 100 kg of hazardous waste per month. There are four CESQGs listed within a 1/4 mile of the Site and are summarized in the following table.

EPA ID	Site Name	Address	Distance (mi)
MAD019685577	Duffy Bros Construction Inc.	411 Waverly Oaks Rd.	0.103 e
MAC300011046	Shell Service Station	225 Waverly Oaks Rd.	0.132 ssw
MAD985269836	Angio Medical	100 Beaver St.	0.176 s
MAR000511709	Ceramem Corporation	12 Clematis Ave.	0.189 sse

Non-Generators do not presently generate hazardous waste. The Site is not listed as a non-generator. There are 17 sites listed as non-generators within ½ mile of the Site. The table below summarizes non-generator information.

EPA ID	Site Name	Address	Distance (mi)
MAD000769646	Duffy Associates	313 Waverly Oaks Rd.	0.007 se
MAD062187455	Pierce Brothers Oil Service Inc	329 Waverly Oaks Rd.	0.008se
MAD980732812	Computer Design &	411 Waverly Oaks Rd.	0.103 e
	Applications Inc		
MAC300003464	Motiva Enterprises LLC	225 Waverly Oaks Rd.	0.132 ssw
MAD981208226	Xerox Reproduction Center	135 Beaver St.	0.163 s
MAD001020635	Moore George W. Inc	100 Beaver St.	0.176 s
MAR000010462	Genone Therapeutic Corp	100 Beaver St.	0.176 s
MAD982545105	Angio Medical Corp	100 Beaver St. @	0.176 s
		Shriver Center	
MAC300006871	Kala Pharmaceuticals Inc	100 Beaver St.	0.176 s
MAC300008232	Protein Forest Inc	100 Beaver St.	0.176 s
MAC300011400	Avila Therapeutics Inc	100 Beaver St.	0.176 s
MAD982192536	Lexicon Inc	100 Beaver St.	0.176 s

EPA ID	Site Name	Address	Distance (mi)
MAD981213002	Electro Painters Inc	97 Beaver St.	0.180 s
MAD001040138	Thornton Associates Inc	87 Beaver St.	0.190 sse
MAD981886476	Kans Engineering & Model	83 Beaver St.	0.192 sse
	Shop		
MAD001006741	Ceramics Grinding Co Inc	74 Clematis Ave.	0.226 se
MAD985290303	Light Metal Platers Inc	96 Clematis Ave.	0.241 se

4.1.7 U.S. EPA ERNS List

The Emergency Response Notification System (ERNS) is a database used to store information on notification of oil discharges and hazardous substances releases. ERNS primarily contains initial accounts of releases, made during or immediately after a release occurs when the exact details of the release are often unknown. The data are usually not updated and there may be multiple reports for a single incident. The Site is included twice on the ERNS list as summarized in the following table.

EPA ID	Site Name	Address	Distance
96485409		200 Trapelo Rd	Target Property
96480306		200 Trapelo Rd	Target Property

4.1.8 Massachusetts Site Transition List (SHWS)

The State and Tribal Equivalent CERCLIS list of SHWS includes information regarding releases of hazardous materials and oil that have been reported to the Massachusetts Department of Environmental Protection (MassDEP). Each reportable release is assigned a unique Release Tracking Number (RTN). A review of the SHWS list indicates that there are 49 SHWS sites within 1 mile of the subject Site. The Site is on the SHWS list twice; however, the Thom Building which is listed as a SHWS within the Target Property is actually located on the portion of the property outside the Site boundaries. The following table summarizes the information obtained from the SHWS list for the sites located within ½ miles of the Site; please see page 11 of the EDR Report Executive Summary which is attached as Appendix C for a full list of SHWS sites within 1 mile of the subject Site.

RTN	Release Address	Site Name/ Location Aid	Distance (mi)	Compliance Status	Chemical Type
3-21380	Fernald Center 200 Trapello Rd	Thom Building	Target Property*	RAO	#2 Fuel Oil
3-15442	200 Trapelo Rd	Fernald State School	Target Property	RAO	#6 Fuel Oil
3-3078	313 Waverly Oaks Rd	Shell Product Dist Plant Fmr	0.007 se	RAO	Not listed
3-13458	277 Waverly Oaks Rd	Gas Station	0.008 sse	RAO	Gasoline
3-25816	411 Waverly Oaks Rd		0.103 e	RAONR	Waste Oil
3-454	411 Waverly Oaks Rd	Beaver Visitec International Inc	0.103 e	RAO	Not listed
3-27761	225 Waverly Oaks Rd	Shell #73	0.132 ssw	RAO	Oil & Hazardous Material
3-28049	225-227 Beaver St	University of Massachusetts	0.159 sw	RAO	Cadmium, Chromium, & Lead
3-18647	110 Beaver St	George More Facility Fmr	0.172 s	RAO	PCBs
3-2692	117 Beaver St	Azko Nobel Coatings	0.174 s	RAO	Not Listed
3-16864	70 to 74 Clematis Ave	Light Metal Platers	0.199 sse	RAONR	Oil & Hazardous Material
3-501	70-74 Clematis Ave	Industrial Property	0.223 se	RAO	Not Listed
3-13361	102 Clematis Ave	Manhole Halfwat Down Driveway	0.245 se	RAO	Oil

^{*}located outside of the Site boundaries

DEFINITIONS:

- DEPNFA: MassDEP has determined that no further action is necessary.
- DPS (Downgradient Property Status): A site where a DPS Submittal to MassDEP has stated that contamination on the property is coming from an upgradient property.
- LSPNFA An LSP has determined that no further action is necessary.

- PSNC: Permanent Solution with no conditions.
- RAO (Response Action Outcome): A site/release where an RAO Statement was submitted to achieve regulatory closure. An RAO Statement asserts that response actions were sufficient to achieve a level of no significant risk or at least ensure that all substantial hazards were eliminated.
- RAONR: Response Action Outcome Not Required
- Tier 1D: Indicates a release where the responsible party does not provide a required submittal to MassDEP by a specific date/deadline.
- Tier II: Indicates that none of the Tier 1 Inclusionary Criteria have been met.
- UNCLSS: Unclassified
- URAM: A Release Tracking Number has been assigned to a release where a Utilityabatement Measure is being or was performed.

4.1.9 Solid Waste Facility/Landfill Site

The Solid Waste Facility/Landfill Sites ("SWF/LS") lists are an inventory of disposal facilities or landfills for solid waste and are listed by state. These sites may be active or inactive, depending on the State within which it is located. The Massachusetts SWF/LS list from MassDEP indicates that there are no facilities within ½ mile of the Site. The Site is not a SWF/LS site.

4.1.10 Massachusetts Leaking Underground Storage Tanks (LUST)

The Massachusetts Leaking Underground Storage Tanks ("LUST") list documents releases that have USTs identified as the source of the contamination. The LUST list is derived from the SHWS database of releases reported to MassDEP. The MassDEP LUST list indicates there are 11 LUST sites within ½ mile of the Site. The Site is listed as a LUST site. The following table summarizes the information obtained from the LUST list for the sites located within ½ mile of the Site.

RTN	Release Address	Site Name/ Location Aid	Distance (mi)	Compliance Status	Chemical Type
3-15442	200 Trapelo Rd	Fernald State School	Target Property	RAO	#6 Fuel Oil
3-3078	313 Waverly Oaks Rd	Shell Product Dist Plant Fmr	0.007 se	RAO	Not listed
3-27761	225 Waverly Oaks Rd	Shell #73	0.132 ssw	RAO	Oil & Hazardous Material
3-11729	54 Shawmut St	Off Route 60	0.143 ene	RAO	#2 Fuel Oil
3-10289	10 Clematis Ave	River Auto	0.193 sse	RAO	Gasoline

RTN	Release Address	Site Name/ Location Aid	Distance (mi)	Compliance Status	Chemical Type	
		UMass Amherst			Cadmium,	
3-28050	240 Beaver St	Agricultural	0.339 wsw	RAO	Chromium, Lead, &	
		Center			Arsenic	
3-19560	Beal Rd	Fitzgerald	0.348 s	RAO	#2 Fuel Oil	
3-19300	Deal Ku	School	0.340 8	KAO		
3-29265	258 Trapelo Rd	Waltham Public	0.376 n	RAO	#2 Fuel Oil	
3-29203		Schools				
3-20750	400 Beaver St	Bentley College	0.438 wsw	RAO	#2 Fuel Oil	
3-3507	257 Sycamore St	Sycamore Auto	0.482 ese	RAO	Not Listed	
3-3307	Watertown, MA	Services	0.462 ese	KAO	Not Listed	
3-29029	1060 Belmont St		0.495 ese	RAO	Oil & Hazardous	
3-29029	Watertown, MA				Material	

4.1.11 Massachusetts Leaking Aboveground Storage Tanks (LAST)

The Massachusetts Leaking Aboveground Storage Tanks ("LAST") list documents releases that have ASTs identified as the source of the contamination. The LAST list is derived from the SHWS database of releases reported to MassDEP. The MassDEP LAST list indicates there are 4 LAST sites within ½ mile of the Site. The Site is not listed as a LAST site. The table below summarizes the listed LAST sites.

RTN	Release Address	Site Name/ Location Aid	Distance (mi)	Compliance	Chemical Type
			(1111)	Status	Type
3-3078	313 Waverly	Shell Product Dist Plant	0.007 se	RAO RAO RAO	Not listed
3-30/8	Oaks Rd	Fmr	0.007 se		
3-454	411 Waverly	Beaver Visitec	0.103 e	DAO	Not listed
3-434	Oaks Rd	International Inc		KAO	
3-501	70-74 Clematis	Industrial Property	0.223 se	PAO	Not Listed
3-301	Ave	industrial Froperty	0.223 80	KAO	Not Listed
3-13361	102 Clematis	Manhole Halfway	0.245 se	DAO.	Oil
3-13301	Ave	Down Driveway	0.243 80	KAO	Oii

4.1.12 Massachusetts Underground Storage Tank Registry

The Massachusetts Underground Storage Tank Registry is a database of all registered USTs. Each facility with a registered UST is given a facility identification number. This database is maintained by MassDEP and is regulated under Subtitle I of RCRA. The Massachusetts UST Registry identified 3 sites with registered USTs within ½ mile of the Site, including the Target Property. The corresponding information is summarized in the table below.

Facility ID	Facility Address	Facility Description	Distance (mi)	# Tanks In Use	# Tanks Removed
11192	200 Trapelo Rd	Walter E Fernald Developmental Ctr	Target Property	0	10
11240	313 Waverly Oaks Rd	Duffy Associates	0.007 se	0	9
11216	225 Waverly Oaks Rd	Shell #73	0.132 ssw	3	3

The 10 USTs listed at the Target Property are summarized in the following table. The status of all of the listed USTs at the Target Property are described as removed. Some or all of these USTs may have been located outside the Site boundaries.

Tank ID	Tank Status	Status Date	Date Installed	Capacity (gallons)	Contents
1	Removed	5/22/97	9/10/76	4,000	Gasoline
2	Removed	5/22/97	9/11/79	4,000	Gasoline
3	Removed	10/28/98	1/1/70	750	Diesel
4	Removed	12/28/01	1/1/81	550	Diesel
5	Removed	12/28/01	1/1/85	1,500	Diesel
6	Removed	12/28/01	1/1/81	1,000	Diesel
7	Removed	9/16/97		1,000	Diesel
8	Removed	6/30/97		500	Gasoline
9	Removed	5/20/97		1,000	Diesel
10	Removed	5/29/97		1,000	Gasoline

4.1.13 Massachusetts Aboveground Storage Tank Registry

The Massachusetts Aboveground Storage Tank Registry is a database of all registered ASTs. Each facility with a registered AST is given a facility identification number. MassDEP maintains this database. The MassDEP AST Registry did not identify any registered ASTs on the Site or within ½ mile of the Site.

4.1.14 Massachusetts Institutional Control Registry

The Massachusetts Institutional Control Registry is a database containing documentation of controls on sites under the MassDEP Waste Site Cleanup Program. The controls are Activity and Use Limitations (AULs) that condition the future use of the site. The AULs are put in place after considering the current and potential future use of the site, guiding remediation and cleanup efforts. An AUL is not attached to a site that is determined to have unrestricted future use. The database indicates that the Site does have an AUL, and there are 3 other AULs within ½ mile of the Site. The following table summarizes the information obtained for the AUL sites located within ½ mile of the Site.

RTN	Release Address	Site Name/ Location Aid	Distance (mi)	Compliance Status	Chemical Type
3-15442	200 Trapelo Rd	Fernald State School	Target Property	RAO	#6 Fuel Oil
3-22303	333 Forest St	Fmr Heating Plant South of	0.477 nw	RAO	Asbestos & Arsenic
3-3078	313 Waverly Oaks Rd	Shell Product Dist Plant Fmr	0.007 se	RAO	Not listed
3-18647	110 Beaver St	George More Facility Fmr	0.172 s	RAO	PCBs

4.1.15 State and Tribal Brownfields Sites

The Brownfields Act of 1998 amended the Massachusetts General Law, Chapter 21E to establish liability relief and financial incentives to entice redevelopment of brownfields sites across the Commonwealth. A Brownfield Site, as defined by the EPA, is "real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties protects the environment, reduces blight, and takes development pressures off greenspaces and working lands" (United States EPA Brownfields Program). The Site is not listed as a Brownfield. There is one site within ½ mile of the Site that is listed as a Brownfield. The table below summarizes the Brownfield site information.

RTN	Facility Address	Facility Description	Distance		Chemical Type
3-454	411 Waverly Oaks Rd	Beaver Visitec International Inc	0.103 e	RAO	Not listed

4.1.16 Other Databases

Dry Cleaners

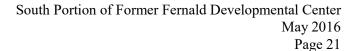
The United States ("US") Historical Cleaners database of business directories contains potential dry cleaner sites. Within this database are dry cleaners, laundry facilities, laundromats, and other cleaners, known as High Risk Historical Records ("HRHR"), due to the environmental concerns of using tetrachloroethene (also known as perchloroethylene) in the dry cleaning process. The EDR Report indicates there are no US Historical Cleaners site within ½ mile of the Site.

Manufactured Gas Plants

The EDR Proprietary Manufactured Gas Plant (MGP) Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. These plants represent HRHR, due to the environmental concerns of using whale oil, rosin, coal, and oil in the production of gas and the byproducts which this process produces including coal tar, sludges, and oil. The EDR Report indicates there are no MGP sites within one mile of the Site.

Historic Filling & Service Stations

EDR has searched selected national collections of business directories and has collected listings of potential gas station/filling station/service station sites that were available to EDR researchers. These facilities represent HRHRs, due to the environmental concerns of storage of large volumes of petroleum products. The EDR Report indicates there are no historic filling/service station sites within 1/8 mile of the Site.


4.2 Additional Environmental Record Sources

CDW contacted the following local agencies for information regarding any hazardous materials response incidents, chemical storage or releases, or notices of environmental violations at Site.

4.2.1 City of Waltham Fire Department

On May 19, 2016, CDW obtained a file summary from the Waltham Fire Department documenting the information related to the use and storage of oil and/or hazardous material for the combined 190-200 Trapelo Road property. The summary does not specify the locations of documented tanks, so information provided by the Waltham Fire Department does not necessarily pertain to the use and storage of oil and/or hazardous material within the Site boundaries. The following potentially pertinent information was contained within the file summary:

- A 1,000-gallon AST was installed at 200 Trapelo Road in November 2010.
- A 1,000-gallon AST was installed at 200 Trapelo Road in August 2004.
- Four 330-gallon ASTs were installed at 200 Trapelo Road in June 2002.
- A 275-gallon AST was installed at 200 Trapelo Road in October 2001.
- Six 500-gallon and one 1,000-gallon ASTs were installed at 200 Trapelo Road in January 1998
- Two 275-gallon ASTs were installed at 200 Trapelo Road in April 1998.

- A 275-gallon AST was removed from 200 Trapelo Road in June 2010.
- Two 275-gallon ASTs were removed from 200 Trapelo Road in April 2015.
- A 275-gallon AST was removed from 200 Trapelo Road in February 2016.
- A 750-gallon UST was installed at 200 Trapelo Road in 1970.
- A 1,000-gallon UST was installed at 200 Trapelo Road in November 1973.
- A 4,000-gallon UST was installed at 200 Trapelo Road in 1976.
- A 4,000-gallon UST was installed at 200 Trapelo Road in 1979.
- A 500-gallon and a 548-gallon USTs were installed at 200 Trapelo Road in 1981.
- A 10,000-gallon UST was installed at 200 Trapelo Road at the workshop.
- A 4,000-gallon UST was installed at 200 Trapelo Road in November 1982.
- A 500-gallon UST was installed at 200 Trapelo Road in August 1983.
- A 1,500-gallon UST and four 500-gallon USTs were installed at 200 Trapelo Road in 1985.
- Two 20,000-gallon USTs were installed at 200 Trapelo Road in November 1996.
- A 1,000-gallon UST was removed from 200 Trapelo Road in July 1980.
- A 22,000-gallon UST, a 25,000-gallon UST, and a 29,000-gallon UST were removed from 200 Trapelo Road in October 1996; oil was observed in the ground and MassDEP was notified.
- Three 1,000-gallon USTs and a 500-gallon UST were removed from 200 Trapelo Road in May 1997. All four tanks were notes as "OK" or "clean appearance."
- Two 4,000-gallon USTs were removed from 200 Trapelo Road in May 1997; a Licensed Site Professional (LSP) Rep was on site.
- A 750-gallon UST was removed from 200 Trapelo Road in October 1998; the tank and hole were reported "OK."
- A 1,500-gallon UST, a 1,000-gallon UST, and a 500-gallon UST were removed from 200 Trapelo Road in December 2001; the tank and site were reported to "appear OK."
- Four 500-gallon USTs were removed from 200 Trapelo Road in June 2002. Three of the tanks and holes were noted to "appear clean;" one "had oil on exterior bottom of tank" and MassDEP was notified.
- Two 20,000-gallon USTs were removed from 200 Trapelo Road in July 2014; no damage to the tanks was observed, no leaks were observed, and soil tests were completed.
- A temporary 500-gallon tank which were installed in a trailer (for 7 months) at 200 Trapelo Road for temporary heat were inspected on 11/19/10.
- Two 500-gallon ASTs were installed and inspected on 5/02/14 at 200 Trapelo Road.
- Two 500-gallon, one 2,000-gallon, and one 5,000-gallon AST were installed and inspected at 200 Trapelo Road on 3/09/15.
- George Wilkinson Co. at 200 Trapelo Rd had a Flammable Storage permit which expired 11/08/2011.

The following RTNs and Notices of Noncompliance (NONs) were listed by the Waltham Fire Department in the file summary for 190-200 Trapelo Road: RTN 3-10367, RTN 3-15121, RTN 3-15149, RTN 3-10725, RTN 3-13467, RTN 3-21380, RTN 3-21892, RTN 3-21893, NON-NE 95-9029-2-E 7/5/95, NON-NE 95-9030-2E 6/20/95, and NON-NE 98-7011 5/18/98.

4.2.2 City of Waltham Board of Health

On May 4, 2015, CDW personnel visited the City of Waltham Health Department to review pertinent environmental records for the former FDC. The following information was reviewed from the file:

- A June 27, 2003 letter indicating that RTN 3-21892 had been assigned for a release of #2 fuel oil from a former 500 gallon UST at Malone Park Building No. 21. The letter indicated that MassDEP was notified of the release on June 27, 2002 and that an RAO was filed for the release on June 27, 2003. Malone Park Building No. 21 is not located within the Site boundaries.
- A July 2, 2003 letter indicating that RTN 3-21893 had been assigned for a petroleum release at Malone Park Building No. 23. The letter indicated that a Phase I Completion Statement and Tier Classification submittal, classifying the release as Tier II, was filed for the release on June 27, 2003. Malone Park Building No. 23 is not located within the Site boundaries.
- A March 19, 2008 letter indicating that RTN 3-13467 had been assigned for a release of #6 fuel oil from three USTs formerly located at the power plant. The letter indicated that MassDEP was notified of the release on February 20, 1996 and that an RAO with an AUL was filed for the release on March 19, 2008.
- A June 3, 2011 Notice of Responsibility (NOR) from MassDEP to the Mass Department of Developmental Services for RTN 3-30088, located at the South Fernald Power Plant.
- A June 14, 2011 Release Notification Form (RNF) for a 120-day reportable condition at the South Fernald Power Plant for lead, arsenic, barium, and several polycyclic aromatic hydrocarbons (PAHs).
- According to the form, knowledge of the Release was obtained by the Potentially Responsible Party (PRP) on June 1, 2011. A temporary oil burner and 500 gal tank were installed in a trailer (for 7 months) at 200 Trapelo Road for temporary heat, inspected by Dep. Richardson 11/19/10. 2-500 gal aboveground tanks and oil burners were installed and inspected 5/02/14 (Lt. Ferranti). 2-500 gal, 1-2,000 gal, 1-5,000gal aboveground tanks were installed and inspected (Dep Richardson) with 2-oil burners, on 3/09/15.

4.2.3 City of Waltham Building Department

On May 4, 2016, CDW personnel visited the City of Waltham Building Department to review records related to the release and storage of oil and hazardous materials at the FDC located at 190 and/or 200 Trapelo Road. The Building Department personnel indicated that there were no environmental records on file.

4.2.4 City of Waltham City Clerk

On May 6, 2016, CDW personnel visited the City of Waltham City Clerk to review records related to the release and storage of oil and hazardous materials at the FDC located at 190 and/or 200 Trapelo Road. City Clerk personnel indicated that there were no environmental records on file for the FDC located at 190 and/or 200 Trapelo Road. According to City Clerk personnel, records at the City Clerk's Office go back to 2002.

4.3 Massachusetts Department of Environmental Protection

Historical releases at the FDC identified through a review of the EDR Radius Map Report, the MassDEP Searchable Site List (May 2016), and the City of Waltham Board of Health Files are summarized below based on reports obtained from the MassDEP Searchable Site List.

RTN 3-10367

RTN 3-10367 was assigned to a release of approximately 300 gallons of #6 fuel oil from the spill box to the ground surface after routine filling of the USTs located to the west of power plant (Building #26) on December 29, 1993. Fuel oil flowed over the nearby retaining wall into the brook west of the power plant resulting in free phase floating oil and stained debris in several standing pools as far as 300 feet downgradient/south of the power plant. Sorbent booms and a containment barrier were placed in the brook to prevent further migration of the oil. Approximately 150 gallons of separate phase oil was removed from the brook using a vacuum truck, and petroleum contaminated debris was removed from the brook. The MassDEP Searchable Site Website indicates that a Class C-1 RAO Statement documenting that a condition of No Substantial Hazard and a Temporary Solution had been achieved for the RTN 3-10367 was submitted to MassDEP on June 28, 2002, but this report was not available for review on the Searchable Site Website. A June 25, 2002 Phase III – Remedial Action Plan/Class C RAO for RTN 3-31467 states that RTN 3-10367 "is addressed by this Phase II Comprehensive Site Assessment."

RTN 3-10725

RTN 3-10725 was assigned on March 22, 1994 when MassDEP was notified of a threat of release due to failed UST tank tightness tests for two 4,000-gallon gasoline tanks located to the east of the "farm & grounds building" (Building #124). The tanks were subsequently removed and approximately 120 cubic yards of impacted soil was disposed of off-site. Based on the results of post-remedial soil and groundwater sampling, a Class A-2 RAO Statement submitted to MassDEP on June 21, 2000. The Statement indicated that a condition of No Significant Risk and a Permanent Solution had been achieved for the RTN 3-10725 utilizing a Method 1 Risk Characterization, but that background conditions were not achieved.

RTN 3-11878

RTN 3-11878 was assigned to a release of approximately 30 gallons of #6 fuel oil during filling of one of the three USTs on November 21, 1997. This release occurred to the paved area west of the power plant (Building #26) and the adjacent stream. Absorbent booms were initially placed on the ground and across the stream at several locations to contain the oil and absorbent materials were utilized to capture the oil from the pavement and along the brook. Impacted sediment was also removed from the brook. A Class A-1 RAO Statement was submitted to MassDEP on January 23, 1995 indicating that RTN 3-11878 had been remediated to background conditions.

RTN 3-13467

RTN 3-13467 was assigned to a release of #6 fuel on February 20, 1996 after oil was observed in the vicinity of the concrete retaining wall and within the adjacent stream to the west of the power plant (Building #26). Absorbent pad and booms were deployed at the base of the retaining wall and in the stream. The three #6 fuel oil USTs located to the west of Building #26 were replaced between July and December 1996. Approximately 1,000 cubic yards of soil and 15,000 gallons of groundwater were removed from the Site. Following these remedial activities, a non-aqueous phase #6 fuel oil at a thickness of greater that 0.5 inches was observed within two monitoring wells within the basement of Building #26 in 1998. Separate phase product was still present in monitoring wells at a thickness greater than 0.5 inches as of March 2002. Quarterly groundwater gauging was conducted in 7 monitoring wells between August 2003 and May 2007; no measurable non-aqueous phase liquid (NAPL) was identified in any of the wells between January 2006 and May 2007. Based on the results of soil and groundwater sampling data and a Stage I Environmental Screening, a Class A-3 RAO Statement was submitted to MassDEP for RTN 3-13467 on March 21, 2008. The report documented that a condition of No Significant Risk and a Permanent Solution had been achieved for RTN 3-13467 utilizing a Method 1 Risk Characterization relying on an AUL to limit future use of a 123 foot by 145 foot area beneath and to the south of Building #36. The AUL prohibits use of this area as an office, store, residence, school, or child day care; the cultivation of fruits and vegetables destined for human consumption and recreational activities such as baseball, swimming, fishing, and hiking; and leisure activities such as picnicking, sunbathing, and entertaining. The AUL also prohibits the relocation of contaminated soils within the AUL area without a Licensed Site Professional (LSP) Opinion and requires that any subsurface activity which may result in direct contact with, disturbance, or relocation of contaminated soil between 2 and 15 feet be conducted under a Soil Management Plan.

RTN 3-15121

RTN 3-15121 was assigned to a release of approximately 35 gallons of gasoline from a punctured fuel tank on a passenger van on May 20, 1997. This release occurred on the northern portion of the former FDC, outside the Site boundaries. A Class A-2 RAO Statement was submitted to MassDEP on July 11, 1997. The Statement established that a condition of No Significant Risk and a Permanent Solution had been achieved for RTN 3-15121 utilizing a Method 1 Risk Characterization, but that background conditions were not achieved.

RTN 3-15149

RTN 3-15149 was assigned on May 30, 1997 as the result of a photoionization detector (PID) reading over 100 ppm during headspace analysis of a sample collected from the bottom of a tank excavation during removal of a 1,000-gallon gasoline UST located to the north of the power plant (Building #26). Based on laboratory results for soil samples collected from the extent of the tank grave, a Class B-1 RAO Statement was submitted to MassDEP on June 30, 1997. The Statement established that a condition of No Significant Risk and a Permanent Solution had been achieved for RTN 3-15149 utilizing a Method 1 Risk Characterization, but that background conditions were not achieved.

RTN 3-15442

RTN 3-15442 was assigned for a release of approximately 100 gallons of #6 fuel oil when the fuel line from a fuel delivery truck became disconnected during fuel oil delivery to the USTs west of the power plant on August 19, 1997. Approximately 50 gallons of the released oil migrated down a concrete retaining wall into the dry drainage stream bed located west of the power plant. Initially absorbent materials were placed on the driveway and absorbent booms were placed downstream of the impacted portion of the stream bed and in the driveway to prevent additional fuel oil migration into the stream. Approximately 15 cubic yards of soil were excavated from the stream bed and from beneath the driveway and disposed of off-site. A Class A-2 RAO Statement achieved was submitted to MassDEP on October 24, 1997. The Statement indicated that a condition of No Significant Risk and a Permanent Solution had been achieved for RTN 3-15442 utilizing a Method 2 Risk Characterization, but that background conditions were not achieved.

RTN 3-21380

RTN 3-21380 was assigned on January 7, 2002 for a release of approximately 12 gallons of diesel fuel due to a malfunctioning supply pump which served the diesel generator in the basement of the Thom Building. A Class A-1 RAO Statement indicating that RTN 3-21380 had been remediated to background conditions was submitted to MassDEP on July 16, 2002. RTN 3-21380 was not located within the Site boundaries.

RTN 3-30088

A Release Notification form for the detection of arsenic and benzo(a)pyrene in the soil in the vicinity of Building #26 above S-1 Reportable Concentrations was submitted to MassDEP by the Commonwealth of Massachusetts Department of Developmental Services in June 2011; MassDEP assigned RTN 3-30088 to the release. A retraction of this notification was submitted in November 2011 based on the presence of coal and coal ash within the soil samples, making the detection of arsenic and benzo(a)pyrene exempt from reporting.

The following two RTNs are specific to the portion of the FDC to the north of the Site boundary:

RTN 3-21892

RTN 3-21892 was assigned on June 27, 2002 as the result of a PID reading over 100 ppm during removal of a 500 gallon #2 fuel oil UST located in the vicinity of Malone Park Building No. 21. Approximately 45 cubic yards of petroleum impacted soil were removed from the UST grave and disposed of off-site. A light sheen was observed on the groundwater within the excavation. Based on the results of post remediation soil and groundwater sampling data, a Class A-2 RAO Statement indicating that a condition of No Significant Risk and a Permanent Solution had been achieved for RTN 3-21892 utilizing a Method 1 Risk Characterization, but that background conditions were not achieved was submitted to MassDEP on July 3, 2003. RTN 3-21892 was not located within the Site boundaries.

RTN 3-21893

RTN 3-21893 was assigned on June 27, 2002 as the result of a PID reading over 100 ppm during removal of a 500 gallon #2 fuel oil UST located in the vicinity of Malone Park Building No. 23. Approximately 50 cubic yards of petroleum impacted soil were removed from the UST grave and disposed of off-site. A light sheen was observed on the groundwater within the excavation. Based on the results of post remediation soil, groundwater, soil gas, and indoor air sampling data, a Class A-2 RAO Statement indicating that a condition of No Significant Risk and a Permanent Solution had been achieved for RTN 3-21893 utilizing a Method 3 Risk Characterization, but that background conditions were not achieved was submitted to MassDEP on August 4, 2005. RTN 3-21893 was not located within the Site boundaries.

4.4 Physical Setting Sources

CDW reviewed several sources of publications including the United States Geological Survey (USGS), the Federal Emergency Management Agency (FEMA) Maps, MassGIS and EDR, Inc. to gather information pertaining to the subject property and the physical setting source.

According to the Massachusetts 21E Map, there are 6 MassDEP AUL Sites within ½-mile of the Site. These sites are located within the Site boundaries (RTN 3-13467 which is shown to the east of Site is actually located at Building #26), to the northwest, south, and southeast of the Site (Figure 3).

According to available information, the site is not located within an Interim Wellhead Protection Area (IWPA), a Zone II of a public water supply well, a potentially productive aquifer, nor an EPA Sole Source Aquifer (Figure 4).

According to MassGIS, wetlands are present on the southeastern portion of the Site and a stream runs north to south, approximately through the center of the Site, passing just west of Building #26. Wetlands and streams are located within ½-mile to the northwest, south, east, and northeast of the Site and ponds are located within ½-mile to the east and west of the Site (Figure 5).

The portion of the Site south of Building #26 is located within the FEMA Flood Zone X, an area of moderate flood hazard with a 0.2-percent-annual-chance flood, and the FEMA Flood Zone AE, an area subject to inundation by the 1-percent-annual-chance flood event (Figure 6).

The western corner of the Site is shown as a private Open Space area; however, this Open Space Area likely depicts the Girl Scout Museum and Cedar Hill Day Camp which ends at the property line and does not extend on to the Site. Other Open Spaces are located within 0.5-miles of the Site to the north, south, southwest, east, northeast, and west (Figure 7). There are no Natural Heritage and Endangered Species Program (NHESP) Natural Communities, NHESP Priority Habitats of Rare Species, NHESP Estimated Habitats of Rare Wildlife, Areas of Critical Environmental Concern (ACEC), NHESP certified vernal pools, or potential vernal pools mapped on the Site. There are NHESP certified vernal pools and potential vernal pools within ½-miles to the east and west of the

Site (Figure 8).

The Site elevation varies from 45 to 205 feet above sea level, and the topography is generally hilly. The bedrock at the Site consists of Dedham Granite (Proterozoic Z) and Diorite and gabbro (Proterzoic Z) (Zen et. al. 1983). Numerous bedrock outcrops were observed at the Site.

Surface soils at the Site consist of Freetown muck, ponded, 0 to 1 percent slopes; Charlton-Hollis-Rock outcrop complex, 15 to 25 percent slopes; Narragansett-Hollis-Rock outcrop complex, 15 to 25 percent slopes; Canton fine sandy loam, 3 to 8 percent slopes; urban land; Charlton-Urban Land-Hollis complex, 3 to 15 percent slopes, rocky; and Udorthents, wet substratum according to the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) (USDA 2014).

4.5 Other Historical Use Information

CDW researched several sources of historical information to identify the approximate year(s) of development of the Site, the past use(s) of the Site since its initial development, and possible historic storage and/or use of oil and/or hazardous materials at the Site. Such sources included, but were not limited to, the research and review of numerous historical reports, historical aerial photographs, and historical Sanborn Maps.

4.5.1 Historic Reports

CDW reviewed numerous historic reports related to the Site. Pertinent information related to the historic use of the Site and storage and use of oil and/or hazardous materials at the Site which was not previously discussed in this report is summarized below.

According to the 2005 History of the Water E. Fernald Development Center prepared by Marie E. Daly:

- Construction of the Massachusetts School for the Feeble-Minded began at the Site in 1888. Prior to that time, the land was used for farming, belonging primarily to the Bird, Baldwin, Lawrence, and Warren families.
- When the school opened in 1889 there were 142 residents; it reached its highest population of 2,600 residents in the 1960s.
- Medical experiments were sometimes conducted on residents, primarily in the 1940s and 1950s, including feeding residents small doses of radioactive isotopes.

According to a July 11, 1995 Phase I Site Investigation for RTN 3-10367 prepared by Lord Associates, Inc.:

- Approximately 1,700,000 gallons per year of #6 fuel oil was used for boiler plant operations at the power plant. The #6 fuel oil was stored in a 23,000 gallon, a 25,000 gallon, and a 28,000 gallon UST which were installed in 1954.
- The depth to groundwater in the vicinity of the power plant was between 0.3 and 9 feet below

ground surface.

• Mo O'Connell of the Massachusetts Department of Mental Retardation (DMR), stated that the only previous release on record occurred on November 30, 1980 when approximately 200 gallons of #6 fuel oil was spilled onto the ground surrounding the USTs to the west of Building #26; approximately 100 gallons of oil water mixture were collected from the brook to address the release.

According to a February 20, 1997 Phase I – Initial Site Investigation & Tier Classification for RTN 3-13467 prepared by VERTEX Engineering Services, Inc.:

- Two 20,000 steel #6 fuel oil USTs located west of the Building #26 were installed in December 1996, replacing three former USTs which were installed in 1954. The capacities of the former tanks were 23,000, 25,000 and 28,000 gallons.
- A spill of approximately 15-gallons of No. 6 oil occurred on March 21, 1988 when a truck from Berlin Transportation Company attempted to back down the parking lot, resulting in a release from the top of the vent of the truck. DEP Case No. N88-405 was issued to the site.
 Zecco, Inc. was contracted to clean the spill; subsequently, no further actions were deemed necessary and the case was closed.
- MassDEP Incident Response # N92-0797 was issued to the site following an oil spill which occurred behind the Fernald Power Plant on June 24, 1992. During cleanup activities, one buried drum and oily debris were discovered on site. Cyn Oil was contracted to remove the drum which appeared to contain waste oil. Spill cleanup was completed, the drum was transported off-site, and the case was closed.
- According to Mr. O'Connell, approximately 1,623,506 gallons of #6 fuel oil associated with plant operations were consumed in 1996.
- At least six floor drains were observed within the basement of the power plant. Mr. O'Connell stated that "floor drains discharge to a clay pipe which is located along the base of the tank and discharges into the brook from beneath the bridge." Several pipes protrude from the concrete retaining wall located along the brook at the northwestern portion of the site and periodically discharge softened water (utilized during plant operations) into the brook.

According to an October 24, 1997 RAO Statement for RTN 3-15442 prepared by CEA:

• Mr. Maurice O'Connell, the Plant Superintendent at the Fernald School at the time, informed CEA that several releases of #6 fuel oil had occurred in the area west of the power plant and that the largest of these releases occurred approximately 30 years ago (~1967) when about 100 gallons of #6 fuel oil was released to the driveway surface during filling of the USTs.

According to a March 19, 2008 Class A-3 RAO Statement for RTN 3-13467 prepared by Coneco Engineers & Scientists, Inc.:

- On May 27, 1997 two 4,000-gallon steel gasoline USTs were removed from the east of Building #124.
- Groundwater in the vicinity of Building #36 was measured at <1 foot bgs to 9 feet bgs and groundwater flow was in a southwesterly direction in May 2007.

According to the December 21, 2001 DMR – Fernald Developmental Center Site Study:

• Two new 20,000-gallon fuel storage tanks were installed at Building #26 in 1997.

According to the March 2005 Spill Prevention, Control, and Countermeasure (SPCC) Plan, at the time the Plan was written:

- A 22,000 gallon #6 fuel oil UST, a 24,000 gallon #6 fuel oil UST, and a 27,000 gallon #6 fuel oil UST installed prior to 1959 were located at the power plant (Building #26).
- A diesel fuel and a gasoline UST of unknown volume installed prior to 1978 were located at the power plant (Building #26).
- Two 4,000-gallon gasoline USTs installed prior to 1978 were located at the farm & grounds building (Building #124).
- An empty 275-gallon AST installed in 1975 was located at the power plant (Building #26).
- A 275-gallon and a 50-gallon diesel fuel ASTs installed in 1975 were located at the farm & grounds building (Building #124).
- A 100-gallon diesel fuel AST installed in 1984 was located at Building #35.
- A 100-gallon diesel fuel AST installed in 1984 was located at Building #46.
- A 275-gallon #2 fuel oil AST installed in 1975 was located at Building #17.
- A 275-gallon #2 fuel oil AST installed in 1975 was located at Building #18.
- Two 275-gallon waste oil ASTs installed in 1980 and one 55-gallon drum containing waste oil were located at Building #15.
- A 15-gallon pole mounted transformer was located at the farm & grounds building (Building #124).
- A 35-gallon pole mounted transformer containing PCBs at concentrations of 50 ppm or greater was located at Building #24.
- Three pole mounted transformers with a capacity of 70 gallons containing PCBs at concentrations of 50 ppm or greater was located at Building #34.
- A 25-gallon pole mounted transformer containing PCBs at concentrations of 50 ppm or greater was located at Building #18.
- A 219-gallon pad mounted transformer was located at Building #32.
- A 229-gallon pad mounted transformer was located at Building #35.
- A 219-gallon pad mounted transformer was located at Building #37.
- A 213-gallon pad mounted transformer was located at Building #12.
- A 213-gallon pad mounted transformer was located at Building #46.
- Two pad mounted transformers with a capacity of 800 gallons were located at the farm & grounds building (Building #124).
- Three pad mounted transformers with a capacity of 30 gallons and three pad mounted transforms of unknown capacity, one of which contained PCBs at concentrations of 50 ppm or greater, were located at the power plant (Building #26).
- Nine pad mounted transformers with a capacity of 30 gallons and three pad mounted transforms of unknown capacity, one of which contained PCBs at concentrations of 50 ppm or greater, were located at Building #121.

- A 1,090-gallon transformer containing PCBs at concentrations of 50 ppm or greater was located at Building #22.
- Nine 55-gallon drums of sludge clutter, 4 55-gallon drums of steam condensate treatment, 2 55-gallon drums of #2 oil, 7 55-gallon drums of caustic soda, and 2 55-gallon drums of turbine oil were stored on the concrete floor of the power plant (Building #26) on a May 23, 1996 site visit.
- One 16-gallon drum of grease, one 16-gallon drum of parts cleaner, one 1-gallon container of battery acid, and several cases of motor oil and antifreeze were observed at the garage (Building #15) on a May 23, 1996 site visit.

Select pages of the SPPC Plan are attached as Appendix D.

4.5.2 Sanborn Maps

CDW reviewed Sanborn Maps of the Site and the surrounding areas dated 1897, 1903, 1911, 1918, 1950, and 1972. The Sanborn Map report is provided in Appendix E.

1897

The 1897 Sanborn Maps depict 11 structures at the Site. These buildings include Building #33 and Building #34. Labeled building usage includes coal shed/ heaters/ storage (Building #34), dormitory/school rooms/kitchen (Building #33), administration/ kitchen (possibly Building #1 – outside Site boundaries), coal shed/shed/laundry/engine (possibly Building #16), carpenter, fumigating house, hospital (possibly Building #49), dormitory (possibly Building #6 – outside Site boundaries), and school building/gymnasium (possibly Buildings #4 and #5 – outside Site boundaries). Steam pipes are also shown running between some of the buildings.

1903

The 1903 Sanborn Maps are very similar to the 1897 Maps with no noteworthy differences.

1911

The 1911 Sanborn Maps show the 11 structures depicted on the 1897 and 1903 maps with the same listed usage, and three additional buildings located to the east of the existing structures. These new buildings are assumed to be Building #10, Building #11, and Building #12, which according to the December 21, 2001 DMR-Fernald Developmental Center Site Study were constructed between 1904 and 1907. No usage is noted for these buildings and out of these, only Building #12 is within the Site boundaries.

1918

The 1918 Sanborn Maps depict 21 structures at the Site. These buildings include Buildings #6 (outside Site boundaries), #11 (outside Site boundaries), #12, #16, #23, #33, #34, and #49. Labeled building usage includes boiler house/store house (#34), cow barn, silo, wagon shed, tool house, shed, stable, farm house, men's home, infirmary (#23), laundry building (#16), sterilizer, girl's dormitory (#6), hospital (#49), girls home (#11), and nurses home (#12). Piping subways and water pipes are also shown throughout the Site.

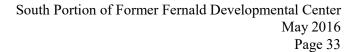
1950

The 1950 Sanborn Maps depict 32 structures at the Site. These buildings include the following Buildings #6 (outside Site boundaries), #11 (outside Site boundaries), #12, #15, #16, #17, #18, #19, #20, #21, #22, #23, #24, #26, #28, #32, #33, #34, #35, #46, #49, and #120. Labeled building usage includes cow barn, silo, blacksmith, milk room, employees building (#32), garages (#15), shed, stable, farm house, men's home, infirmary (#23, #35, #50), greenhouse (#120), power plant (#26), workshop (#24), store house (#28), laundry (#22), storage of supplies (#16), dwellings (#17, #18, #19, #20), transformer house, girl's dormitory (#6), hospital (#49), girls home (#11), and nurses home (#12). Piping subways and water pipes are also shown throughout the Site.

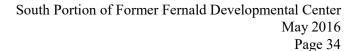
1972

The 1972 Sanborn Maps depict 33 structures at the Site. These buildings include the following Buildings #6 (outside Site boundaries), #11 (outside Site boundaries), #12, #15, #16, #17, #18, #19, #20, #21, #22, #23, #24, #26, #28, #32, #33, #34, #35, #46, #49, #120, and #123. Labeled building usage includes silo, employees building (#32), garages (#15), shed, stable, farm house, men's home, infirmary (#23, #35, #50), greenhouse (#120), power plant (#26), workshop (#24), store house (#28), storage (#123), laundry (#22), storage of supplies (#16), dwellings (#17, #18, #19, #20), transformer house, girl's dormitory (#6), hospital (#49), girls home (#11), and nurses home (#12). Piping subways and water pipes are also shown throughout the Site.

4.5.3 Aerial photographs


Aerial photographs were obtained from EDR. Based on aerial photography from 1938, 1955, 1957, 1960, 1969, 1970, 1978, 1980, 1986, 1995, 2006, 2008, 2010 and 2012. The EDR Aerial Photo Decade Package Report is provided in Appendix F. With the exception of a structure to the west of the power plant observed in the 1969 and 1970 photographs (likely the farm house shown on the 1918 through 1972 Sanborn Maps), the layout of the Site appears to have been very similar from 1969 to 2012 to the layout observed during CDW's May 2016 Site Reconnaissance. The earlier photographs show a few additional structures in the south central portion of the Site in comparison to what was observed during the Site Reconnaissance. At least 8 large circular structures, approximately 25 to 100 feet in diameter, which appear to be storage tanks are shown in the 1955 through 1986 aerial photographs immediately to the south east of the Site, across Waverly Oaks Road.

V CONCLUSIONS


CDW has performed this Phase I Environmental Site Assessment of the south portion of the former FDC (as shown on Figure 2) located at 200 Trapelo Road in Waltham, Massachusetts. The assessment was completed in general conformance with the scope and limitations of ASTM Standard E 1527-13. This assessment identified evidence of Recognized Environmental Conditions (RECs), Historical Recognized Environmental Conditions (HRECs), and Controlled Recognized Environmental Conditions (CRECs) in connection with the Site. The RECs include evidence of possible Site contamination from the following sources:

- the past use of Building #15 for vehicle maintenance;
- the past use of Building #16 as a laundry facility;
- the past presence of a fumigating house to the west of Building #49;
- the past use of Building #22 as a laundry and manufacturing facility;
- the past use of large quantities of paint in Building #24;
- the past use of Building #24 as a welding, carpentry, paint, and electrical shop;
- the past use of Building #34 and Building #26 as a power plant;
- the past use of Building #28 as a storage shed for Building #24;
- the past use of Building #120 as a greenhouse;
- the past use of Building #123 as a plumbing shop;
- the past use of Building #124 and surrounding structures for the storage of grounds maintenance equipment and supplies including the purported storage of petroleum products, acids, and batteries at Building #124;
- the past presence of a blacksmith shop northwest of Building #124;
- the purported past use of radioactive isotopes in medical experiments conducted at the former FDC;
- the past use and storage of # 6 fuel oil in USTs (40,000 gallons to 76,000 gallon cumulative storage capacity, with approximately 1,700,000 gallons/year being consumed in the mid-1990s) from 1954 to 2015;
- PCB containing equipment located within Building #26;
- storage of various petroleum products, acids, and batteries, within building #124;
- debris such as appliances, furniture, and tires scattered throughout the woods;
- a diesel fuel and a gasoline UST of unknown volume installed prior to 1978 at Building #26;
- two 4,000-gallon gasoline USTs installed prior to 1978 at Building #124 (removed in May 1997):
- an empty 27- gallon AST installed in 1975 at Building #26;
- a 275-gallon and a 50-gallon diesel fuel ASTs installed in 1975 at Building #124;
- a 100-gallon diesel fuel AST installed in 1984 at Building #35;
- a 100-gallon diesel fuel AST installed in 1984 at Building #46;
- a 275-gallon #2 fuel oil AST installed in 1975 at Building #17;
- a 275-gallon #2 fuel oil AST installed in 1975 at Building #18;
- two 275-gallon waste oil ASTs installed in 1980 at Building #15;

- past storage of waste oil within a 55-gallon drum at Building #15;
- a 15-gallon pole mounted transformer documented at Building #124;
- a 35-gallon pole mounted transformer containing PCBs at concentrations of 50 ppm or greater documented at Building #24;
- three pole mounted transformers with a capacity of 70-gallons containing PCBs at concentrations of 50 ppm or greater documented at Building #34;
- a 25-gallon pole mounted transformer containing PCBs at concentrations of 50 ppm or greater documented at Building #18;
- a 219-gallon pad mounted transformer documented at Building #32;
- a 229-gallon pad mounted transformer documented at Building #35;
- a 219-gallon pad mounted transformer documented at Building #37;
- a 213-gallon pad mounted transformer documented at Building #12;
- a 213-gallon pad mounted transformer documented at Building #46;
- two pad mounted transformers with a capacity of 800-gallons documented at Building #124;
- three pad mounted transformers with a capacity of 30-gallons and three pad mounted transforms of unknown capacity, one of which contained PCBs at concentrations of 50 ppm or greater, documented at Building #26;
- nine pad mounted transformers with a capacity of 30 gallons and three pad mounted transforms of unknown capacity, one of which contained PCBs at concentrations of 50 ppm or greater, documented at Building #121 and the presence of a "contains PCBs" sign on the door of Building #121 on May 6, 2016;
- a 1,090-gallon transformer containing PCBs at concentrations of 50 ppm or greater documented at Building #22;
- nine 55-gallon drums of sludge clutter, four 55-gallon drums of steam condensate treatment, two 55-gallon drums of #2 oil, seven 55-gallon drums of caustic soda, and two 55-gallon drums of turbine oil were stored on the concrete floor of Building #26 on May 23, 1996;
- one 16-gallon drum of grease, one 16-gallon drum of parts cleaner, one 1-gallon container of battery acid, and several cases of motor oil and antifreeze were observed at Building #15 on May 23, 1996;
- several empty containers of oil and antifreeze observed in Building #15 on May 4, 2016;
- at least eight 55-gallon drums observed at exterior locations throughout the Site on May 4, 2016 and May 6, 2016;
- a rusting steel tank estimated to be at least 500-gallons observed beneath debris within the former cow barn foundation north of Building #124 on May 6, 2016;
- several empty containers of lube oil, transmission fluid, bleach, lime away, wax striper, and spray paint observed in Building #16 on May 4, 2016;
- unknown/undocumented floor drain discharges from any of the numerous floor drains located at the Site, particularly those located within Building #15, #22, #24, and #26;
- numerous past releases of #6 fuel oil to the area west of Building #26 as reported by Mr. Maurice O'Connell, a former Plant Superintendent at the FDC, in 1997, including a release of approximately 100 gallons of #6 fuel oil to the surface around 1967;
- a November 1980 release of approximately 200 gallons of #6 fuel oil to the ground and brook

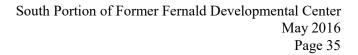
west of Building #26; and

• a December 1993 release of approximately 300 gallons of # 6 fuel oil to the ground and brook west of building #26 for which documentation of closure was not on file at the MassDEP Searchable Site List

The HRECs include:

- a release of oil "behind" Building #26 in June 1992 in which a buried drum and oil debris were discovered and cleaned up resulting in No Further Action designation by MassDEP;
- a release of gasoline to the soil and groundwater from one of the 4,000 gallon USTs located to the east of Building #124 identified in March 1994 which was closed out with a Class A-2 RAO Statement (a Permanent Solution remediated to a condition of No Significant Risk with residual contamination remaining);
- a release of approximately 30 gallons of #6 fuel oil to the paved area and stream west of Building #26 in November 1997 which was closed out with a Class A-1 RAO Statement (a Permanent Solution remediated to background conditions);
- a release of gasoline to the soil north of Building #26 from a 1,000 gallon UST discovered in May 1997 which was closed out with a Class B-1 RAO Statement (a Permanent Solution where a condition of No Significant Risk was achieved without remediation and where residual contamination remains); and
- a release of approximately 100 gallons of #6 fuel oil to the soil and stream bed west of Building #26 in August 1997 which was closed out with a Class A-2 RAO Statement (a Permanent Solution remediated to a condition of No Significant Risk with residual contamination remaining.

CDW has review each of these past releases in regards to changes in the regulatory criteria since their closure and has determined that they do not represent a REC at this time.


The CRECs include:

• a release of #6 fuel oil to the stream west of Building #26, and the soil and groundwater in the vicinity of Building #26 identified in February 1996 which was closed out with a Class A-3 RAO Statement (a Permanent Solution remediated to a condition of No Significant Risk with residual contamination remaining and future use of the area is restricted via an AUL).

CDW identify the following activities at neighboring properties that would indicate a significant potential for RECs, based on the information contained in the databases reviewed:

• the historic use of 313 Waverly Oak Road, located approximately 0.007 miles southeast of the Site as the former Shell Oil Bulk Storage Facility which stored a variety of petroleum products including kerosene, #2 fuel oil, aviation fuel, lube oil, leaded gasoline, and unleaded gasoline between approximately 1939 and 1992.

No areas of distressed vegetation were observed on the Site. No visible evidence of releases of oil or hazardous materials was observed at the Site. Due to the distance and regulatory status of the

identified (non-DPS) MassDEP, LUST, UST, RCRA HW Gen or Drycleaners within the search radius, these sites are not considered RECs at the time of this report.

Based on the information obtained during this ESA, it is the professional opinion of CDW that significant data gaps that affect the ability of the EP to identify RECs, as defined in the ASTM guidelines, have occurred as follows:

• The inaccessibility of Buildings #17, #18, #19, #20, #26, #33, #34, #49, #55, #57, #120, #121, #122, #124, support buildings surrounding #124, and the steamhead houses.

VI RECOMMENDATIONS

The RECs identified represent the potential for Site contamination from one or more sources. However, no conclusions or opinions can be made regarding the subsurface conditions at the Site without the completion of soil and groundwater sampling and analysis. CDW recommends the following to further investigate the environmental condition of the Site:

- 1. CDW recommends that a Phase II subsurface investigation be conducted including the advancement of soil borings and installation of monitoring wells, and comprehensive soil, groundwater, surface water, and sediment analysis. The sampling locations should evaluate different geological elevations for the development of source identification and a sufficient number of areas to investigate the multiple potential on-site sources, as well as downgradient effects of release(s) of contaminants from USTs and drains, substandard fill, and other historic activities identified as RECs.
- 2. The results of the soil and groundwater analytical results should be compared with applicable standards under the Massachusetts Contingency Plan for notification and/or mitigation requirements. The outcome of the initial sampling efforts can be used to determine whether further investigation and/or remediation is warranted to mitigate potential environmental impacts prior to or during future planned development.
- 3. During any future excavation of the subsurface, there is potential for encountering isolated areas of suspect oil or hazardous materials. CDW recommends that a soil management plan be incorporated into future construction documents to provide guidance on the types of conditions requiring special management or mitigating measures.
- 4. National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations require sampling potential asbestos containing building materials (ACBM) prior to demolition or extensive renovation, regardless of the date of construction; therefore, if such activities are planned, it may be required to conduct a survey of the entire facility, or that portion slated for renovation or demolition, before initiating such destructive activities. That survey should include an assessment of all subject building materials, including those in areas which are normally inaccessible. Any material found to be ACBM should be handled in accordance with applicable regulations.

VII LIMITATIONS

1.0 Purpose

CDW performed a Phase I ESA in conformance with the scope and limitations of the ASTM E1527-13 Standard. The purpose of the assessment was to evaluate the Site history, observable conditions, and current Site use to identify potential presence of RECs at or associated with the Site. RECs are defined by ASTM as:

"The presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to any release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment."

HRECs are defined by ASTM as:

"A past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted residential use criteria established by a regulatory authority, without subjecting the property to any required controls (e.g., property use restrictions, AULs, institutional controls, or engineering controls). Before calling the past release an HREC, the EP must determine whether the past release is a REC at the time the Phase I ESA is conducted (e.g., if there has been a change in the regulatory criteria). If the EP considers this past release to be a REC at the time the Phase I ESA is conducted, the condition shall be included in the conclusions section of the report as a REC."

CRECs are defined by ASTM as:

"A REC resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority (e.g., as evidenced by the issuance of a NFA letter or equivalent, or meeting risk-based criteria established by regulatory authority), with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (e.g., property use restrictions, AULs, institutional controls, or engineering controls).

The conclusions are intended to help the user evaluate the "business environmental risk" associated with the Site, defined by ASTM as:

"A risk which can have a material environmental or environmentally-driven financial impact on the business associated with the current or planned use of a parcel of commercial real estate. Consideration of business environmental risk issues may involve addressing one or more non-scope considerations."

2.0 Detailed Scope of Services

The CDW investigation consisted of the following elements: a Site reconnaissance, a review of available historical documents associated with the Site; a review of local, state, and federal environmental databases; and interviews with the Director of Campus Safety and City officials.

3.0 Significant Assumptions

CDW assumes that all available Site information has been provided by the owner or its representative, that the information reviewed and provided by the owner, the City, and information databases are accurate, current, and complete. Where portions of the Site were inaccessible, CDW assumes that Site conditions in those areas would not contradict any observations made herein.

There is a possibility that even with the proper application of these methodologies that there may be conditions that exist on the subject property that could not be identified within the scope of the assessment or which were not reasonably identifiable from the available information. CDW believes that the information obtained from the record review and the interviews concerning the subject property is reliable. However, CDW Consultants cannot and does not warrant or guarantee that the information provided by these sources is accurate or complete. The methodologies of this assessment are not intended to produce all inclusive or comprehensive results, but rather to provide the Client with information relating to the Site.

4.0 Limitations and Exceptions

The conclusions of this report are limited to the information available at the time of the investigation and the scope of services as defined. No subsurface exploration was performed on this Site; therefore, no conclusions can be made relative to subsurface conditions or the presence or absence of soil or groundwater contamination from either on-Site or off-Site sources.

Where access to portions of the Site was unavailable or limited, CDW renders no opinion as to the presence of oil or hazardous material or the presence of indirect evidence related to oil or hazardous material in that portion of the Site.

No other conclusions, interpretations, or recommendations are contained or implied in this report other than those expressed. CDW makes no warranty, expressed or implied, on the accuracy of the work and information completed by others and upon which CDW has relied to prepare this report. No other use of this report is warranted without the written consent of CDW.

Events occurring on the Site after May 6, 2016, the date of the inspection, are beyond the scope of this report. CDW makes no expressed or implied representations or warranties regarding any changes in the condition of the premises after this date from on-site or off-site sources.

5.0 Special Terms and Conditions

The terms of CDW's contract for services required that the Phase I ESA be completed within three weeks of written authorization to proceed. This Phase I ESA was conducted as part of a feasibility study for future construction. There were no other special Terms or Conditions.

6.0 User Reliance

This report is intended for the use of the entities listed below, and may be relied upon for up to one year after the date issued. No other individuals or entities may rely upon the report contents, in part or in whole.

Owner: City of Waltham

Architect: Symmes Maini and McKee

7.0 Additional Services

No soil, groundwater, surface water or other media testing was conducted as part of this assessment. A wetlands survey was not performed. A comprehensive asbestos and hazardous building material survey was not included. A professional title search was not included.

VIII REFERENCES

City of Waltham Assessor's Office, Building Department, Board of Health, and Fire Department May 2016.

Clean Harbors Environmental Services, Inc., "Response Action Outcome Statement," RTN 3-11878, January 11, 1995.

Coneco Engineers & Scientists, Inc., "Class A-3 Response Action Outcome Statement," RTN 3-13467, March 19, 2008.

Coneco Engineers & Scientists, Inc., "Immediate Response Action Completion & Response Action Outcome Statement," RTN 3-21892, June 27, 2003.

Coneco Engineers & Scientists, Inc., "Immediate Response Action Completion & Response Action Outcome Statement," RTN 3-21893, August 1, 2005.

Corporate Environmental Advisors, Inc., "Response Action Outcome Statement," RTN 3-15442, October 24, 1997.

"The DMR-Fernald Developmental Center Site Study" December 21, 2001.

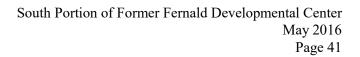
Environmental Data Resources, Certified Sanborn Map Report, May 6, 2016.

Environmental Data Resources, The EDR Aerial Photo Decade Package, May 3, 2016.

Environmental Data Resources, Radius Map Report with GeoCheck, May 2, 2016.

GZA GeoEnvironmental, Inc., "Release Abatement Measure (RAM) Completion Report" (Former Shell Property 313 Waverly Oaks Road), RTN 3-3078, December 2003.

Lord Associates, Inc., "Phase I Site Investigation," RTN 3-10367, July 11, 1995.


Marie E. Daly, "History of the Water E. Fernald Development Center," 2005

Massachusetts Department of Environmental Protection, Searchable Site List, May 2016.

Massachusetts GIS Online Data Viewer, May 2016.

VERTEX Engineering Services, Inc., "Phase I – initial Site Investigation & Tier Classification," RTN 3-13467, February 20, 1997.

VERTEX Engineering Services, Inc., "Phase III – Remedial Action Plan/Class C Response Action Outcome," RTN 3-13467, June 25, 2008.

VERTEX Engineering Services, Inc., "Response Action Outcome," RTN 3-10725, June 21, 2000.

VERTEX Engineering Services, Inc., "Response Action Outcome Statement," RTN 3-15121, June 30, 1997.

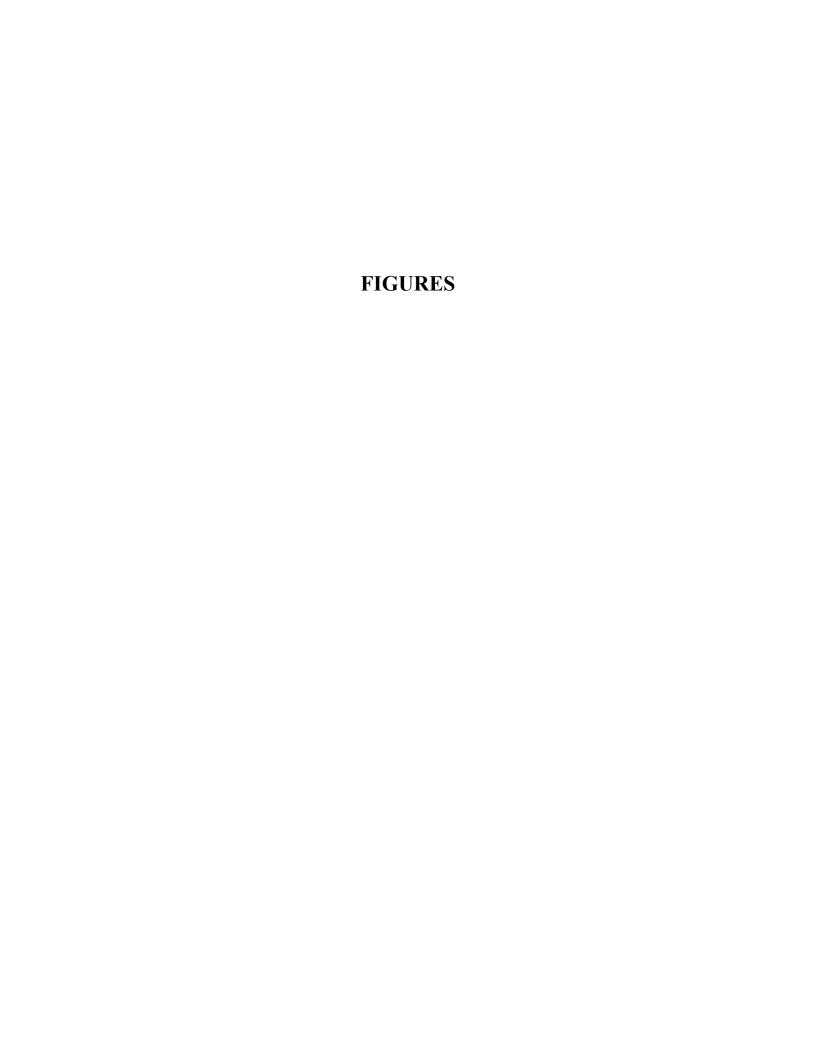
VERTEX Engineering Services, Inc., "Response Action Outcome Statement," RTN 3-15149, June 30, 1997.

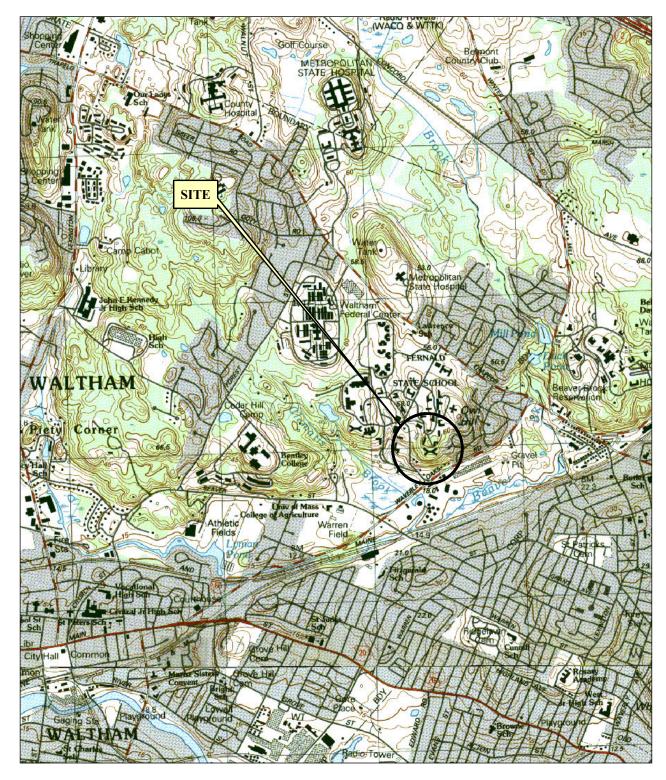
United States Department of Agriculture, Web Soil Survey.

Zen et. al., Bedrock Geologic Map of Massachusetts, 1983.

IX SIGNATURE AND QUALIFICATIONS OF ENVIRONMENTAL PROFESSIONAL

The investigation of the Site described in the report was performed by Ms. Lauren Konetzny, Project Manager, who is qualified to make investigations and formulate the opinions herein set forth. Ms. Konetzny has 12 years of experience performing environmental site assessments. She has a Bachelors of Science in Chemical Engineering from Northeastern University in Boston, Massachusetts.

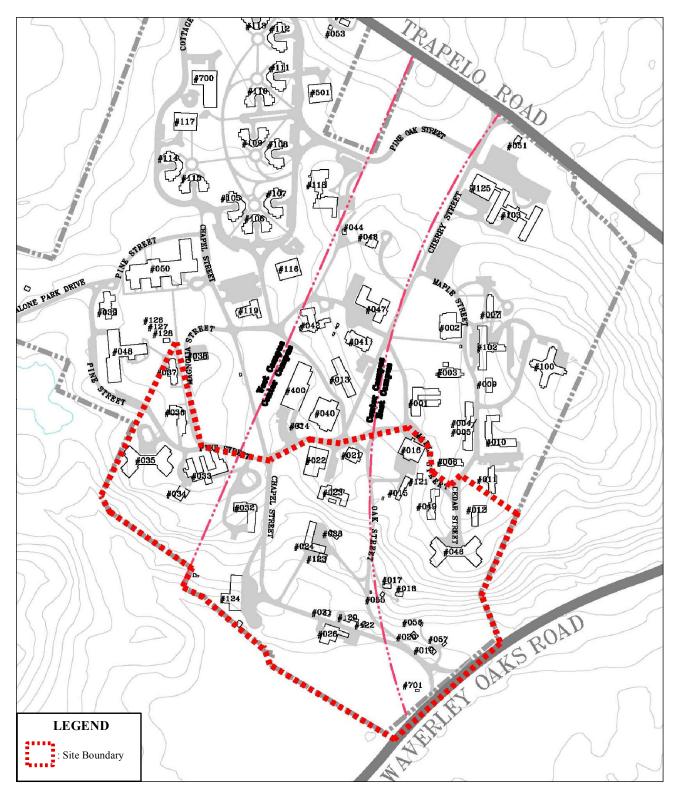

The Site Investigator is knowledgeable regarding the type of industrial, manufacturing, commercial or other processes or operations which might reasonably be expected to generate, use, treat, store or dispose of oil or hazardous material. The Site Investigator has reviewed the recent history of the Site and has considered the potential for the generation, use, treatment, storage or disposal of oil or hazardous material by (a) the uses presently associated with the Site and (b) to the extent ascertainable by inquiry, the uses previously associated with the Site.


This report is dated May 20, 2016, and is signed by individuals who are duly authorized to do so.

Lauren Konetzny, LSP

Lauren Konetynig

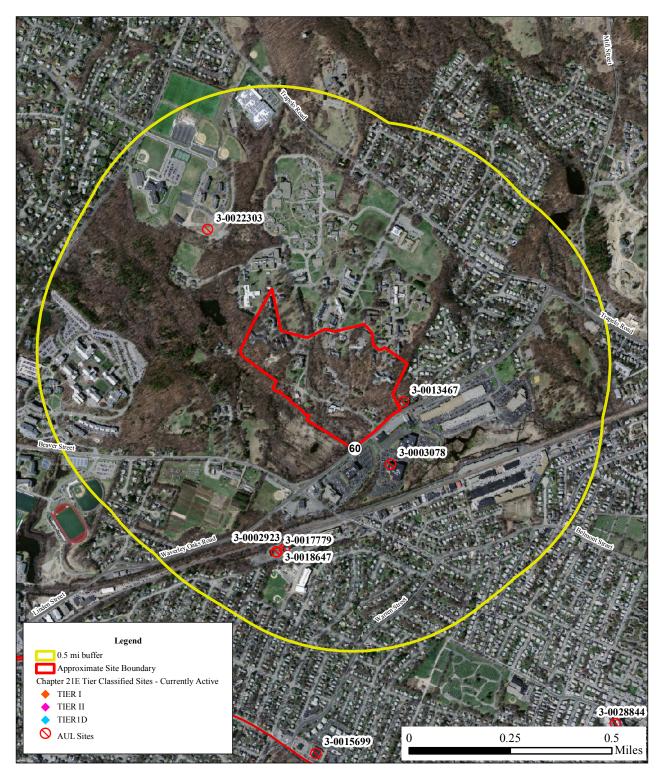
Project Manager



SOUTH PORTION OF FORMER FERNALD DEVELOPMENTAL CENTER 200 TRAPELO ROAD WALTHAM, MASSACHUSETTS

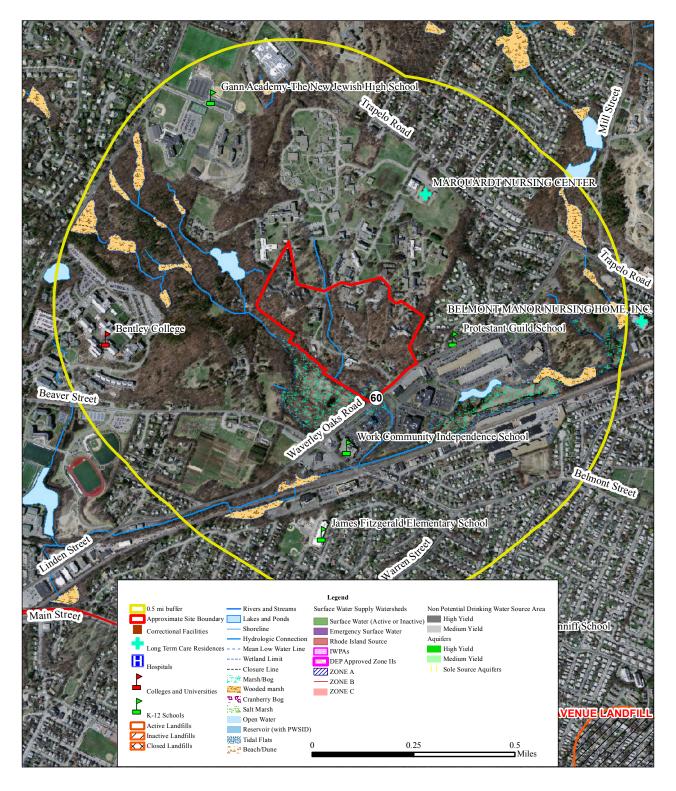
Figure 1 - Locus Map

SOURCE: MASSGIS SCALE: 1 inch = 2,083 feet



SOUTH PORTION OF FORMER FERNALD DEVELOPMENTAL CENTER 200 TRAPELO ROAD WALTHAM, MASSACHUSETTS

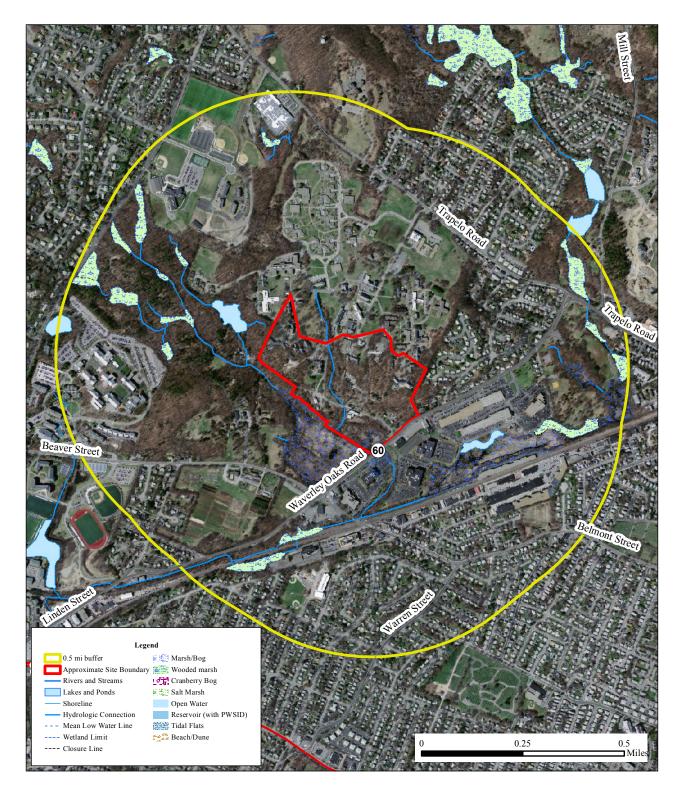
Figure 2 - Site Plan



SOUTH PORTION OF FORMER FERNALD DEVELOPMENTAL CENTER 200 TRAPELO ROAD WALTHAM, MASSACHUSETTS

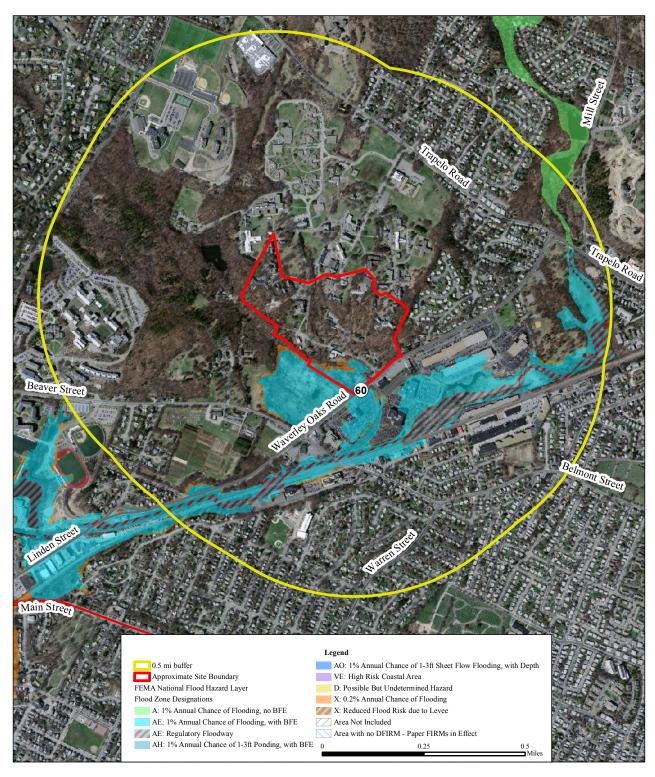
Figure 3 - 21E Map

SOURCE: MASSGIS SCALE:1 inch = 1,250 feet



SOUTH PORTION OF FORMER FERNALD DEVELOPMENTAL CENTER 200 TRAPELO ROAD WALTHAM, MASSACHUSETTS

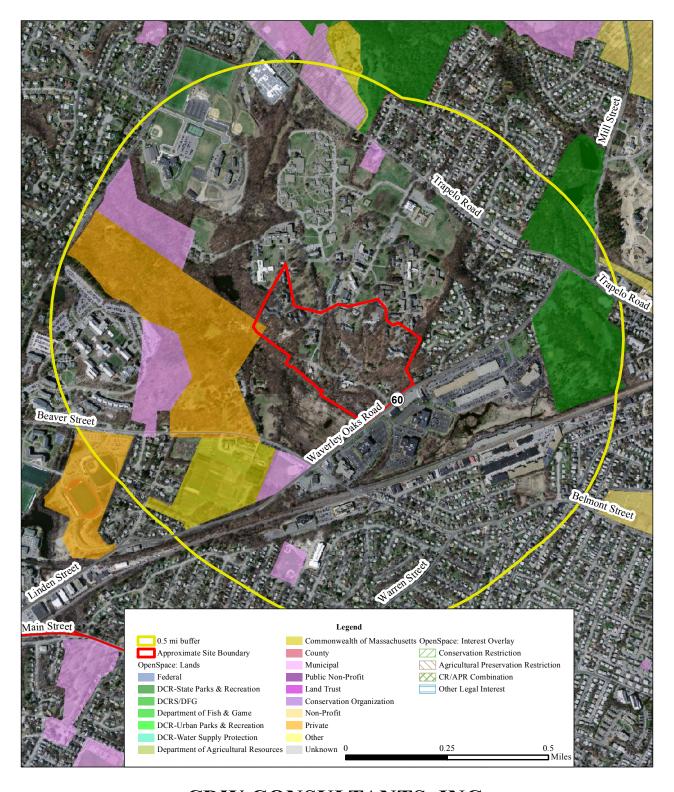
Figure 4 - Resource Areas Map



SOUTH PORTION OF FORMER FERNALD DEVELOPMENTAL CENTER 200 TRAPELO ROAD WALTHAM, MASSACHUSETTS

Figure 5 - Hydrography Map

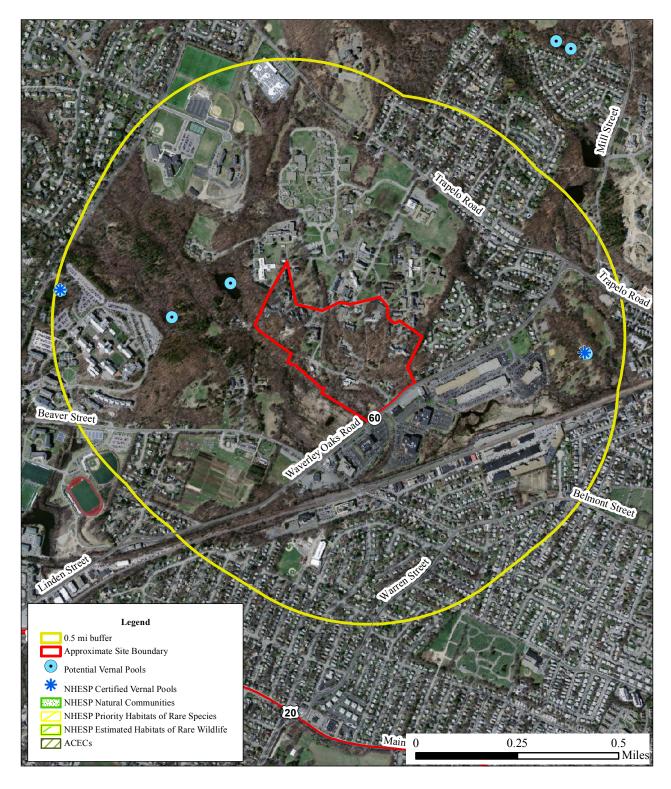
SCALE:1 inch = 1,250 feet


SOURCE: MASSGIS

SOUTH PORTION OF FORMER FERNALD DEVELOPMENTAL CENTER 200 TRAPELO ROAD WALTHAM, MASSACHUSETTS

Figure 6 - FEMA Flood Map

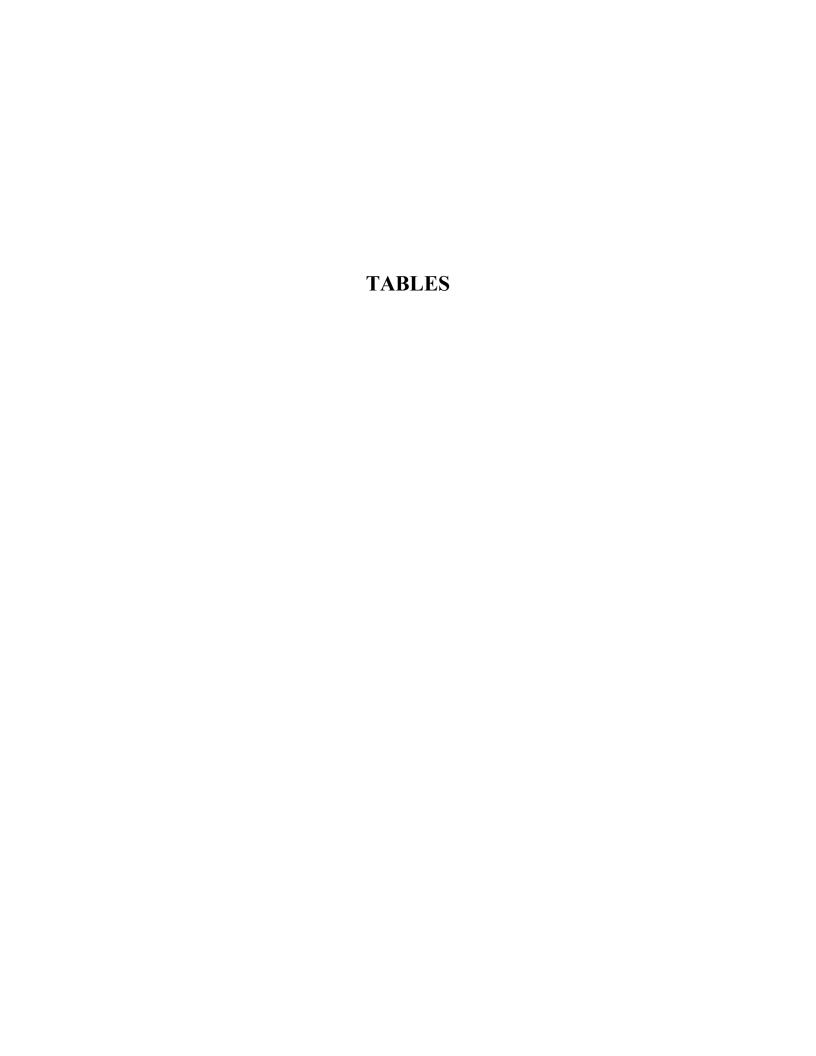
SCALE:1 inch = 1,250 feet



SOUTH PORTION OF FORMER FERNALD DEVELOPMENTAL CENTER 200 TRAPELO ROAD WALTHAM, MASSACHUSETTS

Figure 7 - Open Space Map

SCALE:1 inch = 1,250 feet



SOUTH PORTION OF FORMER FERNALD DEVELOPMENTAL CENTER 200 TRAPELO ROAD WALTHAM, MASSACHUSETTS

Figure 8 - NHESP and ACEC Map

SOURCE: MASSGIS SCALE:1 inch = 1,250 feet

Table 1 - Site Building List South Portion of Former FDC 200 Trapelo Road Waltham, MA

	wannam, wa								
Building No.	Building Name	Construction	GSF per DMR-Fernald Dev. Center Site Study 12/21/01	Age per DMR-Fernald Dev. Center Site Study 12/21/01	Heat/Hot Water Supply	Past Use	Observed Possible Oil/Chemical Storage	Floor Drains	Assessor's Card Pages
12	South Nurses Home	Brick 2 stories + basement	17,172	1907	Steam from Power Plant	residential	transformer #20 to north of building - labeled "non- PCB equipment"	In bathrooms & laundry room	31
15	Main Garage	Brick & concrete block 1 story	3,405	1932	Steam from Power Plant	garage including some vehicle maintenance such as brakes, oil changes, & exhaust work	empty concrete block enclosures labeled "Waste Oil" - some staining on ground, but not fully visible due to debris; several empty < 5 gal containers of oil/antifreeze in garage; empty 55 gal drum to east of building; empty 55 gal drum to south of building; 2 small propane tanks south of building	1 floor drain in garage bay	21
16	Storehouse	Brick 1 story + basement	23,940	1891	Steam from Power Plant	Storage, primarily food, clothing, & furniture	Several empty 5 gal or less containers of lube oil, transmission fluid, bleach, lime away, wax striper, & spray paint	none observed	35
17	Cottage #17	Stucco 2 story + basement	2,264	1925	oil	residential	No entry due to structural concerns; fill & vent pipes for ASTs still in place	unknown	55
18	Cottage #18	Stucco 2 story + basement	2,264	1925	oil	residential	No entry due to structural concerns; fill & vent pipes for ASTs still in place	unknown	54
19	Cottage #19	Stucco 2 story + basement	2,264	1925	gas	residential	Limited entry due to structural concerns; pole mounted transformer south of building	unknown	53
20	Cottage #20	Wood shingles 2 story + basement	2,264	1925	gas	residential	No entry due to structural concerns	unknown	52
21	Howe Library	Brick 1 story + basement	8,030	1921	Steam from Power Plant	laboratory, research, & operations	none	none observed	17
22	Laundry/Therapeutic Equipment Center	Brick 1 story + partial basement	27,192	1928	Steam from Power Plant	manufacturing of therapeutic equipment & laundry services	1 argon gas cylinder, small quantities of laundry detergent	1 floor drain in manufacturing area, 3 drains behind washers in laundry area, & at least 5 drains in basement	5
23	Lavers Building	Brick 1 story + partial basement	12,036	1914	Steam from Power Plant	residential	No entry due to structural concerns; small propane tank for grill outside building	unknown	18
24	Maintenance Building	Concrete block 1 story + partial basement	14,322	1930	Steam from Power Plant	welding, carpentry, paint, & electrical shop	No entry into basement; some staining on the floor several empty <5 gal containers of motor oil, paint thinner, & brush cleaner; according to Mr. Bermingham thousands of gal of paint were used in paint shop	floor drain in bathroom, holes in floor possible former floor drains	37
26	Power Plant	Brick 1 story + basement	19,440	1925	Steam from Power Plant	Steam power plant	No entry due to structural concerns; 2 LPG tanks west of building; according to Mr. Bermingham PCB containing equipment is still present in building; no sheen observed in stream to west of building	unknown (at least 5 floor drains were noted in a July 1995 Phase I Site Investigation prepared by Lord Associates, Inc.)	8

CDW Consultants, Inc.

Table 1 - Site Building List South Portion of Former FDC 200 Trapelo Road Waltham, MA

		T	1	1		,		1	_
Building No.	Building Name	Construction	GSF per DMR-Fernald Dev. Center Site Study 12/21/01	Age per DMR-Fernald Dev. Center Site Study 12/21/01	Heat/Hot Water Supply	Past Use	Observed Possible Oil/Chemical Storage	Floor Drains	Assessor's Card Pages
28	Grounds Garage	Concrete block 1 story	2,016	1947	Steam from Power Plant	storage shed primarily for building #24	~13 canisters of gas, legible cans labeled oxygen & acetylene; empty 5 gal containers of "dyed low sulfur kerosene"; 5 gal unlabeled container; 2 < 5 gal gas containers; empty discarded 55 gal drum east of building; discarded paint cans & 2 empty 5 gal containers (one labeled "dyed low sulfur kerosene") east of building; general debris scattered along road southeast of building	none observed	
31	Truck Garage	Not located	748	1928	Steam from Power Plant		Not located	Not located	
32	Tarbell Building	Brick 3 story + basement	38,924	1934	Steam from Power Plant	residential	~5 gal container identified as "corrosive" in basement, label illegible	floor drain in bathrooms & kitchen	48
33	West Building	Brick 2 story + basement	49,041	1890	Steam from Power Plant	residential	No entry due to structural concerns	unknown	27
34	Belmont House	Brick 1 story + basement	6,416	1890	Steam from Power Plant	original power plant with coal fired burners, storage	No entry due to flea infestation; 3 pole mounted transformers south of building	unknown	14
35	Sequin Building	Brick 1 story + partial basement	21,521	1933	Steam from Power Plant	residential	transformer #9 to east of building - labeled "non- PCB equipment"	floor drain in bathrooms & kitchen; 1 floor drain observed in basement	25
36	McDougal Building	Brick 2 story + basement	23,376	1898	Steam from Power Plant	residential	none	floor drain in bathrooms & kitchen; floor grate filled with water in basement mechanical room	16
37	Dolan Hall	Brick 2 story + basement	15,252	1906	Steam from Power Plant	residential	transformer #10 to south of building - labeled "non- PCB equipment"	floor drain in bathrooms; too much debris to see floor of kitchen	50
46	Wallace Building	Brick 1 story + basement	29,550	1936	Steam from Power Plant	residential	transformer #21 to northwest of building - labeled "non-PCB equipment"; <2 gal of dishwashing detergents	floor drain in bathrooms; too much debris to see floor of kitchen	24
49	South Bowen Hall/Hospital	Brick 1 story + basement	12,000	1893	Steam from Power Plant	residential, day program, music therapy, & clothing donations	No entry due to structural concerns	unknown	3
55	Cottage #17 Garage	Concrete block 1 story	1,344	1925	none	2 car garage	No entry due to structural concerns	unknown	
56	Cottage #20 Garage	Concrete block 1 story	440	1930	none	1 car garage	small quantities of paint	none observed	
57	Cottage #19 Garage	Concrete block 1 story	440	1955	none	1 car garage	No entry due to building being packed with debris	unknown	
120	Greenhouse (old)	Concrete/glass block 1 story + partial basement	3,655	1946	Steam from Power Plant	greenhouse	No entry due to structural concerns	unknown	41

CDW Consultants, Inc.

Table 1 - Site Building List South Portion of Former FDC 200 Trapelo Road Waltham, MA

	Waitnam, MA								
Building No.	Building Name	Construction	GSF per DMR-Fernald Dev. Center Site Study 12/21/01	Age per DMR-Fernald Dev. Center Site Study 12/21/01	Heat/Hot Water Supply	Past Use	Observed Possible Oil/Chemical Storage	Floor Drains	Assessor's Card Pages
121	Vault	Concrete block 1 story	150	1954	none	Electrical distribution	No entry due to high voltage; sign on door stating "contains PCBs"; crushed empty 55 gal drum south of building	unknown	
122	Electrical Substation	Concrete block 1 story	150	1963	none	Electrical distribution	No entry due to high voltage/NSTAR fence	unknown	
123	Plumbing Shop	Concrete block 1 story	180	1937	Steam from Power Plant	Plumbing shop	several <5 gal containers of household cleaners & paint; 2 empty 5 gal containers discarded to east of building	none observed	
124	Grounds Department ("farm & grounds buidling")	Concrete block with metal siding 1 story	5,760	1973	Propane	Still in use as storage; primarily for grounds maintenance equipment & supplies	No entry; according to Mr. Bermingham storage includes gasoline in <5 gal containers, 55 gal drums of diesel, petroleum greases, acids, lead acid batteries, NiCad batteries, & highway salt/sand; ~1,000 gal propane tank south of building; according to Mr. Bermingham 1 gas & 1 diesel UST were removed ~15 years ago northeast of building, gas UST leaked; empty 55 gal drum northeast of building; piles of brick and asphalt east of building	unknown	
	Grounds Department Garage	Concrete block 1 story				garage		none observed	
	Barn	1 story				barn, not used since at least 1979	Not inspected, located in overgrown gully	unknown	
	Former Butcher Shop	Stucco 1 story					No entry due to structural concerns; partially filled unlabeled 55 gal drum north of building; a few buried 55 gal drums & tank (estimated to be at least 500 gal) buried in debris within foundation north of building	unknown	
701	Greenhouse Sales Building		100	unknown		Flower sales	No longer exists according to Mr. Bermingham, small shed observed at approximate location of building, shed not inspected		
	Mobile home south of #123	Vinyl Siding 1 story				storage	No Entry	unknown	none
	Steamhead Houses	concrete block				several small structures throughout Site to access steam system	No entry due to friable asbestos	unknown	none

CDW Consultants, Inc.

APPENDIX K2

PRELIMINARY GEOTECHNICAL REPORT PROPOSED WALTHAM HIGH SCHOOL – FERNALD SITE STUDY WALTHAM, MASSACHUSETTS

LGCI Project No. 1616 December 27, 2016

Prepared for:

SYMMES MAINI & MCKEE ASSOCIATES

1000 Massachusetts Avenue Cambridge, MA 02138 Phone: (617) 547 5400

Fax: (617) 648-4920

PRELIMINARY GEOTECHNICAL REPORT PROPOSED WALTHAM HIGH SCHOOL – FERNALD SITE STUDY WALTHAM, MASSACHUSETTS

LGCI Project No. 1616 December 27, 2016

Prepared for:

SYMMES MAINI & MCKEE ASSOCIATES

1000 Massachusetts Avenue Cambridge, MA 02138 Phone: (617) 547 5400 Fax: (617) 648-4920

Prepared by:

LAHLAF GEOTECHNICAL CONSULTING, INC.

100 Chelmsford Road, Suite 2 Billerica, Massachusetts 01862 Phone: (978) 330-5912 Fax: (978) 330-5056

Abdelmadjid M. Lahlaf, Ph.D., P.E. Principal Engineer

TABLE OF CONTENTS

1.	PROJECT INFORMATION	1
1.1	PROJECT AUTHORIZATION	1
1.2		
1.3	SITE DESCRIPTION AND PROJECT DESCRIPTION	2
1.4	ELEVATION DATUM	2
2.	SITE AND SUBSURFACE CONDITIONS	3
2.2	SUBSURFACE CONDITIONS	4
2.3		
2.4	LABORATORY TEST DATA	5
3.	PRELIMINARY EVALUATION AND RECOMMENDATIONS	6
3.1		
_	3.1.1 Site Grading – Cuts and Fills	
	3.1.2 Existing Fill and Unsuitable Materials	
	3.1.3 Differing Bearing Materials	
3.2		
	3.2.1 Preliminary Footing Design	
	3.2.2 Preliminary Settlement Estimates	
3.3		
3.4		
3.5		
3.6		
_	3.6.1 Preliminary Lateral Earth Pressures	
3.7		
3.1		
4.	PRELIMINARY CONSTRUCTION CONSIDERATIONS	12
4.1	SUBGRADE PREPARATION.	
4.2		
4.3		
	4.3.1 Structural Fill	
	1.3.2 Ordinary Fill	
4.4		
	1.4.2 Ground Vibration Monitoring	
	1.4.3 Public Notification	
	1.4.4 Pre-Construction Condition Survey	
4.5	REUSE OF ONSITE MATERIALS	
4.6	GROUNDWATER CONTROL PROCEDURES	
4.7		
5.	RECOMMENDATIONS FOR FUTURE WORK	17
6.	REPORT LIMITATIONS	18
7	DEFEDENCES	10

TABLE OF CONTENTS (CONTINUED)

List of Figures and Tables

Table 1Summary of LGCI Borings

Figure 1 Site Location Map Figure 2 Boring Location Plan

List of Appendices

Appendix A Boring Logs and Groundwater Observation Well Installation Reports

Appendix B Laboratory Test Results

1. PROJECT INFORMATION

1.1 Project Authorization

The preliminary geotechnical report presents the results of the subsurface explorations and a preliminary geotechnical evaluation performed by Lahlaf Geotechnical Consulting, Inc. (LGCI) as part of the feasibility study for Waltham High School in Waltham, Massachusetts. LGCI performed our services in general accordance with our proposal No. 16051 dated June 6, 2016 and signed by Ms. Lorraine Finnegan, AIA of Symmes Maini & McKee Associates (SMMA) on September 16, 2016.

1.2 Purpose and Scope of Services

The purpose of this preliminary geotechnical study was to obtain subsurface information at the Fernald Site and provide preliminary recommendations regarding the geotechnical aspects of the project in support of the feasibility study. LGCI performed the following services:

- Reviewed the boring locations that were marked at the site by the project architect, SMMA.
- Reviewed available subsurface data from the USGS and BSCES.
- Contacted Dig Safe Systems Inc. (Dig Safe) and the City of Waltham for utility clearance and had three meetings with personnel from the City of Waltham DPW to review the boring locations with respect to onsite utilities prior to exploration.
- Engaged Northern Drill Service, Inc. of Northborough, Massachusetts, a drilling subcontractor, to obtain a street opening permit, post the required bond, and advance soil borings at the project site. Observation wells were installed at three (3) of the borings.
- Provided a geotechnical field engineer to observe the borings, describe the soil samples, and prepare field logs.
- Submitted two (2) soil samples for laboratory testing.
- Prepared this preliminary geotechnical report containing the results of our subsurface exploration and our preliminary recommendations for foundation design and construction at the site.

We understand that additional borings and test pits may be performed at the site during the schematic and/or the design phases. At this time, our scope does not include schematic and/or design phase services, preparing specifications, performing contract document review, or providing construction services. LGCI would be pleased to perform these services when needed. Recommendations for stormwater management, erosion control, pavement design, and detailed cost or quantity estimates are not included in our scope of work.

LGCI did not perform environmental services for this project. LGCI did not perform an assessment to evaluate for the presence or absence of hazardous or toxic materials above or below the ground surface at or around the site. Any statement about the color, odor, or the presence of suspicious materials included in our boring logs or report were made by LGCI for information only and to support our geotechnical services. No environmental recommendations and/or opinions are included in this report.

1.3 Site Description and Project Description

The Fernald State School site is located along the southern side of Trapelo Road in Waltham, Massachusetts, as shown in Figure 1. The property is currently owned by the City of Waltham and encompasses about 186 acres. The site is mostly wooded with abandoned buildings and roadways that are in various states of disrepair. The Fernald State School had a power plant that generated steam for heat and electricity to power the school buildings. Numerous underground electrical conduits and steam tunnels are present at the site. Records that show the locations of these underground utilities are incomplete.

We understand that the proposed school site may be located in a southern portion of the Fernald State School property that encompasses approximately 50 acres. The site is hilly. The ground surface elevations at the site generally rise in a northerly direction from about El. 60 feet on the southern side of the site to about El. 200 feet on the northern side of the site. A small stream is located near the center of the site and flows from north to south toward an existing wetland.

At the time of this report, the proposed high school site was planned near the northwestern corner of the 50-acre site. The proposed footprint of the high school is shown in Figure 2. Specific structural details regarding the planned facility were not available at the time of this report.

1.4 Elevation Datum

We understand that the elevations provided by Nitsch Engineering, which we included on our boring logs, are referenced to the North American Vertical Datum of 1988.

2. SITE AND SUBSURFACE CONDITIONS

2.1 LGCI's Borings

The project architect (SMMA) marked the boring locations in the field. LGCI notified Dig Safe systems Inc. and the City of Waltham for utility clearance prior to performing the explorations at the site. Due to the buried utilities at the site and the limited information regarding the location of existing utilities, LGCI met with City of Waltham DPW three times prior to the start of the subsurface explorations.

LGCI engaged Northern Drill Service, Inc. of Northborough, Massachusetts to advance eight (8) borings (B-1, B-2/2A, B-3/3AOW, B-4, B-6, B-7/7A, B-8/8AOW, B-11OW) at the site between October 26 and 28, 2016. Seven (7) of the originally planned borings were not performed due to lack of time. The sequence of the performed borings was approved by SMMA.

The boring locations are shown on Figure 2. Borings B-1 to B-4 were performed in the northwestern portion of the site in the vicinity of the proposed footprint of the high school. Borings B-7/7A and B-8/8AOW were performed in the northern central portion of the site, and borings B-6 and B-11 were performed in the southern central portion of the site. Groundwater observation wells were installed in borings B-3/3AOW, B-8/8AOW, and B-11OW.

An LGCI engineer observed and logged the borings in the field. The borings were advanced with a Mobile B-48 rotary drill rig mounted on a rubber track carrier. The borings were initially advanced by employing hollow stem augers. Several of the borings encountered refusal shallower than the planned depths and were offset 5 to 10 feet to explore whether the refusal was due to a boulder or shallow bedrock. After a second refusal, Borings B-2/2A and B-7/7A were advanced into the underlying bedrock using core drilling techniques. Upon completion, boreholes were backfilled with the soil cuttings and topped with cold asphalt patch in paved areas, unless an observation well was installed.

What appeared to be a petroleum based liquid was encountered in borings B-6 and B-11OW. LGCI notified SMMA and the environmental engineer when the condition was encountered in each boring and the environmental engineer obtained samples for analytical testing. The borings were terminated at the depth the petroleum liquids were encountered. An observation well was installed in B-11OW.

The drillers performed Standard Penetration Tests (SPT) and obtained split spoon samples with an automatic hammer at the depth intervals, typically 2 feet or 5 feet, as noted on the boring logs in general accordance with ASTM D-1586. Unless notified otherwise, we will dispose of the soil samples after three months.

3

Appendix A contains LGCI's boring logs and the groundwater observation well installation reports. The ground surface elevations noted on the boring logs were provided to LGCI by SMMA in an e-mail dated November 21, 2016. Table 1 includes a summary of the borings.

2.2 Subsurface Conditions

The subsurface description in this report is based on a limited number of borings and is intended to highlight the major soil strata encountered during our borings. The subsurface conditions are known only at the actual boring locations. Variations may occur and should be expected between boring locations. The boring logs represent conditions that we observed at the time of our explorations and were edited, as appropriate, based on the results of the laboratory test data and inspection of the soil samples in the laboratory. The strata boundaries shown in our boring logs are based on our interpretations and the actual transitions may be gradual. Graphic soil symbols are for illustration only.

The soil strata encountered in the borings were as follows, starting at the ground surface.

<u>Asphalt</u> – Asphalt was encountered at the ground surface in borings B-6 and B-8/8AOW with observed thicknesses ranging between 3 and 4 inches.

<u>Topsoil/Subsoil</u> – A layer of surficial organic soil was encountered in borings B-1, B-2/2A, and B-4. This layer had thicknesses ranging between 0.5 and 3.5 feet.

<u>Fill</u> – Existing fill was encountered at the ground surface in borings B-3/3AOW, B-7/7A, and B-11OW and below the surficial materials in the remaining borings, except in borings B-1 and B-2/2A which did not encounter fill. The fill samples were generally observed to be sand (16 of 23 samples). The sand samples were described as silty, poorly graded, and well graded, fine to coarse sand. The percentage of fines observed in the samples ranged between 5 and 30 percent, and the percentage of gravel ranged between 0 and 20 percent.

The gravel samples were described as well graded, poorly graded, and silty, fine to coarse gravel. The percentage of fines observed in the samples ranged between 0 and 20 percent, and the percentage of sand ranged between 0 and 35 percent.

The Standard Penetration Test (SPT) N-values in the existing fill ranged between weight of hammer and 67 blows per foot (bpf), with most values lower than 30 bpf, indicating very loose to medium dense material

<u>Sand</u> – A layer of natural sand was encountered beneath the surficial materials and existing fill. The sand was most often described as silty sand and less frequently as well graded or poorly graded sand. The sand was fine, fine to medium, and fine to coarse grained. The percentage of fines ranged between 5 and 30 percent. The percentage of gravel ranged between 10 and 35, but was most often between 15 and 25 percent.

One sample of well graded gravel was encountered in boring B-4. Boring B-1 terminated within the sand at an approximate depth of 20 feet.

The SPT N-values encountered within the sand and gravel ranged between 48 bpf and more than 100 bpf (sampler refusal), indicating very dense soil. Sampler refusal was encountered in two of the eight samples obtained within this stratum.

<u>Bedrock</u> – Hollow stem auger refusal was encountered in the borings advanced with augers at depths ranging from 1.5 to 19.3 feet on apparent bedrock. Borings B-1 and B-3/3AOW were terminated at the sand/bedrock interface at respective depths of 20 feet and 11 feet.

Boring B-4 encountered weathered bedrock below the sand at an approximate depth of 14 feet. The weathered rock was described as a silty sand and gravel in the samples recovered. The boring terminated within the weathered bedrock at an approximate depth of 19.3 feet.

Coring was initiated in borings B-2/2A and B-7/7A at depths of 3.5 and 1.5 feet, respectively. The bedrock core samples were identified as hard, slightly weathered to fresh, slightly to moderately fractured, dark gray to pink with white mottles, Diorite. Recovery values were 100 percent and the rock quality designation Percentage (RQD) values varied between 89 and 90 percent, indicating very good to excellent quality rock.

2.3 Groundwater

Groundwater observation wells were installed in borings B-3/3AOW, B-8/8AOW, and B-11OW. Groundwater depths were measured in the observation wells shortly after completion of well installation and on November 20, 2016, and each of the wells was dry.

Groundwater was not observed in the borings during drilling. The groundwater levels recorded in these borings at the completion of drilling may not represent the actual groundwater level, as additional time may be required for the groundwater levels to stabilize. The groundwater levels presented in this report only represents the conditions encountered at the time and location of the explorations, unless noted otherwise. Seasonal fluctuation should be anticipated.

2.4 Laboratory Test Data

LGCI submitted two (2) soil samples collected from the borings for grain-size analysis. The results are provided in the data sheets included in Appendix B and are summarized in the table below.

Grain-size Analysis Test Results

Boring No.	Sample No.	Stratum	Sample depth (ft.)	Percent Gravel	Percent Sand	Percent Fines
B-1	S3	Natural Sand	4-6	33.8	36.4	29.8
B-3	S4	Fill	6-8	53.6	30.9	15.5

3. PRELIMINARY EVALUATION AND RECOMMENDATIONS

3.1 General

The borings encountered variable conditions across the site. Specific preliminary recommendations are provided in the subsequent sections for preliminary foundation design and construction at the site. Based on our understanding of the Waltham High School site, our observation of the borings, and the results of our laboratory testing, there are a few issues that we would like to highlight for consideration and discussion.

3.1.1 Site Grading – Cuts and Fills

The proposed 50 acre site for potential development is located on the southern side of the existing 186 acre Fernald State School property. LGCI understands the proposed high school building may be located in the northwestern portion of the proposed 50 acre site. This area of the site is best described as a hilltop. We preliminarily anticipate that cuts and fills of 10 feet or more may be required to develop the grades within the proposed school footprint. The floor elevation of the school should be carefully considered as the project design is advanced. The magnitude of required cuts and fills at the site will be determined once the finished grades are established.

Due to the relatively shallow bedrock at the site, we anticipate that bedrock removal will be required. The borings drilled with hollow stem augers encountered refusal at depths ranging from 1.5 to 19.3 feet. Auger refusal depths approximately indicate the depth to sound rock that will require special means to excavate, such as the use of hoe rams or blasting. Confined excavations, such as excavations for footings, that extend into highly weathered bedrock above the depth of auger refusal may also require special means to excavate. LGCI recommends performing additional borings and test pits during the schematic design phase of the project to collect additional data related to the depth and composition of the underlying bedrock.

3.1.2 Existing Fill and Unsuitable Materials

Existing fill and/or topsoil/subsoil was encountered in each of the borings performed at the site with observed thicknesses ranging from 1.5 to 16 feet. Existing fill that was not placed with strict moisture, density, and gradation control presents risk of unpredictable settlements that may result in poor performance of floor slabs and foundations. Organic soils left in place may result in larger than acceptable settlements. Due to these risks, the existing fill and all organic soils should be entirely removed from within the proposed building and replaced with Structural Fill. The removal should extend 5 feet outside of the proposed building footprint.

6

Due to the impact the extent of the existing fill/organic soil removal may have on design and construction, the additional test pits recommended above will also allow LGCI to further evaluate the depth, composition, and extent of the fill across the site.

3.1.3 Differing Bearing Materials

Based on the relatively shallow depth to bedrock and assuming that cuts and fills will be required to develop the finished grade at the site, bearing materials for shallow foundations could consist of weathered bedrock, competent bedrock, natural soils, and Structural Fill. To provide a more uniform bearing material and working surface during construction, we recommend that at least 12 inches of Structural Fill be placed below all footings.

3.2 Preliminary Foundation Recommendations

Based on the results of the preliminary borings, the subsurface conditions appear suitable for support of new structures with grade supported floor slabs and shallow foundations after the subgrade is prepared in accordance with the recommendations in this report. Preliminary recommendations for footing design and settlement are presented below.

3.2.1 Preliminary Footing Design

- We recommend new footings be preliminarily designed using a net allowable bearing pressure of 4 kips per square foot (ksf) for footings bearing directly on 12 inches of Structural Fill overlying the natural sand and gravel or bedrock.
- Footing subgrades should be prepared in accordance with the recommendations in Section 4.1
- All foundations should be designed in accordance with The Commonwealth of Massachusetts State Building Code 780 CMR, Eighth Edition (*MSBC* 8th Edition).
- Exterior footings and footings in unheated areas should be placed at a minimum depth of 4 feet below the final exterior grade to provide adequate frost protection. Interior footings in heated areas may be designed and constructed at a minimum depth of 2 feet below finished floor grades.
- Wall footings should be designed and constructed with continuous, longitudinal steel reinforcement for greater bending strength to span across small areas of loose or soft soils that may go undetected during construction.
- A representative of LGCI should be engaged to observe that the subgrade has been prepared in accordance with our recommendations.

3.2.2 Preliminary Settlement Estimates

For footings designed using the net allowable bearing pressure recommended above, and assuming isolated footings will range in size from 3 ft. x 3 ft. up to 8 ft. x8 ft., we anticipate that the settlement will be about 1 inch, and that the differential settlement of the footings will be 3/4 inch or less over a distance of 25 feet. Total and differential settlements of these magnitudes are usually considered tolerable for the anticipated construction. As the design progresses and the settlement estimates are refined, the tolerance of the proposed structure to predicted total and differential settlements should be assessed by the structural engineer.

3.3 Preliminary Concrete Slab Considerations

- Floor slabs can be constructed as a slab-on-grade bearing on 12 inches of Structural Fill placed directly on top of the natural sand, gravel, or bedrock. The subgrade of the slab should be prepared as described in Section 4.1.
- To reduce the potential for dampness in the proposed floor slab, the project architect may consider placing a vapor barrier beneath the floor slab. To reduce the potential for concrete curling and to protect the vapor barrier, a 3-inch layer of sand should be placed on the vapor barrier.
- For the design of the floor slab bearing on the materials described above, we recommend using a modulus of subgrade reaction, k_{s1} , of 86 tons per cubic foot (tcf). Please note that the values of k_{s1} are for a 1 x 1 square foot area. These values should be adjusted for larger areas using the following expression:

Modulus of Subgrade Re action
$$(k_s) = k_{s1} * \left(\frac{B+1}{2B}\right)^2$$

where:

k_s = Coefficient of vertical subgrade reaction for loaded area,

k_{s1}= Coefficient of vertical subgrade reaction for 1 x 1 square foot area, and

B = Width of area loaded, in feet.

- Please note that cracking of slabs-on-grade can occur as a result of heaving or compression of
 the underlying soil, but also as a result of concrete curing stresses. To reduce the potential for
 cracking, the precautions listed below should be closely followed for construction of all slabon-grade:
- Construction joints should be provided between the floor slab and the walls and columns in accordance with the American Concrete Institute (ACI) requirements, or other applicable code.

8

- Backfill in interior utility trenches should be properly compacted.
- In order for the movement of exterior slabs not to be transmitted to foundations or superstructures, exterior slabs such as approach slabs and sidewalks, should be isolated from the building superstructure.

3.4 Under-slab Drains

Based on the groundwater levels observed in the explorations and the observation wells, it is not anticipated that an under-slab drainage system will be required under a new building. However, once finish floor elevations and building footprint locations are established, LGCI should review and update this recommendation, as necessary.

3.5 Preliminary Seismic Design

In accordance with Section 1613 of MSBC 8th Edition and based on the boring data, the seismic criteria for the site are as follows:

•	Site Class:	D
•	Spectral Response Acceleration at short period (Ss):	0.28 g
•	Spectral Response Acceleration at 1 sec. (S_1) :	0.069g
•	Site Coefficient Fa (Table 1613.5.3(1)):	1.58
•	Site Coefficient Fv (Table 1613.5.3(2):	2.4
•	Adjusted spectral response S _{MS} :	0.442 g
•	Adjusted spectral responses S _{M1} :	0.166 g

Based on the boring information, we believe the site soils are not susceptible to liquefaction.

3.6 Lateral Pressures for Wall Design

3.6.1 Preliminary Lateral Earth Pressures

Lateral earth pressures recommended for design of below grade walls are provided below.

Coefficient of Active Earth Pressure, K _A :	0.31
Coefficient of At-Rest Earth Pressure, K _o :	0.50
Coefficient of Passive Earth Pressure, K _p :	3.3
Total Unit Weight γ:	125 pcf

<u>Note</u>: The values in the table are based on a friction angle for the backfill of 32 degrees and neglecting friction between the backfill and the wall. The design active and passive coefficients are based on horizontal surfaces (non-sloping backfill) on both the active and passive sides, and a vertical wall face.

- Exterior walls of below ground spaces, and retaining walls braced at the top to restrain movement/rotation, should be designed using the "at-rest" pressure coefficient.
- We recommend placing free-draining material within the 2 feet immediately behind retaining walls. We recommend providing weep holes in the walls to promote drainage where possible, or a pipe should be placed at the base of the wall to collect the water. Groundwater collected by the wall drains should be discharged in a lower area if gravity flow is possible.
- Passive earth pressures should only be used at the toe of the wall where special measures or provisions are taken to prevent disturbance or future removal of the soil on the passive side of the wall, or in areas where the wall design includes a key. In any case, the passive pressures should be neglected in the top 4 feet.
- Where a permanent vertical uniform load will be applied on the active side immediately adjacent to the wall, a horizontal surcharge load equal to half of the uniform vertical load should be applied over the height of the wall. At a minimum, a temporary construction surcharge of 100 psf should be applied uniformly over the height of the wall.
- We recommend using an ultimate friction factor of 0.5 between the natural sand and the bottom of the wall. Below grade walls should be designed for minimum factors of safety of 1.5 for sliding and 2.0 for overturning.

3.6.2 Seismic Pressures

In accordance with the *Massachusetts State Building Code*, δ_{th} *Edition*, Section 1610, a lateral earthquake force equal to $0.100*(S_s)*(F_a)*\gamma*H^2$ should be included in the design of walls (for horizontal backfill), where S_s is the maximum considered earthquake spectral response acceleration (defined in Section 3.5), F_a is the site coefficient (defined in Section 3.5), γ is the total unit weight of the soil backfill, and H is the height of the wall.

The earthquake force should be distributed as an inverted triangle over the height of the wall. In accordance with MSBC 8th Edition, Section 1610.2, a load factor of 1.43 shall be applied to the earthquake force for wall strength design.

Temporary surcharges should not be included when designing for earthquake loads. Surcharge loads applied for extended periods of time shall be included in the total static lateral soil pressure and their earthquake lateral force shall be computed and added to the force determined above.

3.7 Perimeter Drains

- We recommend that free-draining material be placed within 2 feet of the exterior of walls of below ground spaces. To reduce the potential for dampness in below ground spaces, proposed below ground walls should be damp-proofed.
- We recommend that drains be provided behind the exterior of walls of below ground spaces to collect and discharge water that may infiltrate through the surface. The drains should consist of 4-inch perforated PVC pipes installed with the slots facing down. Perimeter drains should be installed at the bottom of the wall in 18 inches of crushed stone wrapped in a geotextile for separation and filtration.
- Groundwater collected by the wall drains could be discharged in a lower area if gravity flow is possible. Alternatively, it should be discharged into the street drains. A permit would likely be required for discharge into street drains.

4. PRELIMINARY CONSTRUCTION CONSIDERATIONS

4.1 Subgrade Preparation

- Existing asphalt, forest material/topsoil/organics, existing fill, abandoned utilities, and other below-ground structures should be entirely removed from within the footprint of planned building before the start of foundation work.
- Tree stumps, root balls, and roots larger than ½ inch in diameter should be removed and the cavities filled with suitable material and compacted per Section 4.3 of this report. Care should be exercised during stripping to reduce the potential for disturbance of the subgrade.
- The base of the footing excavations in granular soil should be compacted with a dynamic vibratory compactor weighing at least 200 pounds and imparting a minimum of 4 kips of force to the subgrade, before placing the required 12 inches of Structural Fill.
- Fill placed within the footprint of the proposed building should meet the gradation and compaction requirements of Structural Fill shown in Section 4.3.1.
- To reduce the potential of increasing lateral pressures on the retaining walls, fill placed within 3 feet of the walls should be compacted using a small plate compactor imparting a maximum dynamic effort of 4 kips. The fill within 3 feet of the walls should be placed in maximum 8-inch loose lifts.
- Loose or soft soils identified during the compaction of the footing or floor slab subgrades should be excavated to a suitable bearing stratum as determined by the representative of LGCI. Grades should be restored by backfilling with Structural Fill or crushed stone.
- When crushed stone is required in the drawings or it is used for the convenience of the
 contractor, it should be wrapped in a geotextile fabric for separation except where introduction
 of the geotextile promotes sliding. A geotextile should not be placed between the bottoms of
 the footings and crushed stone.
- An LGCI representative should observe the exposed subgrades prior to fill and concrete placement to verify that the exposed bearing materials are suitable for the design soil bearing pressure. If soft or loose pockets are encountered in the footing excavations, the soft or loose materials should be removed, and the bottom of the footing should be placed at a lower elevation on firm soil, or the resulting excavation should be backfilled with Structural Fill, or crushed stone wrapped in a filter fabric.

12

4.2 Subgrade Protection

The onsite fill and natural soils are frost susceptible. If construction takes place during freezing weather, special measures should be taken to prevent the subgrade from freezing. Such measures should include the use of heat blankets, or excavating the final six inches of soil just before pouring concrete. Footings should be backfilled as soon as possible after footing construction. Soil used as backfill should be free of frozen material, as should the ground on which it is placed. Filling operations should be halted during freezing weather.

Materials with high fines contents are typically difficult to handle when wet as they are sensitive to moisture content variations. Subgrade support capacities may deteriorate when such soils become wet and/or disturbed. The contractor should keep exposed subgrades properly drained and free of ponded water. Subgrades should be protected from machine and foot traffic to reduce disturbance.

4.3 Fill Materials

Structural Fill and Ordinary Fill should consist of inert, hard, durable sand and gravel, free from organic matter, clay, surface coatings and deleterious materials, and should conform to the gradation requirements shown below.

4.3.1 Structural Fill

The Structural Fill should have a plasticity index of less than 6, and should meet the gradation requirements shown below. Structural Fill should be compacted in maximum 9-inch loose lifts to at least 95 percent of the Modified Proctor maximum dry density (ASTM D1557), with moisture contents within ±2 percentage points of optimum moisture content.

Sieve Size Percent	Passing by Weight		
3 inches	100		
1 ½ inch	80-100		
½ inch	50-100		
No. 4	30-85		
No. 20	15-60		
No. 60	5-35		
No. 200*	0-10		

* 0 - 5 Under sidewalks

4.3.2 Ordinary Fill

Ordinary Fill should have a plasticity index of less than 6, and should meet the gradation requirements shown below. Ordinary Fill should be compacted in maximum 9-inch loose lifts to at least 95 percent of the Modified Proctor maximum dry density (ASTM D1557), with moisture contents within ± 2 percentage points of optimum moisture content.

Sieve Size Percent	Passing by Weight		
6 inches	100		
1 inch	50-100		
No. 4	20-100		
No. 20	10-70		
No. 60	5-45		
No. 200	0-20		

4.4 Rock Blasting Consideration

4.4.1 Rock Removal

Rock cuts will likely be needed within the proposed building footprint and paved areas. To better define the rock quantities, we recommend that additional borings be advanced at the site.

Minor rock cuts (less than one foot) over short distances may be achieved using hoe-rams or using other non-blasting techniques. Deep rock cuts will require rock blasting.

- Rock should be cut at least 12 inches beneath the bottom of footings, 4.5 feet beneath the FFE, and 18 inches beneath the bottom of paved areas.
- Under utility pipes, manholes, and catch basins, rock should be cut a minimum of 12 inches beneath the pipe or structure.
- Laterally, the rock should be removed at least 1 foot beyond the limits of footings and 2 feet beyond the limits of walls. Rock should be cut a minimum of 12 inches outside utility structures and a minimum of 18 inches on each side of utility pipes.
- To reduce overblasting and the potential for heaved rock, drill holes for blasting should not extend more than 2 feet beneath the minimum depths shown above.
- Rock blasting should be controlled to reduce vibrations and airblast overpressure to below thresholds established in the contract documents.
- Pre-splitting or controlled blasting may be desirable to reduce the amount of overblast.
- To reduce the potential of blasted rock mixing with organic soil, we recommend that the topsoil, roots, tree stumps, and vegetation be removed before blasting. The remainder of the overburden soils and excavatable weathered rock should not be removed before blasting.

• To help obtain information about the top of the rock for rock quantity estimating purposes, we recommend that the Earth Moving Specifications include a requirement for the contractor to perform rock probes at the site in a grid pattern. The results of the probes should include at a minimum the ground surface elevation and the elevation of the top of the rock. The probes should extend at least 10 feet beyond the perceived top of rock to make sure that the perceived top of rock is not a boulder.

4.4.2 Ground Vibration Monitoring

Rock blasting operations will generate ground vibrations that may result in minor cracks and cosmetic damage to nearby structures. To protect the adjacent structures from potential damage, construction blasting should be carefully controlled and monitored. We recommend monitoring vibrations at the ground surface and at nearby structures before and during the rock blasting operations.

Blasting should not be performed within 24 hours of placing fresh concrete. Blasting charges should be selected so as to keep blasting induced vibration peak particle velocity (PPV) below 2 inches per second.

4.4.3 Public Notification

The human perception threshold to vibration is very low, i.e., people are far more sensitive to vibrations than are the structures they occupy. Various studies have indicated that the sound effects are noticeable at peak particle velocity (PPV) values of 0.02 inches per second (ips) and complaints and claims of damage are likely at PPV values of 0.2 to 0.3 ips. These vibration intensities are well below the intensities that would cause structural damage to buildings. For these reasons, we recommend that the owner implement a proactive program of public notification and education of neighbors on the physical characteristics of blasting effects before the start of blasting.

4.4.4 Pre-Construction Condition Survey

We recommend that the Owner perform a pre-construction condition survey of structures located within 250 feet of the nearest blasting operation to document the existing conditions of the structures. The Owner may also consider using crack monitoring gauges to monitor large cracks identified during the pre-construction surveys.

4.5 Reuse of Onsite Materials

Based on our field observations and the results of the grain-size analyses, we do not anticipate that the site soils will be suitable for reuse. Should the contractor encounter materials suitable for reuse during earthwork operations, the contractor should avoid mixing the reusable soils with

15

fine-grained and/or organic soils. The soils to be reused should be excavated and stockpiled separately for compliance testing.

Soils with 20 percent or greater fines contents are generally very sensitive to moisture content variations and are susceptible to frost. Such soils are very difficult to compact at moisture contents that are much higher or much lower than the optimum moisture content determined from the laboratory compaction test. Therefore, strict moisture control should be implemented during compaction of onsite soils with fines contents of 20 percent or greater. The contractor should be prepared to remove and replace such soils if pumping occurs.

Depending on the magnitude of rock cuts, if any, the contractor may mobilize a crusher and crush the rock and the granular portion of the existing fill at proportions to be determined in the field to produce material that meets the gradations of Ordinary Fill and/or Structural Fill.

All materials to be used as fill should first be tested for compliance with the applicable gradation specifications.

4.6 Groundwater Control Procedures

Based on the groundwater levels encountered in our preliminary explorations, we do not anticipate that groundwater control procedures will be needed during removal of unsuitable soils, site grading, and excavation for proposed footings. We anticipate that filtered sump pumps installed in a series of pits located at least three feet below the bottom of planned excavations may be sufficient to handle surface runoff that may enter the excavation during wet weather.

The contractor should be permitted to employ whatever commonly accepted means and practices are necessary to maintain the groundwater level below the bottom of the excavation, and to maintain a dry excavation during wet weather. Groundwater levels should be maintained at a minimum of 1-foot below the bottom of excavations during construction. Placement of reinforcing steel or concrete in standing water should not be permitted.

To reduce the potential for sinkholes developing over sump pump pits after the sump pumps are removed, the crushed stone placed in the sump pump pits should be wrapped in a geotextile fabric. Alternatively, the crushed stone should be entirely removed after the sump pump is no longer in use and the sump pump pit should be restored with suitable backfill.

4.7 Temporary Excavations

All excavations to receive human traffic should be constructed in accordance with the OSHA guidelines.

The site soils should generally be considered Type "C" and should have a maximum allowable slope of 1.5 Horizontal to 1 Vertical (1.5H:1V) for excavations less than 20 feet deep. Deeper excavations, if needed, should have shoring designed by a professional engineer.

The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain stability of the excavation sides and bottom and to protect existing structures.

5. RECOMMENDATIONS FOR FUTURE WORK

LGCI's services include attending a meeting with SMMA regarding this report. In addition, we recommend engaging LGCI to perform the following services:

- Observe schematic and/or design phase explorations as the project progresses.
- Prepare schematic and/or design phase geotechnical report(s) as the project progresses.
- Prepare earthwork specifications.
- Review the geotechnical aspects of contractor submittals.
- Provide a field representative to observe the subgrades of foundations and floor slabs during construction

6. REPORT LIMITATIONS

Our analysis and recommendations are based on project information provided to us at the time of this report. If changes to the type, size, and location of the proposed structures or to the site grading are made, the recommendations contained in this report shall not be considered valid unless the changes are reviewed and the conclusions and recommendations modified in writing by LGCI. LGCI cannot accept responsibility for designs based on our recommendations unless we are engaged to review the final plans and specifications to determine whether any changes in the project affect the validity of our recommendations and whether our recommendations have been properly implemented in the design.

It is not part of our scope to perform a more detailed site history; therefore, we have not explored for or researched the locations of buried utilities or other structures in the area of the proposed construction. Our scope did not include environmental services or services related to moisture, mold, or other biological contaminates in or around the site.

The recommendations in this report are based in part on the data obtained from the subsurface explorations. The nature and extent of variations between explorations may not become evident until construction. If variations from anticipated conditions are encountered, it may be necessary to revise the recommendations in this report. We cannot accept responsibility for designs based on recommendations in this report unless we are engaged to 1) make site visits during construction to check that the subsurface conditions exposed during construction are in general conformance with our design assumptions and 2) ascertain that, in general, the work is being performed in compliance with the contract documents.

Our report has been prepared in accordance with generally accepted engineering practices and in accordance with the terms and conditions set forth in our agreement. No other warranty, expressed or implied, is made. This report has been prepared for the exclusive use of Symmes Maini & McKee Associates for the specific application to Waltham High School – Fernald Site Study in Waltham, Massachusetts as conceived at this time.

18

7. REFERENCES

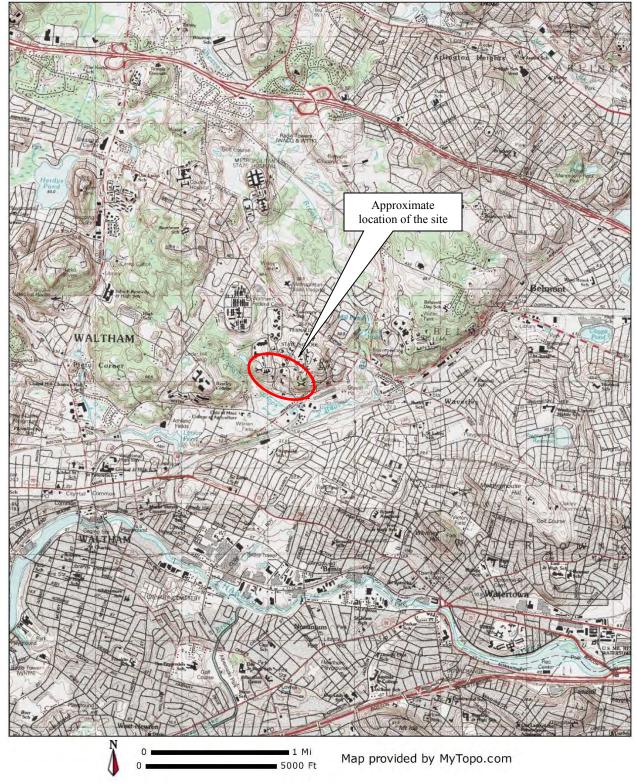
In addition to the references included in the text of the report, we used the following references:

The Commonwealth of Massachusetts (2010), "The Massachusetts State Building Code, Eighth Edition," comprised of the International Building Code (IBC-2009) and 780 CMR: Massachusetts Amendments to IBC-2009.

The Department of Labor, Occupational Safety and Health Administration (1989), "Occupational Safety and Health Standards - Excavations; Final Rule," 20 CFR Part 1926, Subpart P.

USGS Waltham, MA topographic map from http://mapserver.mytopo.com.

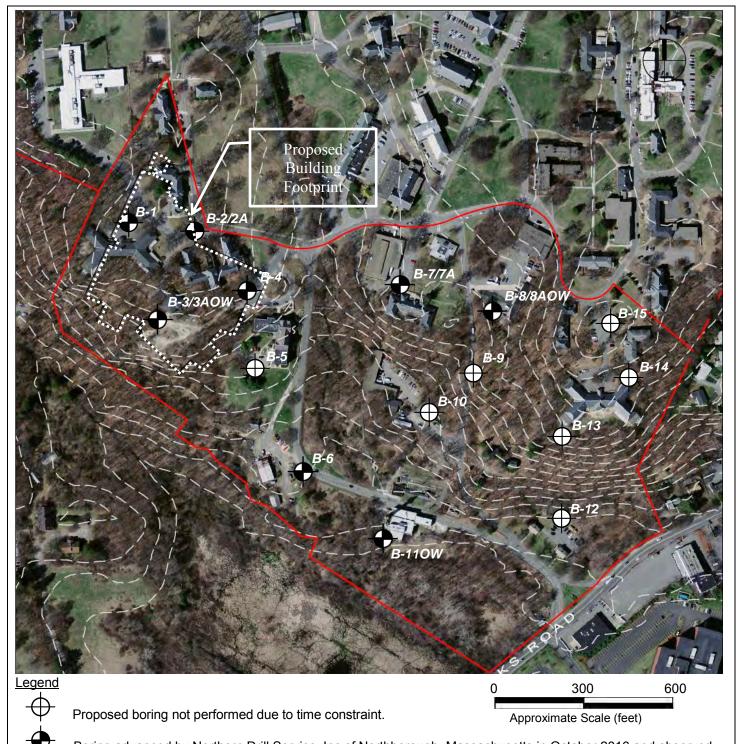
Table 1 - Summary of LGCI Borings
Proposed Waltham High School - Fernald Site Study
Waltham, MA
LGCI Project No. 1616


Boring No.	Ground Surface Elevation (ft.) ¹	Bottom of Topsoil/Subsoil Depth / El. (ft.)	Bottom of Fill Depth / El. (ft.)	Bottom of Sand & Gravel Depth / El. (ft.)	Refusal Depth / El. (ft.)	Bottom of Boring Depth / El. (ft.)
B-1	157.30	2.4 / 154.9	- / -	- / -	- / -	20 / 137.3
B-2/2A	158.20	2.5 / 155.7	- / -	3.5 / 154.7	3.5 / 154.7	8.5 / 149.7
B-3/3AOW	135.60	- / -	7.5 / 128.1	- / -	10 / 125.6	10 / 125.6
B-4	142.70	0.5 / 142.2	4 / 138.7	14 / 128.7	19.3 / 123.4	19.3 / 123.4
B-6 ⁴	77.20	- / -	4 / 73.2	- / -	- / -	4 / 73.2
B-7/7A	154.40	- / -	1.5 / 152.9	- / -	1.5 / 152.9	3.5 / 150.9
B-8/8AOW	158.40	- / -	11 / 147.4	- / -	11 / 147.4	11 / 147.4
B-110W⁴	61.40	- / -	16 / 45.4	- / -	- / -	16 / 45.4

^{1.} The ground surface elevations were provided to us by SMMA in an email dated November 21, 2016.

^{2.} Groundwater was not observed in the borings.

^{3. &}quot;-" means layer not encountered.


^{4.} Halted drilling when environmental conditon observed. Contacted SMMA and project environmental engineer.

Contour Intervals: 3 meters

Figure based on USGS topographic map of Waltham, MA obtained from www.mytopo.com/maps

Symmes Maini & McKee Associates	Project: Proposed Waltham High School – Fernald Site Study	Figure 1 – Site Location Map		
TOOT	Project Location:	LGCI Project No.:	Date:	
Lahlaf Geotechnical Consulting, Inc.	Waltham, MA	1616	Nov. 2016	

Boring advanced by Northern Drill Service, Inc of Northborough, Massachusetts in October 2016 and observed by LGCI.

Note: Figure based on plan titled: "Waltham High School, Fernald Site, Waverly Oaks Street, Waltham, MA," prepared by Symmes, Maini, & McKee Associates and dated September 28, 2016. LGCI received the plan via email from SMMA.

Symmes Maini & McKee Associates	Proposed Waltham High School – Fernald Site Study	Figure 2 – Boring Location Plan		
Lahlaf Geotechnical Consulting, Inc.	Project Location: Waltham, MA	LGCI Project No.:	Date: Dec. 2016	

Boring B-1 Page 1 of 1

Project: Propos	Project: Proposed Waltham High School - Fernald Site Study, Waltham, MA									
Client: Symme	t: Symmes Maini & McKee Associates LGCI Project No.:									
Drilling Subcontractor	: Northern Drill Service, Inc.	Date Started:	10/26/2016							
Drilling Foreman:	Tim Tucker	Date Completed:	10/26/2016							
LGCI Engineer:	Andrew Jefferson	Location:	NW corner of site							
Ground Surface El:	El. 157.3' (see remark 1)	Total Depth:	20 feet							
Groundwater Depth:	N/E	Drill Rig Type:	B-48 Mobile ATV Rig							
		Drilling Method:	4" casing (drive and wash)							
Hammer Weight:	140 lbs	Split Spoon Diameter:	ID - 1.375", OD - 2"							
Hammer Type:	ammer Type: Automatic		N/A							
Drop:	30 inches									

Depth	Sample	Sample	ВІ	ows pe	r 6 inch	es	Pen	Rec	Remarks	Strata	Sample Description
Scale	Depth (ft)	No	0-6	6-12	12-18	18-24	(in)	(in)	Rer		
	0-2	S1	4	6	6	5	24	20		Topsoil/	S1 - Topsoil
										Subsoil	
	2-4	S2	3	18	30	18	24	6		~2.4'	S2 - Top 5": Silty SAND with Gravel (SM), fine, trace medium to
											coarse, ~20% fines, trace of organic fines, ~20% coarse angular gravel, trace of roots, orange to brown, moist (subsoil)
5ft	4-6	S3	16	32	50	62	24	18			Bot. 1": Well Graded SAND with Silt and Gravel (SW-SM), fine to
											coarse, 5-10% fines, ~15% fine to coarse angular gravel, gray, moist (natural)
											S3 - Silty SAND with Gravel (SM), fine to medium, trace coarse,
											25-30% fines, 30-35% fine to coarse angular gravel, gray, wet (natural)
10ft	9-11	S4	37	37	28	26	24	16			S4 - Silty SAND (SM), fine to medium, trace coarse, 20-25% fines, 10-15% fine angular gravel, gray, wet
									2	Sand	
										and Gravel	
											S5 - Similar to S4
15ft	14-16	S5	21	34	58	91	24	8			
											CC. No recovery around in the
20ft	19-21	S6	68	100			12	0		~20'	S6 - No recovery, gravel in tip
											Bottom of boring at 20 feet. Backfilled borehole with drill
											cuttings.

The ground surface elevations were provided to us by SMMA in an email dated November 21, 2016.
 Drill rod chatter at 12 feet. Possible boulder about 1 foot in diameter.

Project: Propos	Project: Proposed Waltham High School - Fernald Site Study, Waltham, MA									
Client: Symme	Symmes Maini & McKee Associates LGCI Project No.: 16									
Drilling Subcontractor	: Northern Drill Service, Inc.	Date Started:	10/26/2016							
Drilling Foreman:	Tim Tucker	Date Completed:	10/26/2016							
LGCI Engineer:	Andrew Jefferson	Location:	North of West Building							
Ground Surface El:	El. 158.2' (see remark 1)	Total Depth:	8.5 feet							
Groundwater Depth:	N/E	Drill Rig Type:	B-48 Mobile ATV Rig							
		Drilling Method:	4" casing (drive and wash)							
Hammer Weight:	140 lbs	Split Spoon Diameter:	ID - 1.375", OD - 2"							
Hammer Type:	ammer Type: Automatic		N/A							
Drop:	30 inches									

Depth	Sample	Sample	ВІ	ows pe	r 6 inch	es	Pen	Rec	Remarks	Strata	Sample Description
Scale	Depth (ft)	No	0-6	6-12	12-18	18-24	(in)	(in)	Rer		
	0-2	S1	6	5	7	6	24	16		Topsoil/	S1 - Topsoil, subsoil in tip
										Subsoil	
	2-4	S2	5	7	13	50/0	18	6		~2.5' Sand	S2 - Silty SAND (SM), fine, trace medium to coarse, 20-25%
										~3.5'	fines, trace of organic fines, trace of roots, light brown, moist (subsoil) (trace gray sand in tip)
5ft	3.5-8.5	C1					60	60			C1 - 3, 4, 5, 3.5, 4.5 min/ft
										Bedrock	Hard, slightly weathered to fresh, slightly to moderately fractured, dark gray to pink, white mottles, DIORITE,
											REC=100%, RQD=90%
										~8.5'	
10ft											
											Bottom of boring at 8.5 feet. Backfilled borehole with drill
											cuttings.
15ft											
20ft											
.										l	

- The ground surface elevations were provided to us by SMMA in an email dated November 21, 2016.
 Refusal at 3.5 feet. Offset boring ~5' east (B-2A) and encountered refusal at 3.5 feet again, began coring at 3.5 feet.

Project: Propos	sed Waltham High School - Fernal	d Site Study, Waltham,	MA
Client: Symme	es Maini & McKee Associates		LGCI Project No.: 1616
Drilling Subcontractor	: Northern Drill Service, Inc.	Date Started:	10/26/2016
Drilling Foreman:	Tim Tucker	Date Completed:	10/26/2016
LGCI Engineer:	Andrew Jefferson	Location:	South of Seguin Hall
Ground Surface El:	El. 135.6' (see remark 1)	Total Depth:	10 feet
Groundwater Depth:	N/E	Drill Rig Type:	B-48 Mobile ATV Rig
		Drilling Method:	4" casing (drive and wash)
Hammer Weight:	140 lbs	Split Spoon Diameter:	ID - 1.375", OD - 2"
Hammer Type:	Automatic	Rock Core Barrel Size:	N/A
Drop:	30 inches		

Depth	Sample	Sample	ВІ	ows pe	r 6 inch	es	Pen	Rec	Remarks	Strata	Sample Description
Scale	Depth (ft)	No	0-6	6-12	12-18	18-24	(in)	(in)	Rer		
	0-2	S1	11	14	19	11	24	10			S1 - Well Graded SAND with Silt and Gravel (SW-SM), fine to coarse, 10-15% fines, ~15% fine to coarse angular gravel, trace
	2-4	S2	10	11	11	14	24	12			of organics, dark brown, moist (fill) S2 - Similar to S1, brick fragments
5ft	4-6	S3	28	4	4	2	24	6		Fill	S3 - Similar to S1, brick fragments, wet
	6-8	S4	3	3	9	20	24	6			S4 - Top 5": Silty GRAVEL with Sand (GM), fine to coarse, 15- 20% fines, 30-35% fine to coarse sand, brown, moist
	0.10	S5	43	70	60/5		17	10	2	-7.5' Silty	Det 4% Silty SAND with Gravel (SAA) fine to medium trees
10ft	8-10	55	43	72	60/5		17	10		Sand ~10'	Bot. 1": Silty SAND with Gravel (SM), fine to medium, trace coarse, ~15% fines, ~15% fine angular gravel, gray, moist (natural)
									3		S5 - Silty SAND with Gravel (SM), fine to coarse, 20-25% fines, ~20% fine to coarse angular gravel, gray, moist
											Bottom of boring at 10 feet. Installed groundwater observation well to 10 feet. See groundwater observation well installation
15ft											report for details.
20ft											

- The ground surface elevations were provided to us by SMMA in an email dated November 21, 2016.
 Strata transition assumed based on blow counts.
- 3. Refusal of casing at 10 feet. Offset boring ~5 feet south (B-3AOW) and encountered refusal at 10 feet, installed groundwater observation well.

GROUNDWATER OBSERVATION WELL INSTALLATION REPORT

Boring No. : **B-3AOW**

Page 1/1

roject Name:		nam High Scho	ol - Fernald Site Study						
GCI Project Number:	1616		_						
Client:	•		McKee Associates						
Orilling Subcontractor:	Northern Drill Servi	ce, Inc.	Date Started:	10/27/16					
Drilling Foreman:	Tim Tucker		Date Completed:	10/27/16					
LGCI Engineer:	Andrew Jefferson		Location:	South of Seguin Hall					
Ground Surface Elevation:	El. 135.6'		Total Depth of Boring:	10 feet					
Ground Water Depth:	N/E		Drill Rig Type:	B-48 Mobile ATV Rig					
			Drilling Method:	4" casing (drive and wash)					
		Riser Stickup ~0" at	pove ground surface						
GENERAL SOIL CONDITIONS	-	THICKNESS OF SURFA	CE SEAL	6 inches					
(not to scale)		TYPE OF SURFACE SE		Concrete					
(Hot to scale)		TITE OF SORT AGE SE	AL .	Ochorete					
	-	TYPE OF SURFACE CA	SING	Road box					
		D OF SURFACE CASIN		4 inches					
		DEPTH TO BOTTOM OF		8 inches					
	1								
		D OF RISER PIPE		2 inches					
	-	TYPE OF RISER PIPE		PVC Schedule 40					
	-	TYPE OF BACKFILL AR	OUND RISER PIPE	Drill Cuttings					
		DEPTH TO TOP OF SEA	NL	3.5 feet					
	-	TYPE OF SEAL		Bentonite chips					
		DEPTH TO BOTTOM OF	SEAL	4 feet					
		DEPTH TO TOP OF PER	RVIOUS SECTION	5 feet					
		TYPE OF PERVIOUS SE	ECTION	PVC Schedule 40					
		DESCRIBE OPENINGS		Slotted					
		D OF PERVIOUS SECT	ION	2 inches					
		TYPE OF BACKFILL AR	OUND PERVIOUS SECTION	Filter sand					
		DEPTH TO BOTTOM OF	PERVIOUS SECTION	10 feet					
	1	DEPTH TO BOTTOM OF	SAND COLUMN	10 feet					
	-	TYPE OF BACKFILL BE	LOW PERVIOUS SECTION	Filter sand					
	1	DIAMETER OF BOREHO	DLE	4 inches					
	1	DEPTH TO BOTTOM OF	BOREHOLE	10 feet					

Project: Prop	osed Waltham High School - Fernal	d Site Study, Waltham	, MA
Client: Symr	mes Maini & McKee Associates		LGCI Project No.: 1616
Drilling Subcontract	or: Northern Drill Service, Inc.	Date Started:	10/27/2016
Drilling Foreman:	Tim Tucker	Date Completed:	10/27/2016
LGCI Engineer:	Andrew Jefferson	Location:	South of West Building
Ground Surface El:	El. 142.7' (see remark 1)	Total Depth:	19.3 feet
Groundwater Depth	: N/E	Drill Rig Type:	B-48 Mobile ATV Rig
		Drilling Method:	4" casing (drive and wash)
Hammer Weight:	140 lbs	Split Spoon Diameter:	ID - 1.375", OD - 2"
Hammer Type:	Automatic	Rock Core Barrel Size	:: N/A
Drop:	30 inches		

Depth	Sample	Sample	Ble	ows pe	r 6 inch	es	Pen	Rec	Remarks	Strata	Sample Description
Scale	Depth (ft)	No	0-6	6-12	12-18	18-24	(in)	(in)	Ren		
	0-2	S1	4	6	12	12	24	16		Topsoil	S1 - Top 6": Topsoil and Subsoil
											Bot. 10": Well Graded SAND with Silt and Gravel (SW-SM), fine
	2-4	S2	23	27	25	26	24	12		Fill	to coarse, ~5% fines, ~20% fine to coarse angular gravel, light brown, moist (fill)
										-a·	S2 - Silty SAND with Gravel (SM), fine to medium, trace coarse,
5ft	4-6	S3	21	26	24	41	24	16		77777	20-25% fines, trace of roots, ~15% fine to coarse angular gravel, light brown, moist (fill)
Sit	_										S3 - Poorly Graded SAND with Silt (SP-SM), fine, trace medium,
											5-10% fines, trace fine angular gravel, light brown, moist (natural)
											(1.616.61)
										Sand	
405	9-11	S4	16	17	50	44	24	12		and Gravel	S4 - Top 6": Similar to S3
10ft	3-11	04	10	- 17	30	77	27	12			Bot. 6": Well Graded GRAVEL with Silt and Sand (GW-GM), fine to coarse, angular, 10-15% fines, 20-25% fine to coarse sand,
											gray, wet
	11 10	0.5	40		0.4	60	24	20		~14'	
15ft	14-16	S5	43	63	81	62	24	20			S5 - Silty SAND with Gravel (SM), fine to coarse, 30-35% fines,
										Weathere	slightly plastic, 20-25% fine to coarse gravel, gray, wet
										d Rock	(weathered rock)
										~19.3'	S6 - Similar to S5
20ft	19-21	S6	100/3				3	3			Bottom of boring at 19.3 feet. Backfilled borehole with drill
											cuttings.
Domar											

^{1.} The ground surface elevations were provided to us by SMMA in an email dated November 21, 2016.

Project: Propo s	sed Waltham High School - Fernal	d Site Study, Waltham,	MA
Client: Symm	es Maini & McKee Associates		LGCI Project No.: 1616
Drilling Subcontractor	r: Northern Drill Service, Inc.	Date Started:	10/28/2016
Drilling Foreman:	Tim Tucker	Date Completed:	10/28/2016
LGCI Engineer:	Andrew Jefferson	Location:	East of grounds department
Ground Surface El:	El. 77.2' (see remark 1)	Total Depth:	4 feet
Groundwater Depth:	N/E	Drill Rig Type:	B-48 Mobile ATV Rig
		Drilling Method:	4" casing (drive and wash)
Hammer Weight:	140 lbs	Split Spoon Diameter:	ID - 1.375", OD - 2"
Hammer Type:	Automatic	Rock Core Barrel Size:	N/A
Drop:	30 inches		

Depth	Sample	Sample	ВІ	ows pe	r 6 inch	es	Pen	Rec	Remarks	Strata	Sample Description
Scale	Depth (ft)	No	0-6	6-12	12-18	18-24	(in)	(in)	Rer		
	0.5-2	S1	7	11	16		18	6		Asphalt	Drilled through about 4" of asphalt and concrete
										75	S1 - Silty GRAVEL with Sand (GM), fine to coarse, angular, ~15%
	2-4	S2	8	24	14	4	24	3		Fill	fines, ~20% fine to coarse sand, trace of asphalt and concrete, brown and gray, wet
						-					S2 - Similar to S1, petroleum odor
									_	///4///	D
5ft									2		Bottom of boring at 4 feet. Backfilled borehole with drill cuttings.
											Cattings.
10ft											
15ft											
20ft									1		
2011											

- The ground surface elevations were provided to us by SMMA in an email dated November 21, 2016.
 Halted drilling and notified SMMA and environmental engineer after petroleum odor noted at 2-4 feet. Environmental Engineer obtained sample S2 for analytical tests.

Project: Propos	sed Waltham High School - Fernal	d Site Study, Waltham,	MA
Client: Symme	es Maini & McKee Associates		LGCI Project No.: 1616
Drilling Subcontractor	: Northern Drill Service, Inc.	Date Started:	10/27/2016
Drilling Foreman:	Tim Tucker	Date Completed:	10/27/2016
LGCI Engineer:	Andrew Jefferson	Location:	Between Lavers and Laundry/AEC blg.
Ground Surface El:	El. 154.4' (see remark 1)	Total Depth:	3.5 feet
Groundwater Depth:	N/E	Drill Rig Type:	B-48 Mobile ATV Rig
		Drilling Method:	4" casing (drive and wash)
Hammer Weight:	140 lbs	Split Spoon Diameter:	ID - 1.375", OD - 2"
Hammer Type:	Automatic	Rock Core Barrel Size:	N/A
Drop:	30 inches		

Depth	Sample	Sample	ВІ	ows pe	r 6 inch	es	Pen	Rec	Remarks	Strata	Sample Description
Scale	Depth (ft)	No	0-6	6-12	12-18	18-24	(in)	(in)	Ren		
	0-2	S1	4	7	6	60/3"	21	16		Fill	S1 - Silty SAND (SM), fine to coarse, ~15% fines, ~10% fine
									2	///5//	angular gravel, traces of asphalt, brown to gray, moist (fill)
	2-5	C1					18	18		Bedrock	C1 - 10, 5/0.5 min/ft
									3	~3.5'	Hard, slightly weathered to fresh, slightly to moderately fractured, dark gray to pink, white mottles, DIORITE,
5ft											REC=100%, RQD=89%
											Bottom of boring at 3.5 feet. Backfilled borehole with drill
											cuttings.
10ft											
15ft											
20ft											

- The ground surface elevations were provided to us by SMMA in an email dated November 21, 2016.
 Hard drilling at 18". Offset boring ~5 feet west (B-7A), refusal at 18", began coring.
 Core barrel jammed at 3.5 feet.

Boring B-8/8AOW Page 1 of 1

Project: Propos	sed Waltham High School - Fernal	d Site Study, Waltham,	MA
Client: Symme	es Maini & McKee Associates		LGCI Project No.: 1616
Drilling Subcontractor	: Northern Drill Service, Inc.	Date Started:	10/27/2016
Drilling Foreman:	Tim Tucker	Date Completed:	10/28/2016
LGCI Engineer:	Andrew Jefferson	Location:	East of Oak Street
Ground Surface El:	El. 158.4' (see remark 1)	Total Depth:	11 feet
Groundwater Depth:	N/E	Drill Rig Type:	B-48 Mobile ATV Rig
		Drilling Method:	4" casing (drive and wash)
Hammer Weight:	140 lbs	Split Spoon Diameter:	ID - 1.375", OD - 2"
Hammer Type:	Automatic	Rock Core Barrel Size	: N/A
Drop:	30 inches		

Depth	Sample	Sample	Ble	ows pe	r 6 inch	es	Pen	Rec	Remarks	Strata	Sample Description
Scale	Depth (ft)	No	0-6	6-12	12-18	18-24	(in)	(in)	Ren		
	0.5-2	S1	8	8	7		18	0		Asphalt	Drilled through ~3" of asphalt
											S1 - No recovery
	2-4	S2	11	50	17	17	24	6			S2 - Silty SAND (SM), fine to coarse, ~15% fines, ~10% fine
											angular gravel, gray, wet (fill)
5ft	4-6	S3	65	14	10	6	24	4			S3 - Rock fragments
Jit	. •							•			oo nookii agiinonto
	6-8	S4	5	8	8	5	24	4		77	S4 - Silty SAND (SM), fine to medium, trace coarse, 25-30%
								•			fines, trace oforganic fines, 5-10% fine angular gravel, brown,
	8-10	S5	8	10	8	17	24	8			wet (fill) S5 - Well Graded GRAVEL with Silt (GW-GM), fine to coarse,
400	0 10		0	10		- ' '					angular, ~20% fines, brown, wet (fill)
10ft	10-12	S6	50/3"				3	3	2		S6 - Silty SAND with Gravel (SM), fine to medium, trace coarse, 25-30% fines, trace of organic fines, roots, 15-20% fine angular
	10-12	- 50	50/3				<u> </u>	3	2	//-11*//	gravel, brown, wet (fill)
											Datters of housing at 11 feet heatelled around rates about at
											Bottom of boring at 11 feet. Installed groundwater observation well to 11 feet. See groundwater observation well installation
											report for details.
15ft											
20ft											

- The ground surface elevations were provided to us by SMMA in an email dated November 21, 2016.
 Spoon and casing refusal at 10.3 feet. Offset boring about 5' north (B-8AOW), refusal at 11 feet, installed groundwater observation well.

GROUNDWATER OBSERVATION WELL INSTALLATION REPORT

Boring No. : **B-8AOW**

Page 1/1

roject Name:	Proposed Waltham High School - Fernald Site Study 1616										
.GCI Project Number:		Makaa Assas	2400								
Client:	Symmes Maini 8			10/00/10							
Drilling Subcontractor:	Northern Drill Service	e, Inc.	Date Started:	10/28/16							
Drilling Foreman:	Tim Tucker		Date Completed:	10/28/16							
LGCI Engineer:	Andrew Jefferson		Location:	East of Oak Street							
Ground Surface Elevation:	158.4'		Total Depth of Boring:	11 feet							
Ground Water Depth:	N/E		Drill Rig Type:	B-48 Mobile ATV Rig							
			Drilling Method:	4" casing (drive and wash)							
	Ri	ser Stickup ~0" abo	ve ground surface								
GENERAL SOIL CONDITIONS	Tu	IICKNESS OF SURFACE	- CEAL	6 inches							
		PE OF SURFACE SEAL		Concrete							
(not to scale)	ΙΥ	PE OF SURFACE SEAL	-	Concrete							
	TY	PE OF SURFACE CASII	NG	Road box							
	ID	OF SURFACE CASING		4 inches							
	DE	PTH TO BOTTOM OF C	ASING	8 inches							
	ID	OF RISER PIPE		2 inches							
	TY	PE OF RISER PIPE		PVC Schedule 40							
	TY	PE OF BACKFILL AROL	JND RISER PIPE	Drill Cuttings							
	DE	PTH TO TOP OF SEAL		4.5 feet							
	TY	PE OF SEAL		Bentonite chips							
	DE	PTH TO BOTTOM OF S	EAL	5 feet							
	DE	EPTH TO TOP OF PERV	IOUS SECTION	6 feet							
	TY	PE OF PERVIOUS SEC	TION	PVC Schedule 40							
	DE	SCRIBE OPENINGS		Slotted							
	ID	OF PERVIOUS SECTIO	N	2 inches							
	тү	PE OF BACKFILL AROL	JND PERVIOUS SECTION	Filter sand							
	DE	EPTH TO BOTTOM OF P	PERVIOUS SECTION	11 feet							
	DE	EPTH TO BOTTOM OF S	AND COLUMN	11 feet							
	TY	PE OF BACKFILL BELO	W PERVIOUS SECTION	Filter sand							
	DIA	AMETER OF BOREHOLI	E	4 inches							
	DE	PTH TO BOTTOM OF B	OREHOLE	11 feet							

Project: Proposed Waltham High School - Fernald Site Study, Waltham, MA										
Client: Symme	Symmes Maini & McKee Associates LGCI Project No.: 1									
Drilling Subcontractor	: Northern Drill Service, Inc.	Date Started:	10/28/2016							
Drilling Foreman:	Tim Tucker	Date Completed:	10/28/2016							
LGCI Engineer:	Andrew Jefferson	Location:	SW of power plant							
Ground Surface El:	El. 61.4' (see remark 1)	Total Depth:	16 feet							
Groundwater Depth:	N/E	Drill Rig Type:	B-48 Mobile ATV Rig							
		Drilling Method:	4" casing (drive and wash)							
Hammer Weight:	140 lbs	Split Spoon Diameter: ID - 1.375", OD - 2"								
Hammer Type:	Automatic	Rock Core Barrel Size:	N/A							
Drop:	30 inches									

Depth	Sample	Sample	ВІ	ows pe	r 6 inch	es	Pen	Rec	Remarks	Strata	Sample Description
Scale	Depth (ft)	No	0-6	6-12	12-18	18-24	(in)	(in)	Rer		
	0-2	S1	1	1	2	3	24	16			S1 - Poorly Graded SAND (SP), fine, trace medium, ~5% fines, light brown, moist (fill)
	2-4	S2	3	3	2	2	24	16			S2 - Similar to S1
5ft	4-6	S3	2	1	1	1	24	10			S3 - Similar to S1
	6-8	S4		WOH	 - -		24	10			S4 - Similar to S1
	8-10	S5	2	2	5	4	24	6		Fid	S5 - Poorly Graded GRAVEL (GP), fine, trace coarse, angular, wet (fill)
10ft	10-12	S6	6	6	9	9	24	12			S6 - Similar to S5
	12-14	S7	12	11	9	12	24	12			S7 - Similar to S5, tip contained silty sand and petroleum odor
15ft	14-16	S8	14	13	20	27	24	12			S8 - Similar to S5, petroleum in sample
									2	<u>//-</u> 116*/)	Bottom of boring at 16 feet. Installed groundwater observation well to 14 feet. See groundwater observation well installation report for details.
20ft											

- The ground surface elevations were provided to us by SMMA in an email dated November 21, 2016.
 Halted drilling and notified SMMA and environmental engineer after petroleum odor noted at 14-16 feet. Environmental Engineer obtained sample S8 for analytical tests.

GROUNDWATER OBSERVATION WELL INSTALLATION REPORT

Boring No. : **B-110W**

Page 1/1

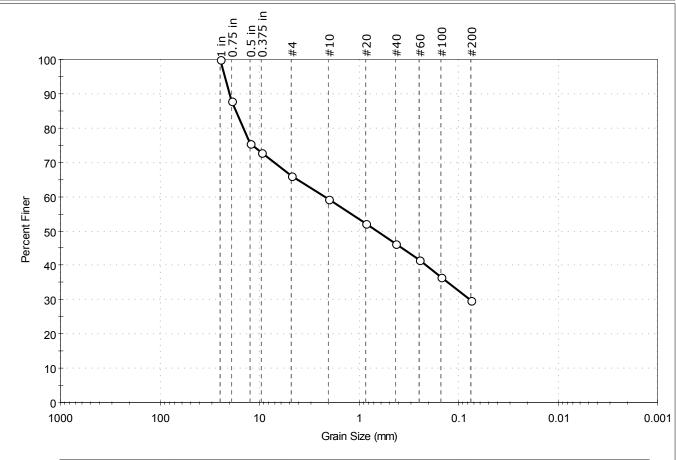
GCI Project Number:	1616 Symmes Maini & McKee Associates								
lient:									
rilling Subcontractor:	Northern Drill Se	ervice, Inc.	Date Started:	10/28/16					
Orilling Foreman:	Tim Tucker		Date Completed:	10/28/16					
LGCI Engineer:	Andrew Jefferso	on	Location:	SW of power plant 16 feet					
Ground Surface Elevation:	El. 61.4'		Total Depth of Boring:						
Ground Water Depth:	N/E		Drill Rig Type:	B-48 Mobile ATV Rig					
			Drilling Method:	4" casing (drive and wash)					
		Riser Stickup ~2' a	above ground surface						
GENERAL SOIL				NIA					
CONDITIONS		THICKNESS OF SURF		N/A					
(not to scale)		TYPE OF SURFACE S	SEAL	N/A					
		TYPE OF SURFACE C	CASING	N/A					
		ID OF SURFACE CAS		N/A					
		DEPTH TO BOTTOM (OF CASING	N/A					
		ID OF RISER PIPE		2 inches					
	1 1 1 1	TYPE OF RISER PIPE		PVC Schedule 40					
		THEORNOLIVE		1 VO Genedale 40					
		TYPE OF BACKFILL A	ROUND RISER PIPE	Drill Cuttings					
		DEPTH TO TOP OF SE	EAL	3 feet					
		TYPE OF SEAL		Bentonite chips					
		DEPTH TO BOTTOM (DF SEAL	3.5 feet					
		DEPTH TO TOP OF PE	ERVIOUS SECTION	4 feet					
		TYPE OF PERVIOUS	SECTION	PVC Schedule 40					
		DESCRIBE OPENINGS	S	Slotted					
		ID OF PERVIOUS SEC	CTION	2 inches					
		TYPE OF BACKFILL A	ROUND PERVIOUS SECTION	Filter sand					
	<u></u>	DEPTH TO BOTTOM (OF PERVIOUS SECTION	14 feet					
		DEPTH TO BOTTOM (DF SAND COLUMN	16 feet					
		TYPE OF BACKFILL B	ELOW PERVIOUS SECTION	Filter sand					
		DIAMETER OF BORE	HOLE	4 inches					
		DEPTH TO BOTTOM (OF BOREHOLE	16 feet					

Client: Lahlaf Geotechnical Consulting

Project: Waltham High School

Location: Waltham, MA Project No: GTX-304659

Boring ID: B-1 Sample Type: jar Tested By: jbr Sample ID: S3 Test Date: 11/10/16 Checked By: emm


Depth: 4-6 ft Test Id: 397499

Visual Description: Moist, gray silty sand with gravel

Sample Comment: ---

Test Comment:

Particle Size Analysis - ASTM D422

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	33.8	36.4	29.8

Sieve Name Sieve Size, mm I		Percent Finer	Spec. Percent	Complies
1 in	25.00	100		
0.75 in	19.00	88		
0.5 in	12.50	76		
0.375 in	9.50	73		
#4	4.75	66		
#10	2.00	59		
#20	0.85	52		
#40	0.42	46		
#60	0.25	42		
#100	0.15	37		
#200	0.075	30		

<u>Coefficients</u>						
D ₈₅ =17.2607 mm	$D_{30} = 0.0762 \text{ mm}$					
D ₆₀ = 2.2070 mm	$D_{15} = N/A$					
D ₅₀ = 0.6536 mm	$D_{10} = N/A$					
$C_u = N/A$	$C_C = N/A$					

ASTM N/A Classification

AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description
Sand/Gravel Particle Shape: ANGULAR
Sand/Gravel Hardness: HARD

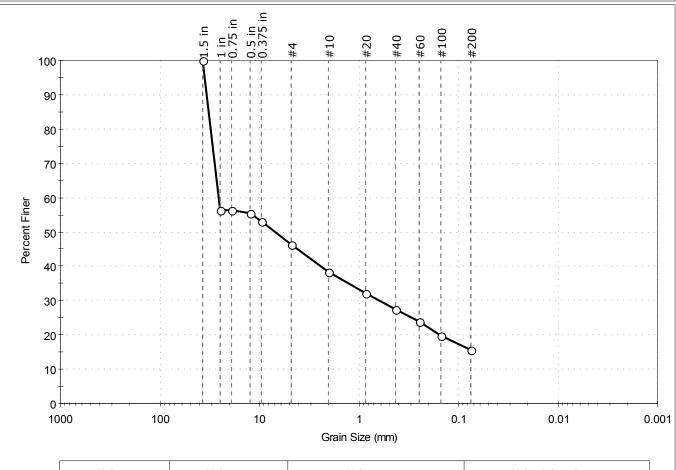
printed 11/10/2016 12:03:13 PM

Client: Lahlaf Geotechnical Consulting

Project: Waltham High School

Location: Waltham, MA Project No: GTX-304659

Boring ID: B-3 Sample Type: jar Tested By: jbr Sample ID: S4 Test Date: 11/10/16 Checked By: emm


Depth: 6-8 ft Test Id: 397500

Test Comment: ---

Visual Description: Moist, brown silty gravel with sand

Sample Comment: ---

Particle Size Analysis - ASTM D422

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	53.6	30.9	15.5

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1.5 in	37.50	100		
1 in	25.00	56		
0.75 in	19.00	56		
0.5 in	12.50	56		
0.375 in	9.50	53		
#4	4.75	46		
#10	2.00	38		
#20	0.85	32		
#40	0.42	28		
#60	0.25	24		
#100	0.15	20		
#200	0.075	16		

<u>000111</u>	<u>occiniolorits</u>						
D ₈₅ = 32.6313 mm	$D_{30} = 0.6154 \text{ mm}$						
D ₆₀ = 25.8804 mm	$D_{15} = N/A$						
D ₅₀ = 6.8643 mm	$D_{10} = N/A$						
$C_u = N/A$	$C_c = N/A$						

Coefficients

ASTM N/A Classification

AASHTO Stone Fragments, Gravel and Sand (A-1-b (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ANGULAR

Sand/Gravel Hardness : HARD

SMITH & WESSEL ASSOCIATES, INC.

HAZARDOUS BUILDING MATERIALS AND AIR QUALITY SPECIALISTS

APPENDIX K3

May 16, 2016

Ms. Lauren Konetzny CDW Consultants, Inc. Project Manager 40 Speen Street, Suite 301 Framingham, MA 01701

Ref: Limited assessment for hazardous building materials; former Walter E Fernald Development Center, Waltham, Massachusetts

Dear Ms. Konetzny:

CDW Consultants, Inc. (CDW) retained Smith & Wessel Associates, Inc. (SWA) to conduct a limited assessment for suspect asbestos-containing building materials (ACBM) at 30 buildings located on the campus of the former Walter E. Fernald Development Center, 190 Trapelo Road in Waltham, Massachusetts. SWA's qualified Asbestos Inspector, Gary Buda, conducted the assessment on May 4th and 6th, 2016.

The buildings at 190 Trapelo Road are primarily free-standing brick and steel buildings and a few wood-frame houses used in the past as service buildings, residence halls and facilities buildings. Smaller facilities buildings were composed primarily of CMU blocks. The roofs of each building varied between flat rubber membrane, slate shingle and asphalt shingle. Interior finishes included floor tile, carpet and gypsum wallboard.

Asbestos Assessment

The purpose of the limited asbestos assessment was to note the general types and locations of suspect ACBM throughout the buildings. As per client's request, SWA did not conduct sampling and analysis of suspect materials for asbestos content.

SWA's site visit included a walk-through visual assessment of readily accessible and observable areas throughout the buildings (including the basement and exterior) and addressed the following categories of materials:

- Thermal system insulation (TSI), such as insulation on pipes, boilers, tanks and related equipment;
- Surfacing material, acoustical and decorative plasters, fireproofing and other sprayed or trowel applications; and
- Miscellaneous materials, such as window caulking, wallboard, floor tile, adhesives, and other building materials that are not TSI or surfacing materials.

188 GREENVILLE STREET TELEPHONE: (978) 346-4800 FAX: (978) 346-7265

SPENCER, MA 01562

Based on our experience and evaluation of factors such as material type, age of installation, appearance, we categorized suspect ACBM as having a low, medium or high probability of containing asbestos. However, this evaluation is subjective and only representative sampling and analysis can verify a building materials asbestos content.

During SWA's assessment of the buildings, we prepared an inventory of suspect ACBM to establish cost estimates if all materials required remediation. The cost estimate is based on current industry standards that may fluctuate rapidly based on a variety of factors: the prevailing economic climate, seasonal differences, union labor considerations, scale of the abatement, occupancy of the building, and so on. We recommend that qualified abatement contractors be solicited to determine actual pricing involved. In addition to pricing for abatement, we have considered anticipated industrial hygiene costs associated with abatement, including air monitoring and oversight of the abatement.

We did not include an estimated remediation cost for those materials determined to have a low probability of containing asbestos. This included materials that were of newer vintage.

Estimated Costs for Known & Assumed ACBM						
Type of Material & General Location	Probability to Contain Asbestos (low, medium, high)	Quantity / Unit cost (\$)	Total Estimated Cost (\$)			
Bldg #12 – South Nurses						
Gypsum board and associated joint compound	Low	NA	NA			
Yellow carpet glue	Low	NA	NA			
Orange and White 12" x 12" floor tile and associated mastic (newer vintage)	Low	NA	NA			
3-tab roofing shingles	Low	NA	NA			
Bldg #15 – Main Garage						
Gray window glazing on 16-pane windows	High	10 ea. @ 200/ea.	2,000.			
Black tar flashing on roof	High	800 sf @5/sf	4,000.			
Bldg #16 – Storeroom						
Black roof tar flashing	High	1,000 sf @ 5/sf	5,000.			
Gray exterior window glazing on 12-pane windows	High	60 ea. @ 200/ea.	12,000.			
Mudded pipe fittings in basement	High	3 ea. @ /50	150.			
Bldg #17 – Cottage 17 – No Access						
Gray exterior window glazing on 12-pane windows	High	25 ea. @ 200/ea.	5,000.			
3-tab roofing shingles	Low	NA	NA			

Estimated Costs for Known & Assumed ACBM						
Type of Material & General Location	Probability to Contain Asbestos (low, medium, high)	Quantity / Unit cost (\$)	Total Estimated Cost (\$)			
Bldg #18 – Cottage 18 – No Access						
3-tab roofing shingles	Low	NA	NA			
Bldg #19 – ICF 19						
Gypsum board and associated joint compound	Low	NA	NA			
12" x 12" floor tile and associated mastic (newer vintage)	Low	NA	NA			
Bldg #20 – ICF 20						
Gypsum board and associated joint compound	Low	NA	NA			
12" x 12" floor tile and associated mastic (newer vintage)	Low	NA	NA			
Gray exterior window glazing on 3-pane basement windows	High	12 ea. @ 100/ea.	1,200.			
3-tab roofing shingles	Low	NA	NA			
Bldg #21 – Southard Research Lab (Howe Library)						
Gray exterior window glazing on 16-pane windows	High	40 ea. @ 200/ea.	8,000.			
3-tab roofing shingles	Low	NA	NA			
Gypsum board and associated joint compound	Low	NA	NA			
12" x 12" floor tile (older vintage) and associated mastic throughout basement and bathrooms	Medium	4,000 sf @ 3/sf	12,000.			
9" x 9" floor tile and associated mastic assumed under carpet at 22 MacArthur Boulevard	High	520 sf @ 3/sf	1,560.			
Yellow carpet mastic on 1st floor	Low	NA	NA			
Bldg #22 – Therapeutic Equipment Center						
12" x 12" floor tile (older vintage) and associated mastic	Medium	3,000 sf @ 3/sf	9,000.			
Gypsum board and associated joint compound	Low	NA	NA			
Pipe insulation and associated mudded fittings throughout rear warehouse room and basement	High	500 lf @ 22/lf	11,000.			

Estimated Costs for Known & Assumed ACBM						
Type of Material & General Location	Probability to Contain Asbestos (low, medium, high)	Quantity / Unit cost (\$)	Total Estimated Cost (\$)			
Black tar flashing on roof	High	1,000 sf @ 5/sf	5,000.			
Bldg #23 – Lavers – No Access						
Gray exterior window glazing on 3' x 6' windows	High	35 ea. @ 200/ea.	7,000.			
Bldg #24 – Maintenance Building						
Gypsum board and associated joint compound	Low	NA	NA			
Gray exterior window glazing on 12-pane and 18-pane windows	High	50 ea. @ 200/ea.	10,000.			
12" x 12" floor tile (older vintage) and associated mastic in office	Medium	500 sf @ 3/sf	1,500.			
Bldg #26 – Power Plant – No Access						
Pipe insulation, associated mudded fittings and insulation debris on floor, throughout building	High	Unknown quantity	NA			
Bldg #28 – Grounds Garage						
No suspect materials						
Bldg #31 – Truck Garage						
No suspect materials						
Bldg #32 – Tarbell						
12" x 12" floor tile (older vintage) and associated mastic throughout building	Medium	38,000 sf @ 3/sf	114,000.			
Gypsum board and associated joint compound	Low	NA	NA			
Pipe insulation at U-shaped hangers on first floor	High	Unknown quantity	NA			
Gray exterior window glazing on 12-pane windows	High	100 ea. @ 200/ea.	20,000.			
2' x 2' and 2' x 4' ceiling tiles (newer vintage)	Low	NA	NA			
Bldg #33 – West Building – No Access						
Gray exterior window glazing on 12-pane windows	High	80 ea. @ 200/ea.	16,000.			
Bldg #34 – Belmont House– No Access						
Bldg #35 – Seguin Hall						

	s for Known & Assum	Quantity / Unit		
Type of Material & General Location	All & General Location Probability to Contain Asbestos (low, medium, high)		Total Estimated Cost (\$)	
Gypsum board and associated joint compound	Low	NA	NA	
2' x 2' and 2' x 4' ceiling tiles (newer vintage)	Low	NA	NA	
12" x 12" floor tile and associated mastic (newer vintage)	Low	NA	NA	
Tank insulation in basement on 3 small tanks	High	60 sf @ 25/sf	1,500.	
3-tab roofing shingles	Low	NA	NA	
Bldg #36 – McDougal Hall				
Gray exterior window glazing on 12-pane windows	High	50 ea. @ 200/ea.	10,000.	
Mudded pipe fittings in mechanical room	High	20 ea. @ 50/ea	1,000.	
2' x 2' and 2' x 4' ceiling tiles (newer vintage)	Low	NA	NA	
12" x 12" floor tile (older vintage) and associated mastic throughout building	Medium	18,000 sf @ 3/sf	54,000.	
Gypsum board and associated joint compound	Low	NA	NA	
Bldg #37 – Dolan Hall				
Mudded pipe fittings in mechanical room	High	25 ea. @ 50/ea	1,250.	
Gray exterior window glazing on 12-pane windows	High	60 ea. @ 200/ea.	12,000.	
12" x 12" floor tile (older vintage) and associated mastic throughout building	Medium	12,000 sf @ 3/sf	36,000.	
Gypsum board and associated joint compound	Low	NA	NA	
Bldg #46 – Wallace Building – No Access				
2' x 2' ceiling tiles (newer vintage)	Low	NA	NA	
12" x 12" floor tile and associated mastic (newer vintage)	Low	NA	NA	
Gypsum board and associated joint compound	Low	NA	NA	
Bldg #49 – Bowen Hall – No Access				
Gray exterior window glazing on 12-pane windows	High	50 ea. @ 200/ea.	10,000.	

Estimated Costs	Estimated Costs for Known & Assumed ACBM						
Type of Material & General Location	Probability to Contain Asbestos (low, medium, high)	Quantity / Unit cost (\$)	Total Estimated Cost (\$)				
Bldg #55 – Cottage 17 Garage – No Access							
Gray exterior window glazing on 24-pane windows	High	2 ea. @ 200/ea.	400.				
Bldg #56 – ICF 20 Garage							
3-tab roofing shingles	Low	NA	NA				
Bldg #57 – ICF 19 Garage							
3-tab roofing shingles	Low	NA	NA				
Bldg #120 – Old Greenhouse – No Access							
Gray exterior window glazing on 9-pane windows	High	12 ea. @ 200/ea.	2,400.				
3-tab roofing shingles	Low	NA	NA				
Bldg #121 – Vault #14							
Gray exterior window glazing on 12-pane windows	High	2 ea. @ 200/ea.	400.				
Bldg #122 – Electrical Substation – No Access							
Bldg #123 – Maintenance/Plumbing Shop							
3-tab roofing shingles	Low	NA	NA				
Gray exterior window glazing on 12-pane windows	High	8 ea. @ 200/ea.	1,600.				
Bldg #124 – Grounds Dept. – No Access							
	Abater	ment Cost Estimate	374,960.				
	Indus	strial Hygiene Cost	35,000.				
	Т	Cotal Cost Estimate	\$409,960.				

It is important to note that the Power Plant building was locked and we could not assess. The site contact indicated that it was locked and off limits due to damaged asbestos insulations and excessive debris. Typically, components in these type buildings are jacketed in asbestos-containing insulations such as on pipes, boilers, tanks, breeching, etc. SWA recommends that qualified personnel enter this building wearing personal protective equipment to assess conditions and determine cost estimating for remediation. In addition, if joint compound associated with gypsum wallboard or wall plasters were determined to contain asbestos, the cost for remediation would be increased significantly.

Prior to the buildings being impacted by renovations and or demolition, a comprehensive inspection must be conducted to comply with the US EPA National Emission Standards for Hazardous Air Pollutants (NESHAP) and MA DEP requirements.

Exclusions

While SWA endeavored to conduct a thorough walk through and visual assessment of representative locations of the buildings that were safely accessible, some exclusions are warranted. Our limited visual assessment included building areas only; no assessment of soil, debris, subterranean areas, inaccessible crawl spaces, or inaccessible tunnels or trenches was attempted. SWA did not conduct any intrusive investigations to determine for hidden suspect materials such as floor vapor barrier papers, behind facades, within enclosed chases, behind fixed walls and ceilings, under floor finishes, etc.

Because we did not conduct a complete inspection or perform any sampling, our findings and conclusions are based largely on our extensive field experience. A comprehensive inspection of the buildings is necessary before conducting building renovations or demolition to provide accurate information for contractors who may bid on abatement and demolition work.

Attached please find photographic documentation of our site assessment.

If you have any questions regarding this report, please do not hesitate to call me at your earliest convenience.

Respectfully submitted,

SMITH & WESSEL ASSOCIATES, INC.

Gary Buda

Project Manager

Gary Buda

Due to the shere number of buildings with no access and the fact that no sampling was undertaken a minimum of \$1.5M should be carried as a basis for ACM removal.

Photographic Documentation

Building 12, basement

Building 12, exterior

Building 12, interior

Building 12, interior

Building 12, interior

Building 15, exterior

Building 15, garage bay

Building 16, exterior

Building 16, interior

Building 17, exterior

Building 17, exterior

Building 19, exterior

Building 20, exterior

Building 21, exterior

Building 21, first floor

Building 22, warehouse

Building 22, exterior

Building 22, suspect floor tile

Building 22, pipe insulation

Building 23, exterior

Building 24, interior

Building 24, floor tile

Building 26, exterior

Building 26, exterior

Building 28, exterior

Building 28, exterior

Building 31, exterior

Building 32, exterior

Building 32, first floor

Building 35, exterior

Building 36, first floor

Building 36, mechanical room

Building 37, exterior

Building 37, mechanical room

Building 46, first floor

Building 46, suspect floor tile

Building 49, exterior

Building 49, exterior

Building 55, exterior

Building 56, exterior

Building 57, exterior

Building 120, greenhouse

Building 121, exterior

Building 122, electrical substation

West Building, exterior

December 1, 2016

Ms. Lorraine Finnegan Symmes Maini & Mckee 1000 Massachusetts Avenue Cambridge, MA 02138

RE: Hazardous Materials *Preliminary* Costs

Waltham Fernald Site Waltham, Massachusetts

Dear Ms. Finnegan:

CDW Consultants, Inc. (CDW) is pleased to present this preliminary estimate of abatement construction costs based upon the findings of the feasibility hazardous materials survey of select buildings at the Walter E. Fernald Site in Waltham, Massachusetts.

The associated costs for the asbestos abatement and other hazardous materials are presented in the tables on the next page.

Please call if you have any questions or require additional information.

Very truly yours,

CDW CONSULTANTS, INC.

Susan Cahelen

Susan Cahalan, P.G.

Project Manager

Table 1
Abatement Cost Estimates
Waltham Fernald Site
Waltham, Massachusetts

Material Description	Laboratory Sample No.	NESHAP Cat.	Location	Est. Quantity	Units	Unit Cost		Total Cost
	Building #15							
Exterior Window Glaze	12A-12G	Cat. 2 Non-friable ACM	Exterior Windows (6' x 4')	35	Ea	\$ 150.00	\$	5,250.00
Exterior Window Glaze	12A-12G	Cat. 2 Non-friable ACM	Exterior Windows (6' x 3')	15	Ea	\$ 150.00	\$	2,250.00
Exterior Window Glaze	12A-12G	Cat. 2 Non-friable ACM	Exterior Windows (4' x 4')	10	Ea	\$ 130.00	\$	1,300.00
Exterior Window Glaze	12A-12G	Cat. 2 Non-friable ACM	Exterior Windows (3' x 3')	20	Ea	\$ 120.00	\$	2,400.00
Exterior Window Glaze	PACM-Visual	Suspect ACM, Not Sampled	Skylights	32	Ea	\$ 120.00	\$	3,840.00
Exterior Window Caulk	13A-13E	Cat. 2 Non-friable ACM	Exterior Windows	1,450	LF	\$ 14.00	\$	20,300.00
Flex Connectors	PACM-Visual	Suspect ACM, Not Sampled	On HVAC	20	Ea	\$ 100.00	\$	2,000.00
Furnace Components/Insulation	PACM	Suspect ACM, Not Sampled	Basement	1	Ea	\$ 10,000.00	\$	10,000.00
Tank Insulation	PACM	Suspect ACM, Not Sampled	Basement	1	Ea	\$ 5,000.00	\$	5,000.00
Subsurface Transite	PACM	Suspect ACM, Not Sampled	Subsurface	200	LF	\$ 35.00	\$	7,000.00
Pipe Insulation and Fittings	PACM-Visual	Suspect ACM, Not Sampled	Behind Walls/Ceilings/Basement	1,200	LF	\$ 17.00	\$	20,400.00

Table 1
Abatement Cost Estimates
Waltham Fernald Site
Waltham, Massachusetts

Material Description	Laboratory Sample No.	NESHAP Cat.	Location	Est. Quantity	Units	Unit Cost		Total Cost
Building #17 - Cottage								
Exterior Window Glaze	3A-3C	Cat. 2 Non-friable ACM	Exterior Windows	20	EA	\$ 150.00	\$	3,000.00
Floor Tile/Linoleum	PACM	Suspect ACM, Not Sampled	Interior	250	SF	\$ 4.00	\$	1,000.00
Pipe Insulation Fittings	PACM	Suspect ACM, Not Sampled	Behind Walls	150	LF	\$ 17.00	\$	2,550.00
Wall Plaster	PACM	Suspect ACM, Not Sampled	Walls	800	SF	\$ 8.00	\$	6,400.00
Building #18 - Cottage								
Exterior Window Glaze	3A-3C	Cat. 2 Non-friable ACM	Exterior Windows	20	EA	\$ 150.00	\$	3,000.00
Floor Tile/Linoleum	PACM	Suspect ACM, Not Sampled	Interior	250	SF	\$ 4.00	\$	1,000.00
Pipe Insulation Fittings	PACM	Suspect ACM, Not Sampled	Behind Walls	150	LF	\$ 17.00	\$	2,550.00
Wall Plaster	PACM	Suspect ACM, Not Sampled	Walls	800	SF	\$ 8.00	\$	6,400.00
Building #19 - Cottage								
Pipe Insulation Fittings	PACM	Suspect ACM, Not Sampled	Behind Walls	150	LF	\$ 17.00	\$	2,550.00
Building #20 - Cottage								
Pipe Insulation Fittings	PACM	Suspect ACM, Not Sampled	Behind Walls	150	LF	\$ 17.00	\$	2,550.00

Table 1
Abatement Cost Estimates
Waltham Fernald Site
Waltham, Massachusetts

Material Description	Laboratory Sample No.	NESHAP Cat.	Location	Est. Quantity	Units	Unit Cost		Total Cost
		Building #27 - Bo	elmont House					
Floor Tile/Linoleum	PACM	Cat. 2 Non-friable ACM	Interior	4,000	SF	\$ 4.00	\$	16,000.00
Pipe Insulation Fittings	PACM	Suspect ACM, Not Sampled	Behind Walls	250	LF	\$ 17.00	\$	4,250.00
Wall Plaster	PACM	Suspect ACM, Not Sampled	Walls	1,200	SF	\$ 8.00	\$	9,600.00
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface	200	LF	\$ 35.00	\$	7,000.00
Building #30 -South Nurses Home								
Brown Linoleum	2A-2G	Cat. 2 Non-friable ACM	Under 1' x 1' Gray Floor Tile	15,000	SF	\$ 4.00	\$	60,000.00
Pipe Insulation Fittings	PACM	Suspect ACM, Not Sampled	Behind Walls	750	LF	\$ 17.00	\$	12,750.00
Remnant Caulk	PACM	Suspect ACM, Not Sampled	Under Replacement Windows	600	LF	\$ 12.00	\$	7,200.00
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface	300	LF	\$ 35.00	\$	10,500.00
Building #32 -Greenhouse								
Roof Tar	3A-3B	Cat. 2 Non-friable ACM	Roof	500	SF	\$ 12.00	\$	6,000.00

Table 1
Abatement Cost Estimates
Waltham Fernald Site
Waltham, Massachusetts

Material Description	Laboratory Sample No.	NESHAP Cat.	Location	Est. Quantity	Units	Unit Cost		Total Cost	
	Building #42 -Music/S. Bowen								
Gray/White Exterior Window Glaze	1A-1E	Cat. 2 Non-friable ACM	Exterior Windows	30	EA	\$ 150.00	\$	4,500.00	
9" x 9" Gray and Tan Floor Tile and Black Mastic	2A-2C, 4A-4C	Cat. 2 Non-friable ACM	Main Floors	8,000	SF	\$ 4.00	\$	32,000.00	
Pipe Insulation Fittings	PACM/Visual	Suspect ACM, Not Sampled	Behind Walls	750	LF	\$ 17.00	\$	12,750.00	
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface	300	LF	\$ 35.00	\$	10,500.00	
Plaster	PACM	Suspect ACM, Not Sampled	Walls	2,500	SF	\$ 8.00	\$	20,000.00	
		Building #48 -	Farrell Hall						
Window Glaze	PACM	Suspect ACM, Not Sampled	Windows	15	EA	\$ 130.00	\$	1,950.00	
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface	300	LF	\$ 35.00	\$	10,500.00	
Pipe Insulation Fittings	PACM	Suspect ACM, Not Sampled	Behind Walls	350	LF	\$ 17.00	\$	5,950.00	
		Building #49 -Ma	intenace Shed						
Roof Shingle	1A-1C	Cat. 2 Non-friable ACM	Roof	1,200	SF	\$ 8.00	\$	9,600.00	
Window Glaze	2A-2B	Cat. 2 Non-friable ACM	Windows	7	EA	\$ 150.00	\$	1,050.00	
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface	300	LF	\$ 35.00	\$	10,500.00	

Table 1
Abatement Cost Estimates
Waltham Fernald Site
Waltham, Massachusetts

Material Description	Laboratory Sample No.	NESHAP Cat.	Location	Est. Quantity	Units	Unit Cost		Total Cost
	Building	ر #50 -Laundry/Thera	peudic Equipment Center					
White Door Caulk	5A-5C	Cat. 2 Non-friable ACM	Exterior Doors	200	LF	\$ 14.00	\$	2,800.00
1' x 1' Gray Floor Tile	7A-7E	Cat. 2 Non-friable ACM	Flooring Most Rooms	20,000	SF	\$ 4.00	\$	80,000.00
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface	300	LF	\$ 35.00	\$	10,500.00
Pipe Insulation Fittings	PACM	Suspect ACM, Not Sampled	Behind Walls	800	LF	\$ 17.00	\$	13,600.00
		Building #53 -I	Power Plant		l.			
Chimney Firebrick and Ash	PACM	Suspect ACM, Not Sampled	120' Tall Chimney	1	EA	\$ 120,000.00	\$	120,000.00
Exterior Window Glaze	PACM	Suspect ACM, Not Sampled	Exterior Windows	25	EA	\$ 160.00	\$	4,000.00
Exterior Window Caulk	PACM	Suspect ACM, Not Sampled	Exterior Windows	2,500	LF	\$ 14.00	\$	35,000.00
Thermal Insulation	PACM	Suspect ACM, Not Sampled	Furnaces/Tanks/Breeching	2,500	SF	\$ 17.00	\$	42,500.00
Pipe Insulation and Fittings	PACM	Suspect ACM, Not Sampled	Piping	1,500	LF	\$ 17.00	\$	25,500.00
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface	1,000	LF	\$ 35.00	\$	35,000.00
Transite Panels	PACM	Suspect ACM, Not Sampled	Interior	500	SF	\$ 12.00	\$	6,000.00
Building #55 -The Store Room								
Tar on Metal Freezer	2A-2C	Suspect ACM, Not Sampled	Large Metal Freezer	1	EA	\$ 1,000.00	\$	1,000.00
Mastic on Wood Freezers	PACM	Suspect ACM, Not Sampled	Visual	11 EA \$ 500.00		\$	5,500.00	
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface	300	LF	\$ 35.00	\$	10,500.00

Table 1
Abatement Cost Estimates
Waltham Fernald Site
Waltham, Massachusetts

Material Description	Laboratory Sample No.	NESHAP Cat.	Location	Est. Quantity	Units	Unit Cost		Total Cost
		Building #56 -W	lest Building					
Pipe Insulation and Fittings	PACM	Suspect ACM, Not Sampled	Piping	Piping 2,500 LF \$ 17.00				42,500.00
Joint Compound Patch	PACM	Suspect ACM, Not Sampled	Walls, Ceilings	5,000	SF	\$ 8.00	\$	40,000.00
Thermal Insulation	PACM	Suspect ACM, Not Sampled	Furnaces/Tanks/Breeching	1,500	SF	\$ 17.00	\$	25,500.00
Flooring	PACM	Suspect ACM, Not Sampled	Visible on First Floor	30,000	SF	\$ 4.00	\$	120,000.00
Exterior Window Glaze	PACM	Suspect ACM, Not Sampled	Exterior Windows (4' x5')	40	Ea	\$ 150.00	\$	6,000.00
Exterior Window Glaze	PACM	Suspect ACM, Not Sampled	Exterior Windows (2' x 2')	10	Ea	\$ 120.00	\$	1,200.00
Exterior Window Glaze	PACM	Suspect ACM, Not Sampled	Exterior Windows (3' x 4')	25	Ea	\$ 130.00	\$	3,250.00
Exterior Window Caulk	PACM	Suspect ACM, Not Sampled	Exterior Windows	2,500	LF	\$ 14.00	\$	35,000.00
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface	500	LF	\$ 35.00	\$	17,500.00
		Building #57 -H	lowe Library					
Exterior Window Caulk	1A-1E	Cat. 2 Non-friable ACM	Exterior Windows	1,500	LF	\$ 14.00	\$	21,000.00
1' x 1' Tan Floor Tile and Mastic	2A-2C, 3A-3C	Cat. 2 Non-friable ACM	Basement	2,500	SF	\$ 4.00	\$	10,000.00
9" x 9" Dark Brown Floor Tile and Mastic	4A-4C, 5A-5C	Cat. 2 Non-friable ACM	Basement	2,500	SF	\$ 4.00	\$	10,000.00
Pipe Insulation and Fittings	PACM	Suspect ACM, Not Sampled	Piping 75		LF	\$ 17.00	12,750.00	
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface	500	LF	\$ 35.00	\$	17,500.00

Table 1
Abatement Cost Estimates
Waltham Fernald Site
Waltham, Massachusetts

Material Description	Laboratory Sample No.	NESHAP Cat.	Location	Est. Quantity	Units	Unit Cost		Total Cost	
Building #58-Dolan Hall									
Black Mastic	6A-6G	Cat. 2 Non-friable ACM	Under 1' x 1' Brown Floor Tile with Dark Brown Mottles	10,000	SF	\$ 4.00	\$	40,000.00	
Pipe Insulation and Fittings	PACM	Suspect ACM, Not Sampled	Piping	1,200	LF	\$ 17.00	\$	20,400.00	
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface	500	LF	\$ 35.00	\$	17,500.00	
Exterior Window Caulk	1A-1E	Cat. 2 Non-friable ACM	Exterior Windows, Under Replacement Windows	1,500	LF	\$ 14.00	\$	21,000.00	
Exterior Window Glaze	Exterior Window Glaze PACM Suspect ACM, Not Sampled Older Windows at Front Entrance 6 EA \$						\$	900.00	
		Building #59-Mo	cDougall Hall						
End Cap Sealant	1A-1C	Cat. 2 Non-friable ACM	On Fiberglass Pipe Fitting in Basement	100	SF	\$ 17.00	\$	1,700.00	
Gray Caulk	4A-4C	Cat. 2 Non-friable ACM	Lintels at Exterior Doors	125	LF	\$ 14.00	\$	1,750.00	
Brown Caulk	5A - 5C	Cat. 2 Non-friable ACM	Exterior Doors	200	LF	\$ 14.00	\$	2,800.00	
Pipe Insulation and Fittings	PACM	Suspect ACM, Not Sampled	Behind Walls	1,200	LF	\$ 17.00	\$	20,400.00	
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface 500		LF	\$ 35.00	\$	17,500.00	
Roofing	PACM	Suspect ACM, Not Sampled	Remnant	5,000	SF	\$ 12.00	\$	60,000.00	

Table 1
Abatement Cost Estimates
Waltham Fernald Site
Waltham, Massachusetts

Material Description	Laboratory Sample No.	NESHAP Cat.	Location	Est. Quantity	Units	Unit Cost	Total Cost
		Building #60-	Seguin Hall				
Glaze	1A-1C	Cat. 2 Non-friable ACM	Interior Doors	20	EA	\$ 200.00	\$ 4,000.00
Glaze	2A-2C	Cat. 2 Non-friable ACM	Interior Door Sidelights	40	EA	\$ 200.00	\$ 8,000.00
Black Mastic	7A-7G	Cat. 2 Non-friable ACM	Under 1' x 1' White Floor Tile with Gray Streaks	10,000	SF	\$ 4.00	\$ 40,000.00
Exterior Window Caulk	PACM	Suspect ACM, Not Sampled	Exterior Windows, Under Replacement Windows	750	LF	\$ 14.00	\$ 10,500.00
Pipe Insulation and Fittings	PACM	Suspect ACM, Not Sampled	Behind Walls	1,200	LF	\$ 17.00	\$ 20,400.00
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface	500	LF	\$ 35.00	\$ 17,500.00
		Building #61-	Tarbell Hall				
Black Mastic	7A-7G, 10A-10E	Cat. 2 Non-friable ACM	Under 1' x 1' Light Tan Floor Tile and Under 1' x 1' Red Floor Tile	30,000	SF	\$ 4.00	\$ 120,000.00
Black Paper	Roof-2A through Roof 2C	Cat. 2 Non-friable ACM	Under Slate Roof	15,000	SF	\$ 12.00	\$ 180,000.00
Old Vulcan Stoves	Visual	Cat. 2 Non-friable ACM	Kitchen	2	EA	\$ 500.00	\$ 1,000.00
Walk in Freezer Mastic	PACM	Suspect ACM, Not Sampled	Kitchen	1	EA	\$ 1,000.00	\$ 1,000.00
Pipe Insulation and Fittings	PACM	Suspect ACM, Not Sampled	Behind Walls	1,200	LF	\$ 17.00	\$ 20,400.00
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface	500	LF	\$ 35.00	\$ 17,500.00

Table 1
Abatement Cost Estimates
Waltham Fernald Site
Waltham, Massachusetts

Material Description	Laboratory Sample No.	NESHAP Cat.	Location	Est. Quantity	Units	Unit Cost		Total Cost	
Building #62-Wallace Hall									
Window Glaze	4A-4C	Cat. 2 Non-friable ACM	Interior Windows	40	EA	\$ 200.00	\$	8,000.00	
Black Mastic	7A-7E	Cat. 2 Non-friable ACM	Under 1' x 1' Gray Floor Tile	25,000	SF	\$ 4.00	\$	100,000.00	
Roof Tar	11A-11C	Cat. 2 Non-friable ACM	On Concrete Roof Deck	15,000	SF	\$ 12.00	\$	180,000.00	
Pipe Insulation and Fittings	PACM	Suspect ACM, Not Sampled	Behind Walls	1,200	LF	\$ 17.00	\$	20,400.00	
Subsurface Steam Pipe	PACM	Suspect ACM, Not Sampled	Subsurface	500	LF	\$ 35.00	\$	17,500.00	
						Subtotal	\$	2,087,590.00	
						Contingency 20%	\$	417,518.00	
						Project Monitoring and Air Samples	\$	250,000.00	
						Total	\$	2,755,108.00	

Table 1A Other Hazardous Materials Waltham Fernald Site

	waitham Fernaid Site									
Material Description	Location	Est. Quantity	Units	Unit Cost	Total Coat	Comments				
Compact Flourescent Bulbs	Throughout	1500	EA	\$1	\$1,500					
Fluorescent Bulbs (Mercury)	Throughout	25000	Tubes	\$1	\$25,000					
DPHE and PCB Light Ballasts	Throughout	12000	Each	\$5	\$60,000					
Thermostats and Switches (Mercury)	Throughout	800	Ampules	\$25	\$20,000					
Emergency Light Batteries (Lead)	Throughout	500	EA	\$25	\$12,500					
Refrigerants Associated With HVAC	Throughout	10000	Gallons	\$10	\$100,000					
Fire Extinguishers (Compressed Gas)	Throughout	300	EA	\$0	\$0	Reuse Recommended				
Refrigerants Associated with Water Bubblers, Air Conditioners and Freezers	Throughout	1200	Gallons	\$10	\$12,000					
Exit Signs (Tritium)	Throughout	250	EA	\$25	\$6,250					
Chemicals (Mercury and Lead)	Science Sink Traps and Photo Processing - Library	NA	NA	\$10,000	\$10,000	TCLP Laboratory Analytical Costs and Disposal				
Ash from Chimney Incinerator	Power Plant	NA	NA	\$20,000	\$20,000	TCLP Laboratory Analytical Costs and Disposal				
Diesel Fuel UST	Power Plant	20000	Gallon	\$50,000	\$50,000	Removal and 100 CY soil				
Diesel Fuel AST	Buildings 60 and 62	400	Gallon	\$10,000	\$10,000	Removal and Disposal				
Fuel Oil AST	Buildings 17 and 18	550	Gallon	\$12,000	\$12,000					
Hydraulic Fluid	Maintenace, Storage, Elevators	500	Gallons	\$20	\$20,000					
PCB Fluid	Transformers	2344	Gallons	\$50	\$117,200					
			TOTAL		\$476,450					

HAZARDOUS MATERIALS SUMMARY REPORT

Walter E. Fernald School
South Portion of Former Fernald Developmental Center
200 Trapelo Road
Waltham, Massachusetts

Prepared for

Symmes Maini & Mckee 1000 Massachusetts Avenue Cambridge, MA 02138

November 2016

CDW Project # 1713.0

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	GENERAL SITE CONDITIONS	1
3.0	ASBESTOS SURVEY	4
3.1	Methods	
3.2	Findings	5
3.3	Recommendations	
4.0	LEAD-BASED PAINT	13
4.1	Methods	13
4.2	Findings	13
4.3	Recommendations	
5.0	PCB AND OTHER HAZARDOUS MATERIALS SURVEY	
5.1	Methods	
5.2	Findings	16
5.3	Recommendations	

APPENDICIES

Appendix A: Key Map

Appendix B: Asbestos Laboratory Report Appendix C: Lead Paint Laboratory Report Appendix D: PCB Laboratory Report

i

1.0 INTRODUCTION

CDW Consultants, Inc. (CDW) is pleased to present this letter report summarizing the findings of the suspect asbestos-containing materials (ACM), lead-based paint (LBP), polychlorinated biphenyls (PCBs) and hazardous materials inspection of the south portion of the Walter E. Fernald School ("Site") located in Waltham, Massachusetts. The subject buildings consist of Fernald Map ID buildings 15, 17, 18, 19, 20, 27, 30, 32, 42, 48, 49, 50, 52, 53, 55, 56, 57, 58, 59, 60, 61 and 62. Refer to the overview map and key in Appendix A. Note the Fernald Map ID numbers were used for the identification. The scope of work was to conduct a feasibility inspection to identify and quantify suspect ACM and hazardous materials located in the buildings.

In September and October 2016, Ms. Susan Cahalan (Massachusetts DOS Asbestos Inspector #AI60784) conducted an interior and exterior building inspection for suspect materials. An inspection is required by the United States Environmental Protection Agency (USEPA) National Emission Standards for Hazardous Air Pollutants (NESHAPs), prior to scheduled building demolitions. Samples of suspect materials were collected to confirm the presence or absence of ACM, LBP, & PCBs. Suspect materials were grouped into homogenous areas. By definition a homogenous area is an area that is similar in color, texture and date of application. Hand tools were used to collect bulk samples which were promptly placed in sealed plastic bags using a unique numbering system. Samples were not collected of non-suspect materials, including wood, fiberglass, plastic/vinyl, ceramic, concrete, neoprene/rubber, glass, and carpeting.

2.0 GENERAL SITE CONDITIONS

Site conditions are listed by buildings below.

Building #15 (DCAM #23)

Known as the Lavers Building, is a 12,036-square foot (sf) brick 1-story building with partial basement built in 1914. Older wood framed windows along with glass block windows are located on the exterior. Vinyl composition floor tiles and sheetrock walls are built over wood floors and frames. Ceilings are comprised of lathe ceiling plaster. The roof is slate. The building is in fair condition, with broken windows, rot and spalling concrete.

Buildings #17 and #18

Building #17 and #18 are identical a residential style cottages with wood frames and stucco exteriors constructed in 1925. Both buildings are severely deteriorated with collapsed portions of roofs and rot. There was no entry due to the unsafe conditions. Fill pipes for above ground storage tanks are located on the exterior.

Building #19

Building 19 is a residential style two story wood framed and stucco cottage constructed in 1925. The roof is shingled. The windows are vinyl replacement windows. There is water damage in the interior and spalling stucco.

Building #20

Building 20 is a two-story wood framed cottage with a shingled roof built in 1925. Limited entry due to ceiling collapse. There is spalling stucco on the exterior and water damage on the interior. No pipe insulation was observed. There is also a small furnace with no insulation.

Building 27 (DCAM #34)

Building 27 is a brick one story 6,416 sf building with basement built in 1890. The building is in poor condition with partial ceiling collapse and is unsafe, therefore there was no entry.

Building #30 (DCAM #12)

Building #30, known as the South Nurses' Home, is a two and one-half story brick building built in 1907, and contains a slate roof. The windows are newer aluminum framed with stone sills. The exterior of the building is in fair condition. The interior of the building is significantly damaged and mold is prevalent throughout. The poor air quality only allowed for limited entry. The basement is comprised of fieldstone walls. Fiberglass insulated piping with suspect ACM fittings were observed within the basement.

Building #32

Building 32, is a greenhouse building is a concrete and glass block building with partial basement constructed in 1946. The greenhouse portion is comprised of plexiglass with an aluminum frame. Piping consists of galvanized steel and was not insulated.

Building #42 (DCAM #49)

Building 42 is a one-story brick building with a fieldstone foundation built in 1893. There was partial entry to main areas only due to structural concerns and very poorly degraded condition with collapsed ceilings.

Building #48

Building #48, known as Farrell Hall, is a one-story brick building with a concrete walk out basement built in 1960. The roof is a flat and windows are aluminum framed. No pipe insulation was observed. A vault located to the rear, contains a transformer and is labeled as PCB containing.

Building #49

Is a metal and cinder block garage building with maintenance bays. There are older wood framed windows and a concrete floor. No pipe insulation was visible through the windows. There was no

entry to the building.

Building #50 (DCAM #22)

Building #50, known as the laundry/therapeutic building is a one and one half story 27,192 sf building built in 1928. The exterior is red brick and the roof is flat. Interior walls are cinderblock and sheetrock. Windows are aluminum. There are floor trenches and metal vents from painting and welding operations. There is one transformer, assumed to contain PCBs. A large sewer main runs through one side of the building.

Building #52 (DCAM #24)

Building # 52, known as the maintenance building, is a one story 14,322 sf cinder block building built in 1930. The building contains steel windows and overhead doors. The building is in fair condition with spalled concrete and broken windows. The building was used for paint, welding and electrical trades.

Building #53 (DCAM #26)

Building #53, known as the power plant, is a 19,440 sf building built in 1921. No entry was permitted to structural concerns. According to the Clerk, whom was on site, PCB containing equipment and asbestos pipe insulation and older boilers are present within the building. A large smokestack, approximately 120 feet tall may contain firebrick and ash.

Building #55 (DCAM # 16)

Building #55, known as the storeroom, is a 23,940 sf brick building with basement constructed in 1891. The building was used for storage of food. There are numerous freezers, a loading dock, older windows and painted brick on the interior.

Building #56 (DCAM # 33)

Building # 56, known as the West Building, is a 49,041 sf two story building with basement built in 1890. The exterior consists of brick and decorative facades. The windows appear old with glazing. There was only partial entry due to unsafe conditions. The ceilings and a portion of the roof was caved in; the floor was buckled and contained holes. The interior walls and ceilings are lathe. Visible within the basement was suspect asbestos pipe insulation and lead acid batteries. Old medical equipment was also observed on the interior.

Building #57 (DCAM # 21)

Building #57, known as the Howe Library, is an 8,030 square-foot single story building with basement built in 1921. The exterior is brick, with wood windows. The interior is wood and sheetrock. The basement contains a transite fume hood and sink, and photochemical collection areas

for developing photographs.

Building #58 (DCAM #37)

Building 58, known as Dolan Hall, is a 15,252 sf two and a half-foot story brick building. There are older windows with glaze, sheetrock walls and suspended ceiling tiles. The pipes contain fiberglass insulation with suspect ACM fittings.

Building #59 (DCAM #36)

Building #59, known as McDougall Hall is a two and one half story 23,376 sf brick building built in 1898. The building contains wood and aluminum windows, with a slate roof. The building has significant water damage.

Building #60 (DCAM # 35)

Building #60, known as Seguin Hall, is a one story red brick building built in 1934. The building contains aluminum windows and a slate roof. The building was renovated in the 1990s, with the exception of the roof. There is significant water damage.

Building #61 (DCAM # 32)

Building #61, known as Tarbell Hall, is a three and one half story 38,924 sf brick building. The building contains aluminum and wood replacement windows with a slate roof. The interior contains sheetrock walls, suspended ceiling tiles and vinyl composition floor tiles. The building is in fair to poor condition with peeling paint and water damage.

Building # 62 (DCAM # 46)

Building # 62, known as Wallace Hall, is a one and one half story 29,560 square foot brick building with a walk out basement. The building contains aluminum replacement windows. The stairway to the basement was collapsed and there was no basement access.

3.0 ASBESTOS SURVEY

3.1 Methods

The investigative work for the asbestos survey included conducting a limited visual inspection of physically accessible areas of the structure followed by limited destructive testing to allow access to inaccessible locations. Destructive testing included: installing test holes into roofs, inspect for exterior vapor barrier, opening access panels and opening of drop ceiling systems. Construction of the buildings consist of 18 to 24-inch thick masonry walls. Therefore, no suspect vapor barriers were observed.

Once the visual inspection was completed, the building components were categorized into homogeneous areas. These homogeneous areas included: surfacing materials, thermal system insulation, and miscellaneous materials.

CDW collected bulk samples of different homogeneous suspect materials for asbestos analysis. The bulk samples were delivered under chain of custody to Asbestos Identification Laboratory, Inc. (AIL) and EMSL Analytical (EMSL), both located in Woburn, Massachusetts. EMSL and AIL are state licensed and NVLAP-accredited laboratories for asbestos analysis. Bulk samples were analyzed for asbestos content by polarized light microscopy (PLM) using EPA Method 600/R-93/116. A positive stop method was used – if one sample in a homogeneous group is positive then additional samples of the same material are not analyzed. The asbestos analytical results are provided in Appendix B. Samples analyzed to contain greater than 1% asbestos are to be treated as ACMs as defined by the USEPA and Commonwealth of Massachusetts Department of Environmental Protection (MassDEP).

3.2 Findings

Building #15– Lavers Building

Field ID	Material	Location	Asbestos %
1A – 1G	1' x 1' Tan Floor Tile	Majority of Rooms	ND
2A-2G	Brown Mastic	Under 1' x 1' Tan Floor Tile	ND
3A - 3C	1' x 1' Blue Floor Tile	Center Room	ND
4A-4C	Brown Mastic	Under 1' x 1' Blue Floor Tile	ND
5A – 5C	1' x 1' Gray Floor Tile	Side Rooms	ND
6A – 6C	Black Mastic	Under 1' x 1' Gray Floor Tile	ND
7A – 7C	Yellow Glue	Under Brown Cove Base	<1% to ND
8A - 8C	Light Tan Glue	Under Tan Covebase	ND
9A – 9G	Grout	Glass Block	ND
10A – 10C	Lathe Ceiling Plaster	Ceiling	ND
11A – 11G	Exterior Window Caulk	Exterior Windows – Thin Interior Bead	ND
12A – 12G	Exterior Window Glaze	Exterior Windows	2% Chrysotile
13A – 13E	White/Gray Window Caulk	Exterior Bead on Exterior Windows	5% Chrysotile
14A – 14G	Plaster	Wall and Ceiling	ND
Roof 1A-15 - Roof 1C- 15	Black Felt	Under Slate Roof	ND

Building #17 - Cottage

Field ID	Material	Location	Asbestos %
1A – 1C	Roof Shingle	Roof	ND
2A-2C	Black Tarpaper	Under Roof Shingle	ND
3A – 3C	White Glaze	Exterior Windows	2% Chrysotile

Building #18 - Cottage

Field ID	Material	Location	Asbestos %
1A – 1C	Roof Shingle	Roof	ND
2A-2C	Black Tarpaper	Under Roof Shingle	ND
3A – 3C	White Glaze	Exterior Windows	2% Chrysotile

Building #19 - Cottage

Field ID	Material	Location	Asbestos %
1A – 1C	Linoleum Flooring	2 nd Floor	ND
2A-2E	Textured Plaster	Ceiling	ND
3A - 3C	1' x 1' Gray Floor Tile	Main Floor	ND
4A – 4C	Black Mastic	Under 1' x 1' Gray Floor Tile	ND
5A - 5C	Stucco	Exterior Walls	ND
6A – 6C	Shingle	Roof	ND
7A – 7C	Black Tar Paper	Under Roof Shingle	ND

Building # 20 - Cottage

Field ID	Material	Location	Asbestos %
1A - 1E	Textured Plaster	Ceilings	ND
2A-2C	Linoleum Flooring	2 nd Floor	ND
3A - 3C	1' x 1' Blue Floor Tile	1st Floor	ND
4A-4C	Gray Mastic	Under 1' x 1' Blue Floor Tile	ND
5A - 5C	Brown Paper	Under Exterior Wood Clapboards	ND
Roof 1A-20	D (01: 1	Б. С	ND
- Roof 1B- 20	Roof Shingle	Roof	ND

Building #27 – Belmont House

Field ID	Material	Location	Asbestos %
1A-27	Black Mastic	Behind Exterior Brick	ND
1B-27	Black Mastic	Behind Exterior Brick	ND
Roof – 1A- 27	Tar Paper	On Roof Deck	ND
Roof – 1B - 27	Tar Paper	On Roof Deck	ND

Building #30 – South Nurse's Home

Field ID	Material	Location	Asbestos %
1A – 1G	1' x 1' Gray Floor Tile	Halls and Rooms	ND
2A – 2G	Brown Linoleum	Under 1' x 1' Gray Floor Tile	6% Chrysotile
3A - 3G	Textured Plaster	Ceilings	ND
4A-4G	Sheetrock	Walls	ND
5A – 5C	Shingle	Roof	ND
6A – 6C	Felt	Under Roof Shingle	ND

Building #32 - Greenhouse

Field ID	Material	Location	Asbestos %
1A – 1C	White Glaze	Exterior Windows	<1%
2A – 2C	Roof Shingle	Roof	ND
3A – 3B	Roof Tar	Roof	5% Chrysotile

Building # 42 – Music/S. Bowen

Field ID	Material	Location	Asbestos %
1A – 1E	Gray/White Glaze	Exterior Windows	2% Chrysotile
2A – 2C	9" x 9" Gray Floor Tile	Large Central Room	2% Chrysotile
3A - 3C	Black Mastic	Under 9" x 9" Gray Floor Tile	ND
4A – 4C	9" x 9" Tan Floor Tile	Main Floor	3% Chrysotile
5A - 5C	Black Mastic	Under 9" x 9" Tan Floor Tile	5% Chrysotile
6A – 6C	2' x 4' Suspended Ceiling Tile	Main Floor	ND
7A – 7C	Black Felt	Under Slate Roof	ND
8A - 8C	Roof Tar	Flat Portion of Roof	ND

Building #48 - Farrell Hall

Field ID	Material	Location	Asbestos %
1A – 1E	Brown Fiberboard	Ceiling	ND
2A-2C	Black Tarpaper	Roof Over Foam Layer	ND
3A – 3C	Black Tarpaper	On Concrete Roof Deck	ND

Building #49 – Maintenance Shed

Field ID	Material	Location	Asbestos %
1A – 1C	Roof Shingle	Roof	20% Chrysotile
2A – 2B	Glaze	Exterior Window	2% Chrysotile

Building #50 – Laundry/Therapeutic Equipment Center

Field ID	Material	Location	Asbestos %
1	End Cap Sealant	On Fiberglass Fitting in Basement	ND
2	Pipe Fitting Insulation	4" Diameter Pipe Basement	ND
3	Pipe Fitting Insulation	2" Diameter Pipe Basement	ND
5A – 5C	White Door Caulk	Exterior Doors	2% Chrysotile
6A – 6E	Gray Window Caulk	Exterior Windows	ND
7A - 7E	1' x 1' Gray Floor Tile	Main Floor	1% Chrysotile
8A - 8E	Yellow Gray Mastic	Under 1' x 1' Gray Floor Tile	ND
9A – 9C	Gray Cove Base	Main Room	ND
10A – 10C	Yellow Mastic	Under Gray Cove Base	ND
11A – 11C	Gray Expansion Joint	Floor in Paint Room	ND
12A – 12E	Skim Coat	Walls	ND
Roof-1A –	Roof Tar	On Metal Roof Deck	ND
Roof 1C	Roof Tar	Oli ivietai Rooi Deck	ND
2A-2B	Flashing	On Foundation	ND

Building # 52 - Maintenance

Field ID	Material	Location	Asbestos %
Roof – 1A-52	Black Tar	On Concrete Roof Deck	ND
Roof – 1A-52	Black Tar	On Concrete Roof Deck	ND
Roof – 1A-52	Black Tar	On Concrete Roof Deck	ND

Building # 55 – The Store Room

Field ID	Material	Location	Asbestos %
1A - 1E	Gray/White Glaze	Exterior Windows	ND
2A – 2C	Tar	On Ceiling, Large Metal Freezer	5% Chrysotile
3A – 3E	Black Coating	On Cork in wooden Walk In Freezers	ND
4A-4E	Black Tar	On Roof Deck	ND
5A – 5E	White Board	Roof Deck	ND

Building # 56 – West Building (Unsafe)

Field ID	Material	Location	Asbestos %
Roof – 1A-56	Black Felt	Under Slate Roof	ND
Roof – 1A-56	Black Felt	Under Slate Roof	ND
Roof – 1A-56	Black Felt	Under Slate Roof	ND

Building #57 – Howe Library

Field ID	Material	Location	Asbestos %
1A – 1E	Gray/White Caulk	Interior of Exterior Windows	5% Chrysotile
2A – 2C	1' x 1' Tan Floor Tile	Basement	10% Chrysotile
3A - 3C	Black Mastic	Under 1' x 1' Tan Floor Tile	5% Chrysotile
4A – 4C	9" x 9" Dark Brown Floor Tile	Basement	5% Chrysotile
5A - 5C	Black Mastic	Under 9" x 9" Brown Floor Tile	5% Chrysotile
6A - 6E	White/Gray Glaze	Exterior Windows	ND
7A - 7C	Black Coating	Basement Ceiling	ND
8A - 8C	Textured Ceiling Plaster	1st Floor	ND
9A – 9C	Textured Wall Plaster	1 st Floor	ND
10A - 10C	Black Flooring	Under Carpet, 1st Floor	ND
11A – 11C	Black Mastic	Under Black Flooring, 1st Floor	ND
12A – 12C	Yellow Glue	Under Carpet	ND
13A - 13B	Roof Shingle	Roof	ND
14A – 14B	Black Underlayment	Under Roof Shingle	ND

Building # 58 – Dolan Hall

Field ID	Material	Location	Asbestos %
1A – 1C	Grout	Under Ceramic Tile Bathrooms	ND
2A-2G	White Glaze	Exterior Windows	ND
3A - 3G	Gray/White Levelastic	Under Floor Tile	ND
4	Glaze	On Interior Door	ND
5A – 5G	1' x 1' Brown Floor Tile with Dark Brown Mottles	1st Floor	ND
6A – 6G	Black Mastic	1' x 1' Brown Floor Tile with Dark Brown Mottles	10% chrysotile
7A – 7G	Joint Compound	Sheetrock Walls	ND
8A – 8G	Sheetrock	Walls	ND
9A – 9C	Gray Seam Sealant	On HVAC	ND

Building # 59 – McDougall Hall

Field ID	Material	Location	Asbestos %
1A – 1C	End Cap Sealant	On fiberglass Pipe Fitting in Basement	5% Chrysotile
2A - 2B	Gray Seam Sealant	On HVAC Metal	ND
3A - 3B	Flex Connector	Mechanical Room	ND
4A – 4C	Gray Caulk	Lintels at Exterior Doors	3% Chrysotile
5A - 5C	Brown Caulk	Exterior Doors	2% Chrysotile
6A – 6G	Skim Coat	Walls and Ceiling	ND
7A - 7G	Sheet Rock	Walls and Ceiling	ND
8A – 8C	Glaze	Exterior Windows	ND
9A – 9C	Brown Caulk	Exterior Windows	ND
10A – 10E	2' x 4' Ceiling Tile	Ceilings	ND

Building #60 – Seguin Hall

Field ID	Material	Location	Asbestos %
1A – 1C	Glaze	Interior Doors	2% Chrysotile
2A – 2C	Glaze	4' x 6' Windows Side of Interior Doors	1% Chrysotile
3A - 3G	Brown Caulk	Exterior Windows	ND
4A-4G	Plaster Skim	Walls	ND
5A - 5B	Gray Levelastic	Kitchen Floor	ND
6A – 6G	1' x 1' White Floor Tile with Gray Streaks	Approx. 1/2 of Floor Spaces	ND
7A – 7G	Black Mastic	Under 1' x 1' White Floor Tile with Gray Streaks	10% Chrysotile
8A - 8G	Sheetrock	Walls	ND
9A – 9C	Gray Caulk	Exterior Doors	ND
Roof-1A- Roof 1B-60	Roof Shingle	Roof	ND
Roof-2A- Roof 2B-60	Roof Paper Under Shingle	Roof	ND

Building # 61 – Tarbell Hall

Field ID	Material	Location	Asbestos %
1A - 1E	1' x 1' Light Tan Floor Tile	Basement	ND
2A – 2E	Black Mastic	Under 1' x 1' Light Tan Floor Tile	10% Chrysotile
3A - 3G	Exterior Window Caulk	Exterior Windows	ND
4A-4G	White Glaze	Exterior Windows	ND
5A – 5G	1' x 1' Tan Floor Tile with Brown Streaks	1st and 2nd Floors	ND
6A – 6G	Black Mastic	Under 1' x 1' Tan Floor Tile with Brown Streaks	ND
7A – 7G	1' x 1' Brown Floor Tile with Brown Mottles	2 nd and 3 rd Floors	ND
8A - 8G	Black Mastic	Under 1' x 1' Brown Floor Tile	ND
9A – 9E	1' x 1' Red Floor Tile	2 nd and 3 rd Floors	ND
10A – 10E	Black Mastic	Under 1' x 1' Red Floor Tile	5% Chrysotile
11A – 11C	Glaze	Interior Windows of Office	ND
12A –12G	2' x 2' Textured Floor Tiles	1st and 2nd Floor	ND
13A – 13I	Joint Compound	Walls	ND
14A – 14C	Glaze	Interior Doors	ND

Field ID	Material	Location	Asbestos %
Roof 1A-61			
Through	Gypsum Deck	Roof Deck building 61	ND
Roof 1C-61			
Roof 2A-			
61 through	Black Roof Paper	Under Slate	2% Chrysotile
Roof 2C 61			

Building #62 – Wallace Hall

Field ID	Material	Location	Asbestos %
1A – 1C	Grey Caulk	Exterior Doors	ND
2A-2C	Dark Brown Caulk	Exterior Windows	ND
3A - 3C	Red Seam Sealant	HVAC Ductwork	ND
4A – 4C	Window Glaze	Interior Windows	2% Chrysotile
5A - 5B	Black Glaze	Interior Doors	ND
6A – 6E	1' x 1' Gray Floor Tile	First floor	ND
7A – 7E	Black Mastic	Under 1' x 1' Gray Floor Tile	10% Chrysotile
8A - 8E	Skim Coat	Walls and Ceilings	ND
9A – 9C	Tar Paper	Under Slate Roof	ND
10A – 10C	Black Tar	Top of Foam – Flat Roof	ND
11A – 11C	Roof Tar	On Concrete Roof Deck	10% Chrysotile
12A – 12B	Black	Foundation Coating	ND

Bold = ACM Containing. Quantities and presumed asbestos containing materials (PACM) are provided in the cost estimate separately. The laboratory analytical report is provided in Appendix B.

3.3 Recommendations

Prior to disturbance, the ACM identified must be abated by a Commonwealth of Massachusetts-licensed asbestos abatement contractor following all federal, state & local regulations governing asbestos abatement. A copy of the asbestos waste shipment record must be received within 45 days of removal from the Site. Asbestos air quality sampling must be conducted under USEPA regulations following asbestos abatement and prior to re-occupancy of the spaces. If additional materials are discovered that have not been sampled, those materials should be considered ACMs until laboratory analysis determines otherwise. There are numerous steam pipes buried throughout the Site. These are presumed to be ACM. If any subsurface excavations occur, these pipes should be sampled for asbestos content.

4.0 LEAD-BASED PAINT

4.1 Methods

CDW performed a visual inspection of painted surfaces. CDW collected samples from different color paints on various types of building component substrates. Samples were submitted to EMSL Laboratories in Cinnaminson, New Jersey for analysis via Atomic Absorption Spectrometry (AAS). The last number in the sample ID corresponds to the building number.

4.2 Findings

Sample ID	Site	Lead Concentration
LP-1-15	White Paint on Window Frame	11 % wt
LP-2-15	White Paint Concrete Wall	26 % wt
LP-3-15	White Paint on Brick	<0.010 % wt
LP-1-50	Red Paint Steel Columns	3.4 % wt
LP-2-50	Blue Paint on Steel Columns	0.24 % wt
LP-3-50	White Paint on Brick	1.1 % wt
LP-4-50	White Paint on Wall	<0.010 % wt
LP-1-19	Grey Paint on Concrete in Basement	37 % wt
LP-2-19	White Paint on Wood Window Frame	2.0 % wt
LP-3-19	White Paint on Textured Ceiling	<0.010 % wt
LP-1-55	Blue Paint on Brick	25 % wt
LP-2-55	White Paint on Fieldstones	<0.010%
LP-3-55	White Paint on Interior Brick	31 % wt
LP-1-61	White Paint on Ceiling Beams	0.040 % wt
LP-2-61	Brown Paint on Radiator	<0.010 % wt
LP-3-61	Red Paint on Metal Stair Rail	<0.010 % wt
LP-4-61	Yellow Paint on Concrete Wall	11 % wt
LP-5-61	White Paint on the Wall	9.3 % wt
LP-1-53	Silver Paint on Iron Beams	1.4 % wt
LP-1-53	Black Door Paint	1.2 % wt
LP-1-57	Exterior Window Paint on Wood	30 % wt
LP-2-57	White Paint Basement Wall	14 % wt
LP-3-57	Blue Paint Basement Walls	24% wt
LP-4-57	White Paint on Walls	<0.010 % wt
LP-1-59	White Wall Paint	<0.010 % wt
LP-2-59	Brown Paint on Door Frames	0.082 % wt
LP-3-59	Yellow Wall Paint	<0.010 % wt
LP-1-60	Tan Door Paint	<0.010 % wt
LP-2-60	Radiator Paint	<0.010 % wt
LP-3-60	White Wall paint	<0.010 % wt
LP-4-60	Blue Wall Paint	0.010 % wt

Sample ID	Site	Lead Concentration
LP-1-58	Brown Radiator paint	<0.010 % wt
LP-2-58	Yellow Wall paint	<0.010 % wt
LP-3-58	Brown Paint Metal Stair Rail	0.55 % wt
LP-1-62	Blue Wall Paint	<0.010 % wt
LP-2-62	Brown Paint on Radiator	<0.010 % wt
LP-3-62	White Wall Paint	<0.010 % wt
LP-4-62	White Wall Paint	<0.010 % wt
LP-5-62	Tan Door Frame Paint	<0.010 % wt
LP-1-20	Pink Wall Paint	<0.010 % wt
LP-2-20	White Wall Paint	<0.010 % wt
LP-3-20	White Window Frame Paint	16 % wt
LP-4-20	Brown Paint on Wood Shingle (Exterior)	18 % wt
LP-1-48	White Paint on Concrete	<0.010 % wt
LP-2-48	Blue Paint on Brick	0.039 % wt
LP-3-48	Gray Paint on Metal Pole	0.66 % wt
LP-1-49	Green Paint on Garage Door	2.4 % wt
LP-1-32	White Paint on Concrete	0.010 % wt
LP-2-32	Pink Paint on Concrete	0.021 % wt
LP-1-17	Window Frame Paint	36 % wt.
LP-1-30	Blue Wall Paint	0.20 % wt
LP-2-30	Tan Paint on Stair Rails	0.011 % wt
LP-3-30	White Wall Paint	<0.010 % wt
LP-1-42	Green Paint on Concrete	0.44 % wt
LP-2-42	Tan Paint on Wall	48% wt

Bold = LBP

The Environmental Protection Agency (EPA) defines LBP as any paint or surface coating that contains lead equal to exceeding one milligram per square centimeter (1.0 mg/cm2) or 0.5% by weight. OSHA has not set numerical threshold limits for lead and the OSHA lead-in-construction standard defines lead containing paint (LCP) as a paint or coating containing any detectable level of lead.

Based on the USEPA and OSHA criteria listed above, the results of the sampling revealed building components coated with LBP. The laboratory analytical report is included in Appendix C.

4.3 Recommendations

Based on the conclusions of this testing, the following recommendations are offered:

• Removal of the LBP is not required. However, in accordance with the USEPA Lead Renovation, Repair, and Painting (RRP) Rule 40 CFR 745, workers, students, visitors and

the general public must be protected from lead dust generated during the demolition of LBP or LCP coated surfaces.

- Components identified to contain the presence of lead should not be disturbed in an uncontrolled manner. Disturbance of these materials should only be done by properly trained personnel in a controlled and documented manner to allow for the safety of the workers, bystanders and disposal of waste materials.
- Specifications for the proper work practices, controls and disposal should be developed to document compliance with all applicable regulations.
- Those components/colors not tested, or in locations not inventoried in this report, should be tested for lead content prior to disturbance that may cause airborne release of lead.

5.0 PCB AND OTHER HAZARDOUS MATERIALS SURVEY

5.1 Methods

PCB Sample Collection and Analysis

CDW conducted a visual inspection for suspect PCB containing building materials. CDW collected including exterior window caulk, glaze, expansion joint and paints. Samples were submitted to Phoenix Environmental Laboratories in Manchester, Connecticut for analysis via USEPA Method 8082 with Soxhlet extraction 3540C.

OHM Visual Inspection

CDW visually inspected the Site building for universal, special and hazardous wastes associated with building materials. These included but were not limited to the following:

- Mercury-containing devices (fluorescent light tubes, thermostats, gauges, etc.);
- Polychlorinated bi-phenyl (PCB)-containing articles, equipment and devices (light ballasts, electrical switches, etc.);
- Chlorofluorocarbon (CFC)-containing equipment (refrigerants, air conditioners/HVAC equipment, water bubblers, etc.)
- Tritium-containing devices (Exit signs);
- Lead-Acid batteries (emergency lights, etc.); and
- Pressurized-cylinders (fire extinguishers, etc.).

5.2 Findings

PCBs

The analytical results are compared to the USEPA standard of 50 parts per million (ppm), which is the threshold for bulk product waste, as defined by USEPA 40 CFR § 761.3, and regulated under the Toxic Control Substances Act (TSCA). None of the samples collected had detectable concentrations of PCBs above the TSCA regulatory threshold. Exterior window caulk at building #57, contains <5 milligrams per kilograms (mg/kg) of PCBs. This material also contains asbestos, and therefore must be disposed at a facility that can accept low level PCBs and asbestos. The PCB analytical results are summarized in the below table. The last number in the sample ID corresponds to the building number. A copy of the PCB laboratory report is provided in Appendix D.

Sample ID	Description	Result (mg/kg)
PCB-1-50	Door caulk	ND
PCB-2A-50	Exterior Window Caulk	ND
PCB-2B-50	Exterior Window Caulk	ND
PCB-2C-50	Exterior Window Caulk	ND
PCB-3-50	Floor Expansion Joint	ND
PCB-1A-15	Exterior Window Caulk	ND
PCB-1B-15	Exterior Window Caulk	ND
PCB-1C-15	Exterior Window Caulk	ND
PCB-2A-15	Exterior Window Glaze	ND
PCB-2B-15	Exterior Window Glaze	ND
PCB-2C-15	Exterior Window Glaze	ND
PCB-3A-15	Green Paint	ND
PCB-3A-15	Green Paint	ND
PCB-3A-15	Green Paint	ND
PCB-1A-42	Green Paint	ND
PCB-1B-42	Green Paint	ND
PCB-2A-42	White Paint	ND
PCB-2B-42	White Paint	ND
PCB-1-32	Window Glaze	ND
PCB-1-49	Window Glaze	ND
PCB-1A-62	Exterior Door Caulk	ND
PCB-1B-62	Exterior Door Caulk	ND
PCB-1C-62	Exterior Door Caulk	ND
PCB-2A-62	Exterior Window Caulk	ND
PCB-2B-62	Exterior Window Caulk	ND
PCB-2B-62	Exterior Window Caulk	ND

Sample ID	Description	Result (mg/kg)
PCB-1A-58	Exterior Window Glaze	ND
PCB-1B-58	Exterior Window Glaze	ND
PCB-1C-58	Exterior Window Glaze	ND
PCB-1A-60	Exterior Window Caulk	ND
PCB-1B-60	Exterior Window Caulk	ND
PCB-1C-60	Exterior Window Caulk	ND
PCB-2A-60	Exterior Door Caulk	ND
PCB-2B-60	Exterior Door Caulk	ND
PCB-2C-60	Exterior Door Caulk	ND
PCB-1A-59	Exterior Door Caulk	ND
PCB-1B-59	Exterior Door Caulk	ND
PCB-1A-57	Exterior Window Caulk	2.4
PCB-1B-57	Exterior Window Caulk	2.9
PCB-1C-57	Exterior Window Caulk	2.8
PCB-2A-57	Exterior Window Glaze	ND
PCB-2B-57	Exterior Window Glaze	ND
PCB-2C-57	Exterior Window Glaze	ND
PCB-1A-61	Exterior Window Caulk	ND
PCB-1B-61	Exterior Window Caulk	ND
PCB-1C-61	Exterior Window Caulk	ND
PCB-2A-61	Exterior Window Glaze	ND
PCB-2B-61	Exterior Window Glaze	ND
PCB-2C-61	Exterior Window Glaze	ND
PCB-1A-55	Green Paint	ND
PCB-1B-55	Green Paint	ND
PCB-2A-55	Exterior Door Glaze	ND
PCB-2B-55	Exterior Door Glaze	ND
PCB-2B-55	Exterior Door Glaze	ND

ND = Not Detected

<u>OHM</u>

The visual survey for hazardous materials identified mercury-containing light tubes, PCB-containing light ballasts, mercury containing thermostats and switches, lead and tritium batteries, refrigerants and other hazardous materials. No hazardous materials sampling or analysis was conducted as part of this preliminary survey. A list of total OHMs identified are included in the below table. Additionally, OHMs were identified in the ASTM Phase I ESA, dated May 2016, prepared by CDW.

Material Description	Location	Est. Quantity	Units
Compact Fluorescent Bulbs	Throughout	1,500	EA
Fluorescent Bulbs (Mercury)	Throughout	25,000	Tubes
DPHE and PCB Light Ballasts	Throughout	12,000	Each
Thermostats and Switches (Mercury)	Throughout	800	Ampules
Emergency Light Batteries (Lead)	Throughout	500	EA
Refrigerants Associated with HVAC	Throughout	10,000	Gallons
Fire Extinguishers (Compressed Gas)	Throughout	300	EA
Refrigerants Associated with Water Bubblers and Air Conditioners and freezers in Storage	Throughout	1,200	Gallons
Exit Signs (Tritium)	Throughout	250	EA
Chemicals (Mercury and Lead)	Science Sink Traps and Photo (Library)	50	Gallons
Ash from Chimney at Power Plant	Chimney	100	Cubic Yards
Diesel Fuel Underground Storage tank (UST)	Power Plant	20,000	Gallon
Diesel Fuel Above Ground Storage tank (AST)	Building #60 and #62	200 each (400)	Gallons
Fuel Oil AST	Buildings #17 and #18	275 each (550)	Gallons

Material Description	Location	Est. Quantity	Units
PCB Transformer Fluid (Documented)	Building #27 Building #30 Building #50 Building #53 Building #60 Building #61 Building #58	210 215 1,100 150 230 219 220	Gallons
Hydraulic Fluid	Maintenance, Storage, Elevators	2,500	Gallons
Lead Acid Batteries	Various Buildings	450	Each

5.3 Recommendations

Prior to removal, light tubes, ballasts, compact florescent bulbs, lead and tritium batteries, lead acid batteries, thermostats and switches etc. will require proper handling, removal, transportation and off-site recycling/reclamation. Refrigerants, hydraulic fluid and PCB-containing transformer fluid will require handling and disposal in accordance with applicable state and federal regulations. Any sludge in the science sink traps in the library or other inaccessible buildings and chimney ash from the power plant will need to be sampled for laboratory analysis of compounds of concern to determine proper disposal requirements.

Limitations

The conclusions are limited to the information available at the time of the field survey and the scope of services, as defined. No subsurface soil or groundwater testing was performed. Where access to portions of the Site or to structures on the site was unavailable or limited, CDW renders no opinion as to the presence of hazardous material or the presence of indirect evidence related to hazardous material in that portion of the site or structure. This report cannot be solely relied upon for demolition. The testing performed forms the basis for conclusions expressed and areas inaccessible for testing limits those conclusions. No other conclusions, interpretations or recommendations are contained or implied in this report other than those expressed. No other use of this report is warranted without the written consent of CDW Consultants, Inc.

CDW appreciates the opportunity to provide our services to you on this project.

APPENDIX A

Fernald Center Map Key Missing State Maintenance shed #49; Houses #17,18,19 & 20; Bldg #48

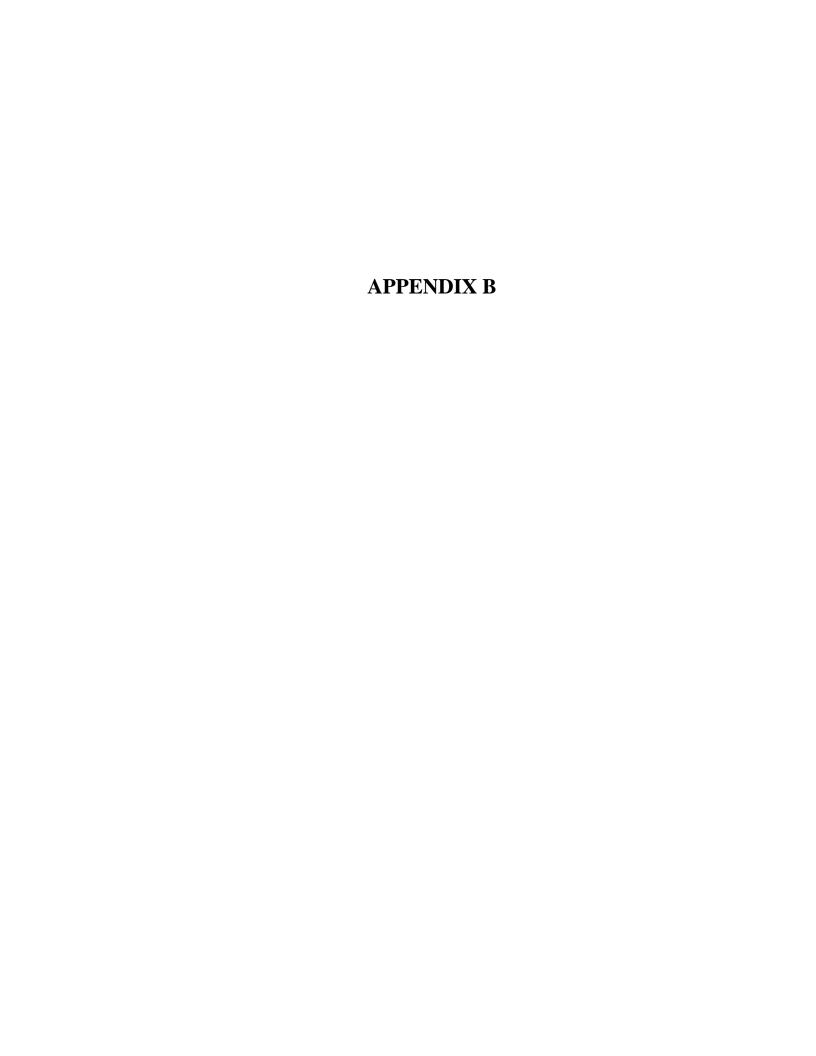
Fernald							Renovated			
	DCAM	Campus	Name	Architect	Year	GSF	? Y/N	Asbestos?	Condition	Style
1	47	Center	Administration Building	Hoyt	1933	26,856	no	yes	good	Colonial Revival
2	42	Center	East Dowling/Can Redemption	Preston	1906	24,107	no	yes	poor	Queen Anne
15	23	Center	Lavers	Calderwood	1914	12,036	no	yes	good	Craftsman
32	120	Center	Greenhouse (Old)		1940	3,855	no	yes	fair	
43	400	Center	Food Service/Parkman		1983	27,712	new	no	good	Modern
47	43	Center	Hillside Cottage/Garage	Preston	1904	8,115	yes	no	good	Queen Anne
<mark>50</mark>	22	Center	Laundry/Therapeutic Equip Ctr		1928	27,192	yes	yes	good	Utilitarian
52	24	Center	Maintenance		1930	14,322	no	yes	fair	Utilitarian
53	26	Center	Power Plant		1921	19,440	no	yes	fair	Utilitarian Utilitarian
54	40	Center		Hoyt	1931	36,836	no	yes	fair	Colonial Revival
<u>57</u>	21	Center	Howe Library	Kendall, Ta	1921	8,030	no	yes	good	Craftsman
61	32	Center	Tarbell Hall (Sandra's Lodge)	,	1934	38,924	no	yes	good	Tudor Revival
69	13	Center	Marquardt Nursing Ctr/Thom Bu	uildina	1952	32,116	yes	no	good	Colonial Revival
74/75	41	Center	Howe Hall/Canteen	l	1933	17,362	yes	no	fair	Colonial Revival
14	9	East	East Nurses	Preston	1906	8,640	no	yes	fair	Queen Anne
16	7	East	North Nurses Home	Preston	1904	17,190	yes	no	good	Queen Anne
29	11	East	Warren Hall	Preston	1906	16,296	yes	no	good	Queen Anne
30	12	East	South Nurses Home	Preston	1907	17,172	yes	no	good	Queen Anne
31	103	East	CERC Building	CBT	1969	32,369	yes	yes	good	Modern
33	701	East	Greenhouse Sales		1975	100	no	no	good	
34	10	East	Manual Training	Preston	1904	34,851	yes	yes	good	Queen Anne
35	2	East	North Building	Preston	1897	24,834	yes	no	good	Queen Anne
36	4/5	East	Schoolhouse/Gymnasium	Preston	1891	37,325	yes	no	good	Queen Anne
40	6	East	Chipman	Preston	1892	10,704	no	yes	unusable	Queen Anne
42	49	East	Hospital/S. Bowen	Preston	1893	12,000	no	yes	unusable	Queen Anne
44	3	East	Activity Center (Old)	Preston	1891	21,785	no	yes	unusable	Queen Anne
51	100	East	Kelley Hall/Copy Center		1969	43,740	no	yes	poor	Modern
55	16	East	Storeroom	Preston	1891	23,940	no	yes	fair	Queen Anne
62	46	East	Wallace Hall	100.011	1936	29,560	yes	no	good	Colonial Revival
64	102	East	Withington/Tufts Dental	Payette	1979	40,428	yes	yes	good	Modern
65	51	East	Trapelo Cottage/Day Care/Gara		1860	2,877	no	yes	good	Greek Revival
70	125	East	Shriver Center	Caolo&Ben	1967	48,757	no	yes	good	Modern
71	1	East	Waverley Hall	Preston	1891	32,298	no	yes	unusable	Queen Anne
25	38	West	West Nurses	Preston	1906	6,912	no	yes	poor	Queen Anne
26	118	West	Training Activity Center	1 1001011	1963	18,130	new	no	good	Modern
27	34	West	Belmont House	Preston	1890	6,416	yes	yes	good	Queen Anne
28	116	West	Brookside	100:011	1981	11,520		no	good	Modern
37	501	West	Site 5		1985	12,000	new	no	fair	Modern
38	700	West	Site 7/Flow Incorporated		1985	20,064	new	no	fair	Modern
39	117	West	Woodside		1981	11,520	new	no	good	Modern
41	119	West	Chapel		1960	17,112	no	yes	good	Modern
45	48	West	Farrell Hall		1960	49,940	yes	no	good	Modern
46	50	West	Greene Unit	Main	1953	113,000	yes	no	good	Modern
56	33	West	West Building	Preston	1890	49,041	no no	yes	unusable	Queen Anne
58	37	West	Dolan Hall	Preston	1906	15,252	yes	no	good	Queen Anne
59	36	West	McDougall Hall	Preston	1898	23,376	yes	no	good	Queen Anne
60	35	West	Seguin Hall	Hoyt	1934	21,521	yes	no	good	Colonial Revival
66	45	West	Baldwin Cottage/Day Care		1875	3,422	no	yes	good	Vernacular
72	39	West	Wheatly Hall/Furniture Repair		1933	11,640	no	yes	poor	Colonial Revival
3-13		West	Cottages 3-13			8,827 each		no	fair	Modern
18a	53	West	Cardinal Cottage/Garage	Sanger	1849	4,354	no	yes	good	Greek Revival
21-24		West	Malone Park 21-24	Janger	1986	4,334		no	good	Modern
21-24	210	v v e o l	IVIAIULIG FAIN 21-24		1300	4,123	new	110	good	INIOUEIII

Cottages 17-20: The cottages (17-20) were constructed in 1925, except for cottage 18, which I'm struggling to figure out. They are all listed as "contributing structures" on the MoA. A number of them appear to be in very poor condition, while a number appear to be in better condition. They are located on the hillside to the right of the entryway when you enter the property from Waverly Oaks Road.

Maintenance Shed #49: I interviewed a number of people about Maintenance Shed #49, as appearing on the map. It appears that it was built atop a more historic structure that was torn down. In the MoA, a barn foundation is listed as a contributing feature. I have yet to figure out if this is one and the same. If it is, it's more problematic. If it's not, the shed itself is not historic.

Building 48 on the map, was a garage constructed in 1932 on the East Campus, behind the original laundry building (55 on the map). It is listed as a "non-contributing structure" and therefore it could conceivably be demolished.

Building 48 as defined in the MoA is Farrell Hall, constructed in 1960. It is listed as a "non-contributing structure" and therefore it could conceivably be demolished.


Building 55 The larger structure we observed next to Stephen Bowen Hall/Music Therapy (#42 on the map) is one of the handful of buildings remaining from the very first wave of construction at the campus. It was built in 1891 as a laundry/services facility to support the school, which is actually very important in the National Register criteria. It is listed as a contributing structure on the MoA. Unless it is in terrible shape (like the Girls Dormitory across the road, or the Boys Dormitory), it will have to be preserved, since the demolition of those two buildings is likely, and reduces the number of original campus buildings to a scarce few. I'll have to get into it to look around and see what modifications have been made, but this is enough information to guide the conversation for now.

Small Brick Structure The out-building next to the old infirmary (Stephen Bowen, #42 on the map) is equally important. It dates to the first decade of the school and appears to have been built to sterilize materials during outbreaks and epidemics. I do not know of any remaining 19th century medical sterilization facility remaining in the country today, and after searching for hours, I think this may be the last one. Again, might seem trivial, but it proves that this place wasn't Aushwitz, and that the people who ran it made a serious effort to care for the children in their charge. Once again, that makes it a building that is both unique, and in the parlance, preferably preserved.

Coal Contamination In my reading, I should warn you that it appears that a significant amount of coal (up to 500 tons) was stored on-site beginning in 1891. Based on the descriptions, I believe it was stored on the hillside below the West Building (Belmont House). I cannot find evidence that this was ever properly remediated. Significant dumping of potentially hazardous waste has happened as recently as the last two months along that ridgeline.

Information provided by Alex Green of Waltham Historic Commission on 6.29.16 via email

Asbestos Identification Laboratory

165 New Boston St., Ste 227 Woburn, MA 01801 781-932-9600

Web: www.asbestosidentificationlab.com Email: mikemanning@asbestosidentificationlab.com **Batch:** 17053

October 24, 2016

Susan Cahalan CDW Consultants, Inc. 40 Speen St. Suite 301

Framingham, MA 01701

Project Number:

Project Name: Waltham Fernald Lavers #15

 Date Sampled:
 2016-10-03

 Work Received:
 2016-10-17

 Work Analyzed:
 2016-10-22

Analysis Method: BULK PLM ANALYSIS EPA/600/R-93/116

Dear Susan Cahalan,

Asbestos Identification Laboratory has completed the analysis of the samples from your office for the above referenced project .

The information and analysis contained in this report have been generated using the EPA /600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials. Materials or products that contain more than 1% of any kind or combination of asbestos are considered an asbestos containing building material as determined by the EPA. This Polarized Light Microscope (PLM) technique may be performed either by visual estimation or point counting. Point counting provides a determination of the area percentage of asbestos in a sample. If the asbestos is estimated to be less than 10% by visual estimation of friable material, the determination may be repeated using the point counting technique. The results of the point counting supersede visual PLM results. Results in this report only relate to the items tested. This report may not be used by the customer to claim product endorsement by NVLAP or any other U.S. Government Agency.

Laboratory results represent the analysis of samples as submitted by the customer. Information regarding sample location, description, area, volume, etc., was provided by the customer. Asbestos Identification Laboratory is not responsible for sample collection activities or analytical method limitations. Unless notified in writing to return samples, Asbestos Identification Laboratory discards customer samples after 30 days. Samples containing subsamples or layers will be analyzed separately when applicable. Reports are kept at Asbestos Identification Laboratory for three years. This report shall not be reproduced, except in full, without the written consent of Asbestos Identification Laboratory.

• NVLAP Lab Code: 200919-0

Mechael Thamy

- Massachusetts Certification License: AA000208
- State of Connecticut, Department of Public Health Approved Environmental Laboratory Registration Number: PH-0142
- State of Maine, Department of Environmental Protection Asbestos Analytical Laboratory License Number: LB-0078(Bulk) LA-0087(Air)
- State of Rhode Island and Providence Plantations. Department of Health Certification: AAL-121
- · State of Vermont, Department of Health Environmental Health License AL934461

Thank you Susan Cahalan for your business.

Michael Manning Owner/Director Susan Cahalan CDW Consultants, Inc. 40 Speen St. Suite 301

Project Number:

Project Name: Waltham Fernald Lavers #15

Work Analyzed: 2016-10-22

Analysis Method: BULK PLM ANALYSIS EPA/600/R-93/116

FieldI)	Material	Location	Color	Non-Asbestos %	Asbestos %
La	abID					
1A		1x1 Tan Floor Tile	Most Rooms	tan	Non-Fibrous 10	0 None Detected
18	88792					
1B		1x1 Tan Floor Tile	Most Rooms	tan	Non-Fibrous 10	0 None Detected
18	88793					
1C		1x1 Tan Floor Tile	Most Rooms	tan	Non-Fibrous 10	None Detected
18	88794					
1D		1x1 Tan Floor Tile	Most Rooms	tan	Non-Fibrous 10	None Detected
18	88795					
1E		1x1 Tan Floor Tile	Most Rooms	tan	Non-Fibrous 10	None Detected
	88796					
1F		1x1 Tan Floor Tile	Most Rooms	tan	Non-Fibrous 10	None Detected
	88797					
1G		1x1 Tan Floor Tile	Most Rooms	tan	Non-Fibrous 10	None Detected
	88798			-		
2A 		Brown Mastic	Under 1x1 Tan Floor Tile	brown	Non-Fibrous 10	None Detected
	88799					
2B		Brown Mastic —	Under 1x1 Tan Floor Tile	brown	Non-Fibrous 10	None Detected
	88800			<u> </u>		
2C		Brown Mastic	Under 1x1 Tan Floor Tile	brown	Non-Fibrous 10	None Detected
	88801	1		<u> </u>		
2D		Brown Mastic	Under 1x1 Tan Floor Tile	brown	Non-Fibrous 10	None Detected
	88802	Dec Martin	Haland A.Tau Flaga Tile		10	0.17 Datasta
2E		Brown Mastic	Under 1x1 Tan Floor Tile	brown	Non-Fibrous 10	None Detected
18 2F	88803	Brown Mastic	Under 1x1 Tan Floor Tile	brows	Non Eibrara 10	0 None Detected
4 F		— DIOWII WASUC	Under 1x1 Tan Floor Tile	brown	Non-Fibrous 10	o morre perecred
18 2 G	88804	Brown Mastic	Under 1x1 Tan Floor Tile	brown	Non-Fibrous 10	0 None Detected
		— DIOWII WASTIC	Under 1x1 Tan Floor Tile	DIOWII	mon-ribrous 10	O Mone Defected
	88805 24 Octob					Page 1 of 4

Fie	ldID	Material	Location	Color	Non-Asbestos %	Asbestos %
	LabID					
ЗА		1x1 Blue Floor Tile	Center Room	blue	Non-Fibrous 10	None Detected
	188806					
3B		1x1 Blue Floor Tile	Center Room	blue	Non-Fibrous 10	None Detected
	188807					
3C		1x1 Blue Floor Tile	Center Room	blue	Non-Fibrous 10	None Detected
	188808					
4A		Brown Mastic	Under 1x1 Blue Floor Tile	brown	Non-Fibrous 10) None Detected
40	188809	Dura Marka	Hadad A Blackback			2 Maria - Data ata d
4B		Brown Mastic	Under 1x1 Blue Floor Tile	brown	Non-Fibrous 10) None Detected
4C	188810	Brown Mastic	Under 1x1 Blue Floor Tile	brown	Non-Fibrous 10	None Detected
-		— Brown Mastic	Officer 1X1 Blue 1 loof Tile	DIOWII	Non-Fibrous 100	None Detected
5A	188811	1x1 Grey Floor Tile	Side Rooms	gray	Non-Fibrous 10	None Detected
				9.57		
5B	188812	1x1 Grey Floor Tile	Side Rooms	gray	Non-Fibrous 10	None Detected
	188813					
5C	100013	1x1 Grey Floor Tile	Side Rooms	gray	Non-Fibrous 10	None Detected
	188814					
6A		Black Mastic	Under 1x1 Floor Tile	black	Non-Fibrous 10	None Detected
	188815					
6B		Black Mastic	Under 1x1 Floor Tile	black	Non-Fibrous 10	None Detected
	188816					
6C		Black Mastic	Under 1x1 Floor Tile	black	Non-Fibrous 10	None Detected
	188817					
7A		Yellow Glue	Under Brown Cove Base	multi	Non-Fibrous 10	Detected Chrysotile < 1
	188818					
7B		Yellow Glue	Under Brown Cove Base	yellow	Non-Fibrous 10	None Detected
	188819			<u> </u>		
7C		Yellow Glue	Under Brown Cove Base	yellow	Non-Fibrous 10	None Detected
ΩΛ	188820	Light Top Clus	Lindor Ton Cova Daga	ton	Non Eiberger 100	Mono Dotostad
8A		Light Tan Glue —	Under Tan Cove Base	tan	Non-Fibrous 10) None Detected
8B	188821	Light Tan Glue	Under Tan Cove Base	tan	Non-Fibrous 10) None Detected
		Light rail Glue	Officer Tall Cove base	lall	mon-ribrous 100	Javone Decedied
8C	188822	Light Tan Glue	Under Tan Cove Base	multi	Non-Fibrous 10	None Detected
		— Light ran Glue	Onder Tail Cove Dase	Intuiti	TOTI LIDIOUS 100	, ione beleeved
Man	188823	L		1		2age 2 of 4

Monday 24 October Page 2 of 4

Fiel	dID	Material	Location	Color	Non-Asbestos %	Asbestos %
	LabID					
9A		Grout	Glass Block	gray	Non-Fibrous 10	0 None Detected
	188824					
9B		Grout	Glass Block	gray	Non-Fibrous 10	0 None Detected
	188825					
9C		Grout	Glass Block	gray	Non-Fibrous 10	0 None Detected
	188826					
9D		Grout	Glass Block	gray	Non-Fibrous 10	0 None Detected
	188827					
9E		Grout	Glass Block	gray	Non-Fibrous 10	0 None Detected
	188828					
9F		Grout	Glass Block	gray	Non-Fibrous 10	0 None Detected
	188829					
9G		Grout	Glass Block	gray	Non-Fibrous 10	0 None Detected
	188830					
10A		Lathe Ceiling Plaster	Room with Collapsed Ceiling	gray	Non-Fibrous 10	0 None Detected
	188831					
10B		Lathe Ceiling Plaster	Room with Collapsed Ceiling	gray	Non-Fibrous 10	0 None Detected
	188832					
10C		Lathe Ceiling Plaster	Room with Collapsed Ceiling	gray	Non-Fibrous 10	0 None Detected
	188833					
11A		Exterior Window Caulk	Thin Interior Bead	multi	Non-Fibrous 10	0 None Detected
44D	188834	Futorion Window Coulle	This leteries Dood		10	O Maria Baharihad
11B		Exterior Window Caulk	Thin Interior Bead	multi	Non-Fibrous 10	0 None Detected
11C	188835	Exterior Window Caulk	Thin Interior Bead	multi	Non-Fibrous 10	None Detected
		— Lxterior Window Cadik	Triiir interior bead	India	Non-Fibrous 10	None Beecetca
11D	188836	Exterior Window Caulk	Thin Interior Bead	multi	Non-Fibrous 10	0 None Detected
		— Exterior Window Cadik	Triiir interior bead	India	Non Fibrous 10	None Beeceda
11E	188837	Exterior Window Caulk	Thin Interior Bead	multi	Non-Fibrous 10	0 None Detected
		— Literior William Caulk	Triiir interior bead	India	Non-Fibrous 10	None Beeeeted
11F	188838	Exterior Window Caulk	Thin Interior Bead	multi	Non-Fibrous 10	0 None Detected
111		Exterior Window Caulk	Triin interior bead	multi	Non-Fibrous 10	TO None Detected
11G	188839	Exterior Window Coulk	Thin Interior Deed	multi	Non Bibarra 10	0 None Detected
116		Exterior Window Caulk	Thin Interior Bead	multi	Non-Fibrous 10	Whome Detected
124	188840	\\/\bito\\/\/indo\\O\===	Extorior Windows	- ٤: مادين	Man Dilana 2	8 Detected
12A		White Window Glaze	Exterior Windows	white	Non-Fibrous 9	Chrysotile 2
N 4	188841 lav 24 Octo					Page 3 of 4

Monday 24 October Page 3 of 4

Fiel	dID	Material	Location	Color	Non-Asbestos %	Asbestos %
	LabID					
12B		White Window Glaze	Exterior Windows			Not Analyzed
	188842					
12C		White Window Glaze	Exterior Windows			Not Analyzed
	188843					
12D		White Window Glaze	Exterior Windows			Not Analyzed
	188844					
12E		White Window Glaze	Exterior Windows			Not Analyzed
405	188845	140 1 140 1				
12F		White Window Glaze	Exterior Windows			Not Analyzed
12G	188846	White Window Glaze	Exterior Windows			Not Analyzed
120			Exterior windows			NOC Anaryzed
13A	188847	White Gray Window Caulk	Exterior Windows	multi	Non-Fibrous 95	Detected
10/1		— Write Gray Willidow Cadik	Exterior willdows	India	Noil Fibrous 93	Chrysotile 5
13B	188848	White Gray Window Caulk	Exterior Windows			Not Analyzed
		— Trimes Gray Trimasii Gaaiii	Zationer vallagine			
13C	188849	White Gray Window Caulk	Exterior Windows			Not Analyzed
13D	188850	White Gray Window Caulk	Exterior Windows			Not Analyzed
	188851					
13E	100031	White Gray Window Caulk	Exterior Windows			Not Analyzed
	188852					
14A		Wall + Ceiling Plaster		multi	Non-Fibrous 100	None Detected
	188853					
14B		Wall + Ceiling Plaster		white	Non-Fibrous 100	None Detected
	188854					
14C		Wall + Ceiling Plaster		white	Non-Fibrous 100	None Detected
	188855					
14D		Wall + Ceiling Plaster		multi	Non-Fibrous 100	None Detected
	188856					
14E		Wall + Ceiling Plaster		white	Non-Fibrous 100	None Detected
4.45	188857	M/-II - C ''' 5' - 1		1	10	Mana Balana
14F		Wall + Ceiling Plaster —		multi	Non-Fibrous 100	None Detected
14G	188858	Wall & Calling Plants)b:t-	Non Eiberra 100	None Detected
146		Wall + Ceiling Plaster —		white	Non-Fibrous 100	None Detected
	188859					

Monday 24 October Analyzed by: Stefani Buy

End of Report

Batch: 17053

94	93	18879Z	Lab ID# (Lab Use Only Refe	Client DVS CAN I Thun Address: DS pan IT hun Project Site & #illu #Wan Fan Phone / email address: Phone / email address: Phone / email address: Contact: Buscus Ghoul Retinquish by/date: The Received by/date: Tamp in
0	>		Field ID/ (Client Reference)	ite & #Wallhour. ite &
Material (Location (Material / Location (Material X Tan Auetic Location MOST Loans	Material / Location	Client DVS CANN HOUTS Address DS pear IT fruit POI Franciscus Address: Project Site & #Habilham Franda Kavers # 15 Phone / email address: Contact: Suscer Ghale Received by Hate: Temp in Calcius = 24 Temp in Calcius = 24
	0	0	% of Asbestos	1 2 2
			Color	l 3 ———————————————————————————————————
50	35		Homogeneity Texture	Asbesto Stereo Scope CAN Date Sampled: BATCH# CHA ASBESTO ASBESTOSIDE CAN TO Scope
		7	Friable	Asbeew Eew E 227 227 sbesto ample
Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Annosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Asbestos Minerals	lentiti
			Asbestos %	ntifii
			Morphology	IN OF CUSTO EPA/600/R-93/116 Identification St. 301 Cationlab.com Copti
			Extinction	
			Sign of Elongation	n Lab Rev 12/15
			Birefringence	on AB - SO
			Pleochroism	
			<u> </u>	Turnaround Less 3 H Less 3 H Same Da Next Day Next Day Next Day Stop on 1st Notify Metho Anayzed By Date: N
		'	Fiberglass	Turnaround Time Less 3 Hrs Same Day Next Day Next Day Notify Method: Mail/F Anayzed By: Anayzed By: Non-Asbes
			Mineral Wool	Page Ind Time Hrs Approximate Positive Theorem May Non-Asi
			Cellulose	
			Hair	Sample Method Sample Method Bulk Soil Wipe Weskino Mail/Verbal OCOCOCO
			Synthetic	Bulk Soil Wipe Point Count Cou
<u>a</u>		\sim	Other Non-Fibrous	ge (°

		Ofg	7				4	B				9	7						C	4				Q	18	Lab ID# (Lab Use Or	ly)	_]
	2	<u></u>				P	9				9	5					(7	•			,	0	<u> </u>	\ \ \ \	Field ID/ (Client Reference)	27		
	Under /X) - Tour floor	from Mastic	Material	,	רטרשווסוו		C	Waterial			Location	·	_	Materia)		((Location	_	-	Material			Location	$\tilde{\lambda}$		Material / Location		Temp in Celcius =	
			1		($\overline{\mathbb{R}}$				(7	_			(_~)			(_	<u>、</u> ン〜	<u> </u>		% of Asbestos		_	
-	- 22		7			Z	_			~)_ _		_		_	_	<u></u>			_	5	_			Color	Stereo Scope	Star	
-	<u> </u>		╁	0	<u></u>	2	>		\ \	<u></u>	\leq			_		<u>5</u>	\leq	<u>-</u>	-	_		_	_	<u>-</u>	<u>.</u>	Homogeneity	0 00	2	
F	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		╁	<u>- ک</u>	~ 	1		_	<u>ک</u> ج			<u> </u>		\dashv	<u>ک</u>	<u>-</u>	<u>)</u>			4	ر ایخ ایخ) 	1			Texture	ope		
ΛcII	A PER S		2 2	<u>)</u>	Tre	C _C	À	앍	₽ū	Ant	- -	ဂ္ဂ	ÀI	오	<u>(</u> }	<u>}</u>	금1	ू	<u>}</u> [3	<u>₹</u>	T	<u> </u>	7 ≥	ि	Friable		4	
Actinoine	Tremolite Anthophylite	Amosite Crocidolite	Charatile	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	rvsotile	Anthophylite Actinolite) in the line	Crocidolite	Amosite	Chrysotile	Asbestos Minerals			YOUN >
L		$\frac{1}{1}$	\perp								4												I		Ĺ	Asbestos %	T	1	V
																					İ					Morphology	٥		
L	<u> </u>						_				\downarrow															Extinction	Optical Properties		
\perp		+-	$oldsymbol{\perp}$						_	1	1			1		1										Sign of Elongation	Pre		
L							_		_		1	\perp														Birefringence	ertie		
F		$\bot \bot$	Ļ			4		4	\downarrow	1		1	_		1	1	1	\perp	1		\perp					Pleochroism]"		
H		+-	-		4	\downarrow	_	4	\downarrow	\downarrow	+	1	1	1	1	\downarrow	\downarrow	_	-	L	_		L				- 2	1	
H		<u> </u>			+			+			+			╀			+	<u> </u>		L					_	<u> </u>			
H			-		+			╁			+			╀	_		+			Ļ			-		┪	iberglass	ļģ.		_
卜			_		+			+			+	_		╀	_		╀			┞			-		+	Mineral Wool	Asbe	rage_	7
					\dagger		_	\dagger			\dagger			╁			╂-			-		-	<u> </u>		十	Cellulose	stos	X	\bigcirc
			_		\dagger			†	,		\dagger			T			-	·		\vdash	_		-	_	╅	fair Synthetic	Parc	으	- -
			\		1		•	†	\		\dagger			T		_	H		-			\dashv		_	十	Other	entag	-	_
_{{	<u> </u>			1/				\overline{C}	D,	7				(D	1		_		6	Ø,	$ \top $	- .		╅	lon-Fibrous	Non-Asbestos Percentage (%)	`	ىي

É						7		-		_	_	-				_		-						-, -	-			_							
			_	2	1	_				Ĺ	8						O	4			(7]			8	F.	F		\mathcal{O}			Lab I b Use		1)	
			<u> </u>	7	<u> </u>			<u></u>	9	7	`			ζ	2	<u>></u> フ				ζ.	<u> </u>	>				3) <u>'</u>	>				(Client Reference)	Field ID/		
	1	Location				Material	_		Cotion	7	Material	Material		Focation			naterial	2000		רככמווכוו	cation		Material			Location			Nate la			Material / Location			Temp in Celcius =
		(2				(<u>J</u>				\dagger	(1	_			t	$\overline{}$	7				1		i .				% of	Asl	pesto	s	Ŧ	
	(Ż	5(\tag{\tau}	D			Ø		ス	Ż		2			7	7		5	$\tilde{\mathbb{C}}$	J,	7)	-	3	2			3	Colo	Г			0.00	2
		7	_				_	7						_						_										Hom	oge	neity		oreieo ocope	2
-	$\frac{\cdot}{\cdot}$	1 1	\bigcup	Ö		L		15	<u></u>	0		1	1		~)		L	1	C	ベ)		۲	1	(グ	\supset		Text	ure			cope	3
∑	<u>`</u>	<u>~</u> 	ନ	 >	Го	>	<u> </u>	Т⊣	To	1>	lo	(<u>`</u> Ìъ	1=	<u> </u>	1 >	10	(<u>≻</u>	+=	1 ~	┰	Τ <u>ς</u>	Ĺ	\geq			, T=	T =	Friat	le				
Actinolite	Anthophylite	remolite	©rocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals					
L							L		L																					Asb	est	os %	,		٦
										L														-						Morp	hoic	gy		0	,
L								L																						Extin	ctio	n		Optical Properties	
L		\downarrow	_	_			_																							Sign	of E	longa	ation	Prop	1
													_																	Birefr	inge	ence] ē	
L		\downarrow	4		_																		$oxed{I}$							Pleoc	hroi	sm		S	
Ц	_	\downarrow	_	4	4				_	_		_	_	4			_				\rfloor									=					1
Н	\bot	+			_			4			4			\downarrow			4			_			_			_				<u> </u>				꼰	
		+			4		_	4			4			_	_		1			\downarrow			1			1			1	Fiberg	lass	5		Non	
\vdash		+	_		\dashv			\dashv	<u></u>		+		_	+			-		_	4			4			_	_		4	Miner	al W	ool		-Asb	0
		\dashv			+		_	\dashv	_		+		_	+	_		+	-	_	4		_	+			+			4	Cellui	ose			estos	
-		\dagger		_	+			+			+	_		+			+			+			+			+			╅	lair				5 Per	9
		+	_		†	^		+			╫	_		+			╁	_		+			╀			+			┱	ynth	etic	 .	_	centa	
7	1	\dagger			t	D	/	;			†	7	11.	+			+	1	h	+			+	$\frac{2}{2}$	/	+			╅	Other				Non-Asbestos Percentage (%)	
7		<u>.</u>			┵`	_	_					_					L`	_		<u> </u>			<u> </u>	<u>_</u>		:	_			lon-F	pto	us		ಲ	ľ

Page of 13

Liab IDP Clark Find DP Control Con	_										_		_						_	-					•						1		
Temp in Celeius = Steree Scope Optical Properties In Material / Location Material / Locati	L			()	9	ł	,			(¥	_			(ナ	7				<u>_</u>	L	>		L			\leq	<u>7</u>	•)
% of Asbestos Color Homogeneity Texture Friable Amosile Chysofile Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Chysofile Anthophylite Anthop				エフ		>			(B	l				(んて	7		İ							(2	<u>C</u>				Field ID/ (Client Reference)	
Color Homogeneity Texture Friable Chysotlie Annosite Anthophylite Anth	404	15 X X X X	Location		Story Johnson	Material			Location			Material	3		Location		-	Material	While Tear	Control of the Control	Location	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	一大いでは、	Material			Location			Material		Material / Location	Temp in Celcius =
Optical Properties Friable Asbestos % Chrysotlie Annosite Chrysotlie Chrysotlie Annosite Chrysotlie Chrysotlie Annosite Chrysotlie Chrysotlie Chrysotlie Chrysotlie Chrysotlie Chrysotlie Annosite Chrysotlie Chrysot				2	<u> </u>	/		(\bigcup				Ĺ	\overline{Q}) 		-			(\bigcup						/	`` 			% of As	bestos	
Optical Properties Friable Asbestos % Chrysotlie Annosite Chrysotlie Chrysotlie Annosite Chrysotlie Chrysotlie Annosite Chrysotlie Chrysotlie Chrysotlie Chrysotlie Chrysotlie Chrysotlie Annosite Chrysotlie Chrysot		_	X -	<i>`</i> }	ア	2		1	_	()			L,	_	<u>\</u>		ス	<u>Č</u>		7	_ \	<u>_</u>	K	3		3	\sum		7	Ċ	Color		Stere
Optical Properties Friable Asbestos % Chrysotlie Annosite Chrysotlie Chrysotlie Annosite Chrysotlie Chrysotlie Annosite Chrysotlie Chrysotlie Chrysotlie Chrysotlie Chrysotlie Chrysotlie Annosite Chrysotlie Chrysot		_	<u></u>				L,		<u>_</u>		-		L	_	\subseteq				L	_	\sum					(<u>_</u>				Homog	eneity	S O
Asbestos % Minerals Chrysotlle Amosite Chrysotlle Anthophylite Amosite Chrysotlle Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Chrysotlle Chrysotlle Anthophylite Anthophylite Anthophylite Chrysotlle Chrysotlle Chrysotlle C		{	\mathcal{V}	<u>つ</u>			Ľ	2		1				7		<i>J</i>			_	<u>Z</u>	_	1			9	Λ	<u> </u>	<u> </u>	2		Texture		öpe
Asbestos % Morphology Extinction Sign of Elongation Birefringence Pleochroism Poperties Poperties Pleochroism Pleo		((T-="	1	T =	Ĺ	7	<u>-</u>	T=			,	5		_	1 .		Ļ	Ź	-	_			(_	<u>-</u>	_		-			ļ
Morphology Detical Properties Sign of Elongation Birefringence Pleochroism R	Actinolite	Anthophylite	remolite	Crocidolite	\mosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite .	Crocidolite	4mosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals		
Extinction Sign of Elongation Birefringence Pleochroism R				i _																											Asbes	tos %	
Sign of Elongation Birefringence Pleochroism — Properties Pleochroism — Properties Pleochroism — Properties Pleochroism — Properties Pleochroism — Properties Proper																															Morpho	logy	ခ္ခ
Pleochroism =																															Extinction	on	tical
Pleochroism =																		·													Sign of	Elongation	Prop
Pleochroism =											1												İ								Birefring	gence	ertie
	П																														Pleochr	oism	S S
<u> </u>																	N.														=		<u></u>
Fiberglass Mineral Wool Cellulose Hair Synthetic Other Non-Fibrous														Ì																	 -		~
Mineral Wool Cellulose Hair Synthetic Other Non-Fibrous	L																														Fibergla	ss	Nor
Cellulose Hair Synthetic Other Non-Fibrous																															Mineral '	Wool	1-Ask
Hair Synthetic Other Non-Fibrous	L																	╛													Cellulos	e	esto
Synthetic Centrage Other Non-Fibrous %			4			_												_													Hair		s Pe
8 Other Sign Non-Fibrous S			_			_			_			4			_									_			_				Syntheti	С	rcent
8 Non-Fibrous 3		_	\bigcup			_	٦,	//				_	()	/	_					_	_		<u>.</u>			_	_				Other	·	age (
		2					7	01,	`					7/1		····			5	j)	١.				6	97					Non-Fibi	ous	%)

ı						T				_		T			771			Т		-				T		-				1		h Ing		
				Ú	1	1			J	3)				Į	2	_ بے	┸			}	1					(<u>C</u>		(b ID# Jse Oni	y)	
		(7	}					Y T					,	7	7					2	<u>`</u>				7	2	/ 1 /			Reference)	Field ID/ (Client		
		Location		=	Waterial			r coalion	Continu	_	Material		STOCK COLLS	Location	1200 CE	JX JOSEPHOR	Material			Location	•		Material			Location		~	Material		Material / Location			Temp in Celcius =
		(/			(<u> </u>						()				()			T	(5				% of	Asbe	stos	+	
		7		<u>()</u>)	<u> -</u>		$\frac{1}{2}$	~ '	V	<u>)(</u>	4			. ())		7)	C	N	2,]	Ž	57	J	V.	,	Color				Ster
		$\frac{1}{2}$	5) 60										\sum_{i}	_	_				``		<u> </u>				7	_				Homo	gene	eity		Stereo Scone
L	<u>5</u>	_C	<u> </u>	<u>) </u>		L		<u>ر</u>	${}$	<u>)</u>		\sim		0		j				<u>Y</u>	<u>/</u>			(2/	<u> </u>				Textu	re		200	2
7) 	<u> </u>		1 >	Anth							Ĺ	$\overline{\zeta}$		ī_		1	Ļ		$\sum_{i=1}^{n}$	<u> </u>	_	16	Ĺ		_		_	<u> </u>	Friabl	e			
Acundine	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite .	Crocidolite	Amosite	Chrysotile	Asbestos Minerals				!
							L	L		L		Щ			L.															Asbe	stos	s % '	T	
																														Morph	olog	У	٥	?
																														Extino	tion		tical	1
L																											Ì			Sign o	f Elo	ngatio	Optical Properties	7
														_												Ì				Birefri	ngen	ce	ertie	
L				\bot																						ı				Pleoch	rois	m	¬ s	
L		\downarrow							L			_	_	\rfloor																=			_	
L		_																-												<u> </u>			근	
L		\downarrow			_									_			_													Fiberg	ləss		Non	
L		4			_						_			_			1			\downarrow			_	_		4				Minera	l Wo	ol	-Asb	•
L		4			4						_			1			1		_	4			_	_		4				Cellulo	se		esto	
_		+	_		-			_			-			\downarrow			4			4			1			_			_	-lair			s Per	
H		\dashv			+	_	_	-			+			4			4			4			4			4			十	Synthe	tic		Non-Asbestos Percentage (%)	
	10	+			+	7	7	\exists			+	_	_	+			+	\ \(\frac{1}{2}\)	/-	\dashv			-	ام	7	+		_	7	Other			ge (
1 (6,1						2,	`				Ç	6	1		_		1	1/0	<u> </u>			1	(01	1			ľ	lon-Fi	brous	s	<u>ુ</u>]

Page S of 13

10.					Lab ID#	
19	18	()	16	15	(Lab Use Only)	
8	M	(oC	(ab	(OA	Fiald ID/ (Client Reference)	
Material () Location ()	Material Vellow GIVE Location Brown Unclus B	Material {\ Location (Material \ \cappa Location	Material MacL MOSTIC Location (1) Have Moder (1) There	Material / Location	Temp in Celcius =
	Q		\Diamond	0	% of Asbestos	
95	03	TO	Mon	don	Color	Ste
7					Homogeneity	Stereo Scope
9/)	\mathcal{Q}_{l}	V)	<i>V</i>)	Q)	Texture	cope
7					Friable	
Chrysotile Amosite Cycridolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Asbestos Minerals	
					Asbestos %	
	3				Morphology	ဓ္ဓ
					Extinction	Optical Properties
					Sign of Elongation	Prog
					Birefringence	ertie
				F	Pleochroism	<u>ه</u>
	1 199					
						2
				F	iberglass	Z S
				N	lineral Wool	Asb
				c	ellulose	estos
				H	lair	"Par
 					ynthetic S	cents.
121	0				ither d	Non-Ashestos Percentage (%)
	<u> </u>	(,)		(31 N	on-Fibrous	

Page Of S

			-	┰						Ŧ				_		•						_	_	-			-	T		
		<u> 7</u>	Λ,	1				2	3				4	2	2				_	2]			2	-6	2		Lab ID# (Lab Use Oni	'y)	
		±				(5	>				(6	60				(\simeq	Ŝ				(7		Field ID/ (Client Reference)		
	Hasi Hock	97001		Material		Location			Material			Location			Material	CWCDCAC		Focalion	CANA.	Man July	' 			Location		·	Material			Temp in Celcius =
	(-			()						<u></u>	}			-	C) د د					()				% of Asbestos	-	
	$\frac{1}{2}$. (ر))		3		Ì	_	_		}-		ے			7	,	<	<u></u>	7		~			Color		?
		_		L	$\frac{1}{2}$			٠.		L		7	_	<u> </u>				7						<u></u>	_			Homogeneity	ore cope	
-	<u> </u>	}		K	/ }	_		7		Ľ		/{		$\overline{}$)		<u>/\</u>	7		د			9	/)			Texture	cope	
	ू जिल्ला	داه	10	(_			<u></u>		Ļ	(ر ام	_	1.	Į	-		1 -		_	Ļ				_		Friable		
om one	Tremolite Anthophylite Actinolite	Amosite Crocidolite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals		
																										7	1	Asbestos %		1
																												Morphology	٥	
																											ı	Extinction	Optical	
	111	<u> </u>																									Ş	Sign of Elongation	Pro	
														_												Ţ	E	Birefringence	Properties	
L			Ц																				Ī			T	F	Pleochroism	\"	
L					_	1	_	1		1																T	1			1
_		_				\downarrow		\perp	1																		ŀ		22	
\perp			4			4			1	-		_			4	_				_							F	iberglass	NO O	
\vdash			\dashv	_		+	_		4			4			_	<u>.</u>		_	_		1			\perp			N	lineral Wool	-Asb	Page
\vdash			+			+			+			\downarrow		_	1			-		_	\downarrow		_	\downarrow			þ	ellulose	esto	
+		_	+			+			+	-		+			4			4	_		1			_			H	air	s Per	 ♀
\vdash			+	_		╬			╀	_		+		_	╁			+			+			+			s	ynthetic	cent	
-	1/2	· · ·	+	7	4	+			+	٠ ~	7	+		_	╀	7	4	+			+	~	+	+			╆	ther	Non-Asbestos Percentage (%)	\
<u>L</u>	(11)			7	111		_		1	7	-	1			L	<u> </u>	11	<u> </u>			L	7	11	7		_	N	on-Fibrous	%)	[

Marian

 $\vec{\lambda}$

	$\overline{}$					7						_	_					_				_			_							
			_	L	9	1				7	8	2				2	7				2	6		\int			-	2	5	Lab ID# (Lab Use Onl)	/)	
				2 7 —	<u> </u>				Z	2				``	2)]				-(Ę				Field ID/ (Client Reference)		
		Location	200	=		Material			Location	(1	Marchar	Material					Material			Location			Material			Location		-	Material	Material / Location	religion celcius -	
		(_		\dagger	(<u>ー</u>)	_		\dagger	(<u> </u>))		_			1	ブ	<u> </u>				% of Asbestas	_	\exists
9	7	_ ())	\subseteq	1		_ (\supset	J		E	7	7	.C			E	<u> </u>			,)	-	_	7	, (<u> </u>)	Color	Stereo	?
	7	=	_				7	<u> </u>	_					7		_			<u> </u>	_					(Homogeneity	eo S	
ŀ	\geq	<u>0</u>)			ζ	<u>~</u> 0)			2	<u>x</u>					2	<u></u>	_	<u> </u>		-		\geq	<u>></u>	<u>)</u>			Texture	Scope	ı
	≥ ≥	• I∃	ر			\ \ A	- >	1=	ΠŌ	ĪΣ	10	Ę	<u>></u> T>	1=	ے۔		10	\ \ \		1-	r -	_		Ĺ	_	~ 	<u> </u>	_	_	Friable		
	Anthophylite Actinolite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Cracidolite	Amosite	Chrysotile	ctinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	ctinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	\nthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals		
						L											j										1			Asbestos %	Τ	1
																													ļ	Morphology		
																							1				+	1	1	Extinction	Optica	
																												7	ļ	Sign of Elongation	al Properties	
L	\coprod																												ı	Birefringence	ertie	
		\downarrow			_																					1		1	F	Pleochroism	Š	l
		\downarrow	_		_			_					_				\perp							İ				T				
\downarrow		4			4								_							4										_	꼰	
\vdash		4			4			.			_						_			_			_			1			F	iberglass	Non	
\vdash		+	<u></u>		┥			-			4			4			4			_			1			1			_ \	lineral Wool	-Asb	Page
F	·	+		_	\dashv	_		\dashv			\dashv			+			4			_			╁			1			þ	elluiose	esto	
\vdash	**	+		_	+			\dashv			\dashv			+		_	╬			+			1			\downarrow	_		₽	air	s Per	의 약
-		+			+	_		-	_		+			+		_	+			+		_	+			\perp			╈	ynthetic	Non-Asbestos Percentage (%)	-
1	\sqrt{n}	\dagger			\dagger	7	1	4			+	$\frac{}{}$	$\overline{}$	+	_		╪	<u> </u>	/	+			1	<u></u>	+	+	_	_	+	ther	ge (\
<u> </u>	1	_L_	_			_	-18	<u>} </u>	`			7,	11	1			1		<u>t (s</u>	1			1	-	<u>,</u>	1			N	on-Fibrous	<u>چ</u>	•

NOW.

70

Ţ				7	٦,	ı	T			_	, -			Ţ				フっ	-	T					2	T						Lab ID#			7
-		_		<u> </u>	_	1	1		_	2	<u> </u>	<u> </u>		╀			<u> </u>	2	_	1					3/	\downarrow		- 3	\leq	5		(Lab Use Or	nly)		
			Ţ		- >					000	メ、				~-	7		, S						· •				c		<u>い</u>	ı	Field ID/ (Client Reference)			
	IN INTERIOR BOOK	Location Whole Company				Material				Location		=	Material			rocalioi				Material (9)	XOUN MAHN COllapsed	Focation	Tell parted					Location		_	Material	Material / Location		lemp in Celcius =	Paulo .
L		_	_(-		L		(7	$\stackrel{\sim}{\sim}$				(<u> </u>		_				(\bigcup	<u> </u>	_		(7	ر			% of Asbestos			1
L	(\geq)	_	5			\geq	7	. (<u>)</u>	, ,) (1		<u>_</u>	$\frac{C}{C}$	$\frac{1}{2}$	L	_	2	,	<u></u>)			>	$\overline{\mathcal{L}}$	D)	Color		Ster	l
L		\sum	_		- 5			_					_	_		\leq	_										(7	_			Homogeneity		Stereo Scope	
		٠	Ž	Z	Ś	-	7	$\frac{Z}{Z}$, ڊ) —		_			\geq	<u> </u>	/			L		\geq	2	_	<u>)</u>		2	0	<u>)</u>			Texture		cope	l
Ļ	· -	<u></u>			ा	_			>			_			<u>_</u>	- -	·	F	-	Ļ		\leq	_			L	<u>></u>	_	_			Friable			
Actinolite	Anthophylite	Tremolite	Procidolite	- Sille	mosito	Chrysotile	Amosite Crocidolite Tremolite Anthophylite Actinolite						Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals			
				1	\downarrow				L	1	\downarrow	_	╛	_				L	L		L				L		Ш					Asbestos %			
					1																			_								Morphology	+	O	
Ц					1	_			L		1			_																		Extinction		Optical	
	_				1	_				L	L																					Sign of Elongatio	n j	Prog	
			L																													Birefringence		al Properties	
ightharpoons	_		L								L																					Pleochroism	- '	S	
\bot				L	L	1	_		L		L																					=	1	_	
\perp		_				1																										<u> </u>	7	≖	
		\perp				1							1																•		ļ	iberglass	1	2	
		_				1	_			_			ļ																		ŀ	Mineral Wool	NOII-Aspestos		Page
		4				1							l																			Cellulose	Jesic	25	ľ
		\downarrow		_		1			_				1			4						\perp									ŀ	łair			Ĭ
		4							\downarrow			4			_			\perp			_			\perp				Synthetic	rcen		약 -				
<u>;</u>	ti	+					Ę	/				•	ot	1	\	\downarrow			4	_	/				_		\	1		_	k	Other	Percentage (%)		`\
	61					(1	<u>ا</u> ا	<u> </u>				(<u>C</u>	<u> </u>	4				2	7),				\perp	(11,	<u>\</u>				ion-Fibrous	(§		

Page of 13

				Т	_			$\overline{}$		7				-		7				_		_					-	-I				-	_
			3	2				3	8					3	<u>)</u>					3	6			•	3	<u>5</u>		(Use)	
	-	+	:)			1	7	-				177	=	シ				(<u> </u>						10	-				(Client	Field ID/		
	Location			Material		FOCALOR	Continu		Waterial			Location		7	Waterial	Motorio		Location			Waterial			Location		_	waterial			Material / Location			Temp in Celcius =
	(2 0						زز				()				(}		T	(<u>)</u>)		% of .	Asb	estos		1	_
	\bigcirc	23 6). >		$\overline{\ }$)	-	$\stackrel{>}{=}$) >		(7	-		> >		()	-		3	Color		***] i	7
	_	2 2								L	(_	-				~	- -					<u>></u>				Homo	gei	neity		adooc oalaic	י ה
_		<u> </u>	<u>) </u>	╀		2		<u>)</u>		L	_	入ラ	_	<i>)</i>				4	_	<i>)</i>				<u> </u>	_	ノ —		Textu) P	5
≱≱	् चि	<u>Ω</u> [2	<u>-</u> -	Anti Chr					Ω	Þ	<u>≽</u>) च	ত	T≨	ि	 >	\) 1=1	C	ĺ 	ノ o	Þ	. >	ر ⊏	0	 T>) To	Friabl	e			_	_
Anthophylite Actinolite	Tremolite	Crocidolite	Chrysotile	Amosite Orocidolite Aremolite Anthophylite Actinolite					Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals					
																												Asbe	sto	os %			_
							<u> </u>																					Morph	olo	gy		ဝွ)
Ш			_	L																								Extino	tio	1		Optical	•
		_ _	1	L	_	L						_																Sign c	f E	onga	tion	al Properties	,
				L		_																						Birefri	nge	nce		erties	
		_	\perp				 			1																		Pleoci	roi	sm		Ľ	
	\Box	-	_	L	Ц				4	-	_	_							4	\downarrow			_	_	_			=			_	22	
\vdash	4		L	L					-			\downarrow			4			4	_		_			_		_		<u> </u>	_	_			4
	+			_					\dashv	·		4	_		4			\dashv			_			4			┪	Fiberg				Non-	
<u> </u>	+					_			+			\dashv			\dashv			\dashv			+			-			_	Minera		ool	_	Asbe	I
	\dashv					_			1			\dashv			1		-	1	•		+			\dashv			7	Cellulo	se	 -		stos	
	+			_		\dashv			\dagger			+			\dashv			+			\dagger	-		+			-	Hair Synthe	tic			Non-Asbestos Percentage (%)	
	+					+			†	_	_	+			+			\dagger		_	\dagger			+			7	Other	LIC			entag	
6				7	1	7			1	5	7	1	_		$\frac{1}{k}$	3	Z	7			+	$\frac{1}{\lambda}$	/	7	_		╅	Non-Fi	bro	us	\dashv	е (%)	
	~				\				-						_				_			<u>ب</u>	<u> </u>	4	_							_	l

9

Lavers

Page 10 of 13

	Γ				\	1'	4			`	_	l ?	 }	T			_	l	17	,	T	_			- (11			(1		·	_	-	,		Lab	ID#			-
				및 및 -				•		27						(2 V	<u> </u>	•					<u>2</u>			J				ه ح					(1		7	Field ID/	nly.	<u>)</u>	
	-	-	Location		_		Maferial			Location	_	_	Material		1		Contion	_		Material		total services	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Location	May Charles	I Solo Donal I Todal	Material			Location				Material				Material / Location				Temp in Celcius =
ŀ							╀						_	L					_		L		_(\geq		-	1		_(<u>)</u>		٠	1%	, o	fΑ	sb	est	os			
-				•			╀					_	4	L						_				_			1		2	_	_		<u> </u>	c	ol	or	<u>, </u>] o ie	?
ŀ	_						╀		_			_	4	_						4		_	<u>-</u>	کے	=	_	1		<u> </u>	0			. ,	Н	on	nog	ger	neity	/		Scope Scope	,
\downarrow							╀						4					_		4		=	$\overline{\mathcal{O}}$	_	,)	1			X >		<u> </u>		þτ	ext	tur	e				cope	
1	2 2	<u> </u>	⊒	ç.	≥	Ω	Þ	. [≥	·1=	ijς) [2	<u> </u>	5	>	Ī≽	Г=	To	ī			⊳	(F		10		.T.		-1) 	_	_			╄-	_	ble	}					╛
Acuitonie	Actionation	hope de	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Iremolite	Crocidolite	Amostre	in yacule	Chrysotile	Actinolite	nthophylite	Tremolite	Crocidolite	Amosite	CIII ysoule	Sanatila	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Americ	Actinolite	olinolia Olinolia	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Minerals	Aspestos	Asharta						
L	1	1	4	4	_		_		L	_			1				L	L								1	Ì	T	T	1				A	sb	es	sto	s %	6			1
L	_	-	4		-								\downarrow													٤								Мо	or;	h	olo	ду			ဝ	
F	-	\downarrow	\downarrow	4	_				_	L	L	L	1	1						l						6								Ex	tir	cti	ion	!			tical	
F	_	╀	+	4	4	4			_	L			ļ	1		_				L	1	_			-	1								Sig	₃ n	of	Eld	ong	atio	n	Pro	l
	_	igspace	-	4	\downarrow	_	_	_		_		L	L	1	\perp											1								Bir	ef	rin	gei	nce	•		tical Properties	
L	_	\vdash	\downarrow	\downarrow	1	4		_			_	_	L	1	1	_				L		1				کے								Ple	00	hr	ois	m		7	(ñ	ļ
H	_	L	-	+	4	4	4	4	_			L	L	1	1	4	_			L	1	\perp	\rfloor		_	3								=						1.		
dash		L_	╀		_	4			\dashv				L	_		\downarrow							1			<u> </u>								H					_	7:	₽	
\vdash			-	_		+		_	-				L			4	_			_			4				L		_	L				Fib	er	gla	ss			1	NO.	
-		-	┝			+	_		4		_	_	-		_	\downarrow	_	_	4				1										_ !	/lin	er	al \	Wo	ol		SOIS SOIS SOIS SOIS SOIS SOIS SOIS SOIS		Page
		_	┞			╀		_	+			_	_			4	_		4			_	_			_				_			k	ell	lul	os	e] 2	de t	P
			L	_		╁			+			4				1			4				\downarrow	_		_			_				ŀ	lair			_		<u>"</u>	STE		
_		-	_		_	╁			+			4	_	_		+			4				-			4			_				S	yn	th	eti	C			rercentage		of
		\dashv				╀			+			+		-		<u> </u>			╁	_	$\overline{}$	_	-				4	_	_	_			c	the	er					tage		\
	7	<u>ح</u>	-	_	·			_	上		-		_							Ż	2)		_	_	4	//	1		_			N	on	-F	ibr	ou	s		(%)		
	7	<u>)</u> <u>S</u>	>				<u>}</u>	<u> </u>)					, ,	アムム	>]																					

Page) of 3

ug	<u> </u>	4)	4	, 45	Lab ID# (Lab Use Only)	
136	13A	DC.	¥	F	Field ID/ (Client Reference)	
Material 	NMHE GRAY WAYOUS	Material ((Location { (Material (Location (((((((((((((Material { Location	Temp in Celcius = Material / Location	
	\Box				% of Asbestos	
	$\bigcirc 3$				Color	
					Homogeneity Texture	
	50)				Texture	
	<u> </u>	<u>श्राचाताचात</u>	ماجاماتام		Friable	Z
Chrysotile Amosite Crocidolite Tremolite Anthophylite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Asbestos Minerals	てきろく			
					Asbestos %	
	3				Morphology	
	11119				extinction dica	
	1111			S	Sign of Elongation	
					Sign of Elongation of Elongati	
				P	Pleochroism	
				=	=	
					- 2	
				F	iberglass o	
				M	ineral Wool Page	
				c	ellulose 08 0	<i>()</i>
					air S Per Of	٢
				s	Page of of the rich ther	
	70			01	ther lage	(ب
	/) /			No.	on-Fibrous	
\mathcal{X}	•		$C_{\mathcal{A}}$	\searrow		

Lab IDE (Lab Use of Fiberglass) Color	nly)	ly)	
## Asbestos Color			
Color			
Homogeneity Texture Texture Friable			t
Texture Friable China Asbestos Anthophylite	_		5
Annosite Conysolite Annosite Condiciolite Annosite Condiciolite Annosite Condiciolite Condic			oreled acobe
Asbestos % Annosite Chrysotile C	_		adon
Asbestos % Morphology Extinction Sign of Elongation Birefringence Pleochraism — Fiberglass Mineral Wool Cellulose Hair			Ĺ
Morphology Extinction Sign of Elongation Birefringence Pleochroism =			
Extinction Sign of Elongation Birefringence Pleochroism =	\Box	1	
Sign of Elongation Birefringence Pleochroism — Fiberglass Mineral Wool Cellulose Hair			<u>0</u>
Birefringence Pleochroism	٦		Optical Properties
Pleochroism Fiberglass Mineral Wool Cellulose Hair	'n	<u>ار</u>	Prop
Fiberglass Mineral Wool Cellulose Hair	٦		<u>ĕrtie</u>
Fiberglass Mineral Wool Cellulose Hair	7	۱"	n
Fiberglass Mineral Wool Cellulose Hair	7	1	_
Mineral Wool Cellulose Hair]:]-	2
Cellulose Hair		Z	
Hair	7	Non-Aspestos	\ <u>\</u>
	- Sico	esto)) (
Synthetic	<u>ַ</u>	SPer	7
	Centa	Percentage (%)	-
Other	ge (ege (
Non-Fibrous	8	త్రి	

Lawers

Page 3 of 3

2)	58	. 22	54	53	Lab ID# (<i>Lab Use Only</i>)	
22	(J)		B	14	Field ID/ (Client Reference)	
Material () Location	Location	Material Location	Material (\ Location	Material Z /QSH-(V	Material / Location	Temp in Celcius =
		6	C	\bigcirc	% of Asbestos	
	13	E	8	7	Color	Ster
		5		الرا	Homogeneity	Stereo Scope
2)	200	(33)	6)	20)	Texture	cope
NEI JOSIO					Friable	
Chrysotile Amosite Crocidolite Tremolite Anthophyllite Actinolite	Amosite Crocidolite Tremolite Anthophyllite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophyllite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophyllite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophyllite Actinolite	Asbestos Minerals	
					Asbestos %	
					Morphology	Op.
					Extinction	Optical Properties
					Sign of Elongation	Prop
					Birefringence	ertie
					Pleochroism	٠ <u>٠</u>
						굔
						_
					iberglass	⋛
				· ·	Mineral Wool	Non-Asbestos Percentage (%)
					Cellulose	esto.
					lair	s Perce
					Synthetic	centa
10			9		Other	age (
Ca.	(Se) \	(4,)	1,	(1)	lon-Fibrous	×,

NOT ON COC-Sumples in bug page /4 of/5

																		/	8	8	8	5	<u>-</u> 9				2	J	>	La b ID# (<i>Lab U</i> se Only)	
																			1, (7	7			1)	1			1		Field ID/ (Client Reference)	
		Location			Material			Location			Material			Location			Material			Location	-	_	Material			Location	_	~	Material	Material / Location	Temp in Celcius =
																					(<u>→</u>			(<u>ک</u>)			% of Asbestos	ļ
												L						L		(<u></u>	,		<u> </u>	7	_	_		?	Color	Stere
_						L						_	.,					L		\ \ \	\geq	_		L		\sum_{i}	_			Homogeneity	Stereo Scope
						<u> </u>				····	•	_						L	$\frac{\lambda}{2}$	- <u>'</u> Z				L	کے	·	_			Texture) Pe
Ac	Ą	Ħ	Ω	₽	Q	Ą	Ą	ᆿ	Ω	Α'n	Q	Ac	≥	Ħ	Ω	₹	<u>~</u>	Ą			ਨੂ	2	Ω	Ac		긐	Ω	≥	Ω	Friable ≤ ≽	<u>L</u>
Actinolite	Anthophyllite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophyllite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophyllite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophyllite	remolite .	Crocidolite	Amosite	Chrysotile	Actinolite	A⊓thophyllite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals	
																														Asbestos %	
																														Morphology	0
																														Extinction	otical
																														Sign of Elongation	Prop
																														Birefringence	Optical Properties
																														Pleochrois m	<i>J</i> ,
											Ц																			=	R.
					Ш				Ш		Ц																			H	_
																														Fiberglass	Non
																							_							Mineral Wool	-Asb
					_									_																Cellulose	estos
		\dashv			_						_			_			_			-			4							Hair	Non-Asbestos Percentage (%)
		-	!											\dashv			_						4			_			7	Synthetic	enta
		\dashv			\dashv			\dashv			\dashv			\dashv				٠	7				4	(4	\dashv			┪	Other	ge (
														-					61,	1			- 1		61	N				Non-Fibrous	<u>ŏ</u>

Page S of

CDW Consultants

40 Speen Street

Suite 301

EMSL Order: 131605076 **Customer ID:** CDWC26

Customer PO: Project ID:

Phone: (508) 875-2657

Fax:

Received Date: 10/18/2016 9:30 AM

Analysis Date: 10/25/2016

Framingham, MA 01701 Collected Date: 10/04/2016

Project: Fernald #17

Attention: Susan Cahalan

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			<u>Asbestos</u>				
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type		
1A	Roof - Shingle	Black Fibrous	25% Cellulose	75% Non-fibrous (Other)	None Detected		
131605076-0001		Homogeneous	HA: 1				
В	Roof - Shingle	Black Fibrous	25% Cellulose	75% Non-fibrous (Other)	None Detected		
131605076-0002		Homogeneous	HA: 1				
IC	Roof - Shingle	Black Fibrous	25% Cellulose	75% Non-fibrous (Other)	None Detected		
131605076-0003		Homogeneous	HA: 1				
2A	Roof, Under Shingle - Black Paper	Black Fibrous	40% Cellulose	60% Non-fibrous (Other)	None Detected		
31605076-0004	·	Homogeneous	HA: 2				
2B	Roof, Under Shingle - Black Paper	Black Fibrous	40% Cellulose	60% Non-fibrous (Other)	None Detected		
131605076-0005	·	Homogeneous	HA: 2				
2C	Roof, Under Shingle - Black Paper	Black Fibrous	40% Cellulose	60% Non-fibrous (Other)	None Detected		
131605076-0006		Homogeneous	HA: 2				
BA	Exterior Windows - Glaze, White	Tan Non-Fibrous		98% Non-fibrous (Other)	2% Chrysotile		
131605076-0007		Homogeneous	HA: 3				
BB	Exterior Windows - Glaze, White				Positive Stop (Not Analyzed)		
131605076-0008	,		HA: 3				
3C	Exterior Windows - Glaze, White		<u> </u>		Positive Stop (Not Analyzed)		
131605076-0009	,		HA: 3				

Initial report from: 10/25/2016 09:56:33

EMSL Order: 131605076 Customer ID: CDWC26 Customer PO:

Project ID:

Analy	vst(s	3)

Michael Mink (7)

Steve Grise, Laboratory Manager or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3, VT AL998919, Maine Bulk Asbestos BA039

Initial report from: 10/25/2016 09:56:33

EMSL Order: 131605075 **Customer ID:** CDWC26

Customer PO: Project ID:

Phone: (508) 875-2657

Fax:

Received Date: 10/18/2016 9:30 AM

Analysis Date: 10/25/2016

Collected Date:

Framingham, MA 01701

Suite 301

CDW Consultants

40 Speen Street

Project: Fernald #18

Attention: Susan Cahalan

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			<u>Asbestos</u>		
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
IA	Roof - Shingle	Gray/Black Fibrous	25% Cellulose 3% Synthetic	72% Non-fibrous (Other)	None Detected
131605075-0001		Homogeneous	на: 1		
1B	Roof - Shingle	Black Fibrous	25% Cellulose 3% Synthetic	72% Non-fibrous (Other)	None Detected
131605075-0002		Homogeneous	HA: 1		
1C	Roof - Shingle	Black Fibrous	25% Cellulose 3% Synthetic	72% Non-fibrous (Other)	None Detected
131605075-0003		Homogeneous	HA: 1		
2A	Roof - Black Paper Under Shingle	Black Fibrous	40% Cellulose	60% Non-fibrous (Other)	None Detected
131605075-0004	enaci ening.e	Homogeneous	HA: 2		
2B	Roof - Black Paper Under Shingle	Black Fibrous	40% Cellulose	60% Non-fibrous (Other)	None Detected
131605075-0005	Onder Onlingte	Homogeneous	HA: 2		
2C	Roof - Black Paper Under Shingle	Black Fibrous	40% Cellulose	60% Non-fibrous (Other)	None Detected
131605075-0006	Officer Stilligle	Homogeneous	HA: 2		
3A	Exterior Windows - White Glaze	Tan Non-Fibrous	· -	98% Non-fibrous (Other)	2% Chrysotile
131605075-0007	Wille Glaze	Homogeneous	HA: 3		
ВВ	Exterior Windows - White Glaze		un. 3		Positive Stop (Not Analyzed)
131605075-0008	Willie Glaze		HA: 3		
3C	Exterior Windows - White Glaze				Positive Stop (Not Analyzed)
131605075-0009	Wille Glaze		HA: 3		
			11/1. 0		

Initial report from: 10/25/2016 09:32:23

EMSL Order: 131605075 Customer ID: CDWC26

Customer PO: Project ID:

Analyst	(s)

Michael Mink (7)

Steve Grise, Laboratory Manager or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3, VT AL998919, Maine Bulk Asbestos BA039

Initial report from: 10/25/2016 09:32:23

EMSL Order: 131605068 **Customer ID:** CDWC26

Customer PO: Project ID:

Phone: (508) 875-2657

Fax:

Received Date: 10/18/2016 9:30 AM

Analysis Date: 10/25/2016

Collected Date:

Framingham, MA 01701

Suite 301

CDW Consultants

40 Speen Street

Project: Fernald #19

Attention: Susan Cahalan

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-Asbe	Asbestos		
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type	
1A	2nd Floor - Linoleum Flooring	Gray Fibrous	15% Cellulose 3% Glass	82% Non-fibrous (Other)	None Detected	
131605068-0001	3	Homogeneous	HA: 1			
1B	2nd Floor - Linoleum Flooring	Gray Fibrous	15% Cellulose 3% Glass	82% Non-fibrous (Other)	None Detected	
131605068-0002	3	Homogeneous	HA: 1			
1C	2nd Floor - Linoleum Flooring	Gray Fibrous	15% Cellulose 3% Glass	82% Non-fibrous (Other)	None Detected	
131605068-0003	_	Homogeneous	HA: 1			
2A	Ceiling - Textured Plaster	White Non-Fibrous		100% Non-fibrous (Other)	None Detected	
131605068-0004		Homogeneous	HA: 2			
2B	Ceiling - Textured Plaster	White Non-Fibrous		100% Non-fibrous (Other)	None Detected	
131605068-0005		Homogeneous	HA: 2			
2C	Ceiling - Textured Plaster	White Non-Fibrous		100% Non-fibrous (Other)	None Detected	
131605068-0006		Homogeneous	HA: 2			
2D	Ceiling - Textured Plaster	White Non-Fibrous		100% Non-fibrous (Other)	None Detected	
131605068-0007	. 18515.	Homogeneous	HA: 2			
2E	Ceiling - Textured Plaster	White Non-Fibrous		100% Non-fibrous (Other)	None Detected	
131605068-0008	i lastei	Homogeneous	HA: 2			
3A	Floors Main - 1'x1' Gray Floor Tile	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected	
131605068-0009	Gray Floor file	Homogeneous	HA: 3			
3B	Floors Main - 1'x1' Gray Floor Tile	Gray Non-Fibrous	•	100% Non-fibrous (Other)	None Detected	
131605068-0010	Glay I IOOI TIIE	Homogeneous	HA: 3			
3C	Floors Main - 1'x1'	Gray		100% Non-fibrous (Other)	None Detected	
131605068-0011	Gray Floor Tile	Non-Fibrous Homogeneous	HA: 3			
4A	Black Mastic Under	Black	TID. U	100% Non-fibrous (Other)	None Detected	
131605068-0012	1'x1' Gray Floor Tile - Black Mastic	Non-Fibrous Homogeneous	110.4			
			HA: 4			

Initial report from: 10/25/2016 14:15:20

EMSL Order: 131605068 **Customer ID:** CDWC26

Customer PO: Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-Asbe	<u>Asbestos</u>	
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
4B	Black Mastic Under 1'x1' Gray Floor Tile -	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605068-0013	Black Mastic	Homogeneous	HA: 4		
4C	Black Mastic Under 1'x1' Gray Floor Tile -	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605068-0014	Black Mastic	Homogeneous	HA: 4		
5A	Exterior Walls - Stucco	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605068-0015		Homogeneous	HA: 5		
5B	Exterior Walls - Stucco	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605068-0016		Homogeneous	HA: 5		
5C	Exterior Walls - Stucco	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605068-0017		Homogeneous	HA: 5		
6A	Shingle - Roof - Roof Shingle	Tan/Black Fibrous	10% Glass	90% Non-fibrous (Other)	None Detected
131605068-0018		Homogeneous	HA: 6		
6B	Shingle - Roof - Roof Shingle	Tan/Black Fibrous	10% Glass	90% Non-fibrous (Other)	None Detected
131605068-0019		Homogeneous	HA: 6		
6C	Shingle - Roof - Roof Shingle	Tan/Black Fibrous	10% Glass	90% Non-fibrous (Other)	None Detected
131605068-0020		Homogeneous	HA: 6		
7A	Roof Under Shingle - Black Tar Paper	Black Fibrous	40% Cellulose	60% Non-fibrous (Other)	None Detected
131605068-0021	·	Homogeneous	HA: 7		
7B	Roof Under Shingle - Black Tar Paper	Black Fibrous	40% Cellulose	60% Non-fibrous (Other)	None Detected
131605068-0022	=.== 	Homogeneous	HA: 7		
7C	Roof Under Shingle - Black Tar Paper	Black Fibrous	40% Cellulose	60% Non-fibrous (Other)	None Detected
131605068-0023		Homogeneous	HA: 7		

Initial report from: 10/25/2016 14:15:20

EMSL Order: 131605068 Customer ID: CDWC26

Customer PO: Project ID:

Michael Mink (23)

Steve Grise, Laboratory Manager or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3, VT AL998919, Maine Bulk Asbestos BA039

Initial report from: 10/25/2016 14:15:20

Framingham, MA 01701

CDW Consultants

40 Speen Street

Suite 301

EMSL Order: 131605078 **Customer ID:** CDWC26

Customer PO: Project ID:

Phone: (508) 875-2657

Fax:

Received Date: 10/18/2016 9:30 AM

Analysis Date: 10/25/2016 **Collected Date**: 09/29/2016

Project: Fernald #20

Attention: Susan Cahalan

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-Asbe	<u>stos</u>	<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
1A	Ceiling - White Textured Plaster	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605078-0001		Homogeneous	HA: 1		
1B	Ceiling - White Textured Plaster	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605078-0002	. o.n.a. oa i naoto.	Homogeneous	HA: 1		
1C	Ceiling - White Textured Plaster	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605078-0003		Homogeneous	HA: 1		
1D	Ceiling - White Textured Plaster	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605078-0004	.5	Homogeneous	HA: 1		
1E	Ceiling - White Textured Plaster	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605078-0005	Toxica ou Flucio	Homogeneous	HA: 1		
2A	Second Floor - Linoleum Flooring	Gray/White Fibrous	15% Cellulose 3% Glass	82% Non-fibrous (Other)	None Detected
131605078-0006	Linoledin'i looting	Homogeneous	HA: 2		
2B	Second Floor - Linoleum Flooring	Gray/White Fibrous	15% Cellulose 3% Glass	82% Non-fibrous (Other)	None Detected
131605078-0007	Linoleum Flooring	Homogeneous	HA: 2		
2C	Second Floor - Linoleum Flooring	Gray/White Fibrous	15% Cellulose 3% Glass	82% Non-fibrous (Other)	None Detected
131605078-0008	Linoleum Flooring	Homogeneous	HA: 2		
3A	First Floor - 1'x1' Blue Floor Tile	Blue Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605078-0009	i looi tile	Homogeneous	HA: 3		
3B	First Floor - 1'x1' Blue Floor Tile	Blue Non-Fibrous	-	100% Non-fibrous (Other)	None Detected
131605078-0010	Floor tile	Homogeneous	HA: 3		
3C	First Floor - 1'x1' Blue	Blue	.00.0	100% Non-fibrous (Other)	None Detected
131605078-0011	Floor Tile	Non-Fibrous Homogeneous	HA: 3		
	Under 1'x1' Blue Floor	Gray/Tan	15% Cellulose	83% Non-fibrous (Other)	None Detected
4A	Tile - 1st Floor	Fibrous	2% Glass	, ,	

Initial report from: 10/25/2016 13:31:18

EMSL Order: 131605078 Customer ID: CDWC26

Customer PO: Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			<u>Asbestos</u>		
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
4B	Under 1'x1' Blue Floor Tile - 1st Floor	Gray/Tan Fibrous	15% Cellulose 2% Glass	83% Non-fibrous (Other)	None Detected
131605078-0013		Homogeneous	HA: 4		
4C	Under 1'x1' Blue Floor Tile - 1st Floor	Gray/Tan Fibrous	15% Cellulose 2% Glass	83% Non-fibrous (Other)	None Detected
131605078-0014		Homogeneous			
			HA: 4		
5A	Under Exterior Wood Clapboards - Brown	Brown Fibrous	98% Cellulose	2% Non-fibrous (Other)	None Detected
131605078-0015	Paper	Homogeneous			
			HA: 5		
5B	Under Exterior Wood Clapboards - Brown	Brown Fibrous	98% Cellulose	2% Non-fibrous (Other)	None Detected
131605078-0016	Paper	Homogeneous			
		3	HA: 5		
5C	Under Exterior Wood	Brown	98% Cellulose	2% Non-fibrous (Other)	None Detected
	Clapboards - Brown	Fibrous		,	
131605078-0017	Paper	Homogeneous			
			HA: 5		

Analyst(s)

Michael Mink (17)

Steve Grise, Laboratory Manager or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3, VT AL998919, Maine Bulk Asbestos BA039

Initial report from: 10/25/2016 13:31:18

EMSL Order: 131605079 **Customer ID:** CDWC26

Customer PO: Project ID:

Attention: Susan Cahalan Phone: (508) 875-2657

CDW Consultants Fax:

40 Speen Street **Received Date:** 10/18/2016 9:30 AM

Suite 301 Analysis Date: 10/25/2016 Framingham, MA 01701 Collected Date: 10/04/2016

Project: Fernald #30

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			·	sbestos	Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
A	Halls & Rooms - 1'x1'	Gray		100% Non-fibrous (Other)	None Detected
131605079-0001	Gray Floor Tile	Non-Fibrous Homogeneous			
.0.000070 0007		Homogeneous	HA: 1		
1B	Halls & Rooms - 1'x1'	Gray		100% Non-fibrous (Other)	None Detected
	Gray Floor Tile	Non-Fibrous		, ,	
131605079-0002		Homogeneous			
			HA: 1		
1C	Halls & Rooms - 1'x1' Gray Floor Tile	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605079-0003	Gray Floor Tile	Homogeneous			
			HA: 1		
1D	Halls & Rooms - 1'x1'	Gray		100% Non-fibrous (Other)	None Detected
	Gray Floor Tile	Non-Fibrous			
131605079-0004		Homogeneous	110.4		
45	11-11-05 "	0	HA: 1	400% No. 51 (O)	Name D. C. C.
1E	Halls & Rooms - 1'x1' Gray Floor Tile	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605079-0005	Oray Floor Tile	Homogeneous			
			HA: 1		
1F	Halls & Rooms - 1'x1'	Gray		100% Non-fibrous (Other)	None Detected
	Gray Floor Tile	Non-Fibrous			
131605079-0006		Homogeneous			
			HA: 1		
1G	Halls & Rooms - 1'x1' Gray Floor Tile	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605079-0007	Gray Floor Tile	Homogeneous			
			HA: 1		
2A	Under 1'x1' Gray	Brown/Beige		94% Non-fibrous (Other)	6% Chrysotile
	Floor Tile - Brown	Fibrous			
131605079-0008	Linoleum	Homogeneous	114.0		
OD	Hadaa (I. (I. O.		HA: 2		Design Of the Column
2B	Under 1'x1' Gray Floor Tile - Brown				Positive Stop (Not Analyzed
131605079-0009	Linoleum				
			HA: 2		
2C	Under 1'x1' Gray				Positive Stop (Not Analyzed
	Floor Tile - Brown				
131605079-0010	Linoleum		HA: 2		
3D	Lindor 1941 Crov		IIA. Z		Positivo Stan (Nat Analyses
2D	Under 1'x1' Gray Floor Tile - Brown				Positive Stop (Not Analyzed
131605079-0011	Linoleum				
			HA: 2		
2E	Under 1'x1' Gray				Positive Stop (Not Analyzed
	Floor Tile - Brown				
131605079-0012	Linoleum		114.0		
			HA: 2		

Initial report from: 10/25/2016 15:38:24

EMSL Order: 131605079 **Customer ID:** CDWC26

Customer PO: Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-Asbest	tos	Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
2F 131605079-0013	Under 1'x1' Gray Floor Tile - Brown Linoleum				Positive Stop (Not Analyzed)
2G	Under 1'x1' Gray		HA: 2		Positive Stop (Not Analyzed)
131605079-0014	Floor Tile - Brown Linoleum				r ositive otop (Not/Mary2ed)
			HA: 2		
3A	Ceiling - Textured Plaster	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605079-0015		Homogeneous	HA: 3		
BB	Ceiling - Textured Plaster	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605079-0016		Homogeneous	HA: 3		
3C	Ceiling - Textured Plaster	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605079-0017	i lastei	Homogeneous	HA: 3		
3D	Ceiling - Textured	White		100% Non-fibrous (Other)	None Detected
131605079-0018	Plaster	Non-Fibrous Homogeneous	HA: 3		
BE	Ceiling - Textured	White	177.0	100% Non-fibrous (Other)	None Detected
131605079-0019	Plaster	Non-Fibrous Homogeneous	114.0		
3F	Ceiling - Textured	White	HA: 3 2% Glass	98% Non-fibrous (Other)	None Detected
131605079-0020	Plaster	Fibrous Homogeneous			
 BG	Ceiling - Textured	White	HA: 3	100% Non-fibrous (Other)	None Detected
131605079-0021	Plaster	Non-Fibrous Homogeneous		,	
			HA: 3	0.40/ 14 51 (0.4)	
1A	Walls - Sheetrock	Gray Fibrous	3% Cellulose 3% Glass	94% Non-fibrous (Other)	None Detected
31605079-0022		Homogeneous	HA: 4		
4B	Walls - Sheetrock	Gray Fibrous	3% Cellulose 3% Glass	94% Non-fibrous (Other)	None Detected
131605079-0023		Homogeneous	HA: 4		
4C	Walls - Sheetrock	Gray	3% Cellulose	94% Non-fibrous (Other)	None Detected
131605079-0024		Fibrous Homogeneous	3% Glass		
4D	Walls - Sheetrock	Gray	HA: 4 3% Cellulose	94% Non-fibrous (Other)	None Detected
131605079-0025		Fibrous Homogeneous	3% Glass		
4E	Walls - Sheetrock	Brown/Gray	HA: 4	88% Non-fibrous (Other)	None Detected
131605079-0026		Fibrous Homogeneous	2% Glass		
.0.000079-0020		Homogeneous	HA: 4		

Initial report from: 10/25/2016 15:38:24

EMSL Order: 131605079 Customer ID: CDWC26

Customer PO: Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

	Non-Asbestos		<u>Asbestos</u>		
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
4F 131605079-0027	Walls - Sheetrock	Gray Fibrous Homogeneous	3% Cellulose 3% Glass	94% Non-fibrous (Other)	None Detected
131003073-0027		riomogeneous	HA: 4		
4G	Walls - Sheetrock	Gray Fibrous	3% Cellulose 3% Glass	94% Non-fibrous (Other)	None Detected
131605079-0028		Homogeneous	HA: 4		
5A	Roof - Shingle	Black Fibrous	15% Glass	85% Non-fibrous (Other)	None Detected
131605079-0029		Homogeneous			
			HA: 5		
5B	Roof - Shingle	Black Fibrous	15% Glass	85% Non-fibrous (Other)	None Detected
131605079-0030		Homogeneous	HA: 5		
5C	Roof - Shingle	Black Fibrous	15% Glass	85% Non-fibrous (Other)	None Detected
131605079-0031		Homogeneous	HA: 5		
6A	Roof - Felt Under	Black	40% Cellulose	60% Non-fibrous (Other)	None Detected
131605079-0032	Shingle	Fibrous Homogeneous			
			HA: 6		
6B	Roof - Felt Under Shingle	Black Fibrous	40% Cellulose	60% Non-fibrous (Other)	None Detected
131605079-0033		Homogeneous	HA: 6		
6C	Roof - Felt Under Shingle	Black Fibrous	40% Cellulose	60% Non-fibrous (Other)	None Detected
131605079-0034	Offingle	Homogeneous			
			HA: 6		

Analyst(s)	
Michael Mink (28)	

Steve Grise, Laboratory Manager or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3, VT AL998919, Maine Bulk Asbestos BA039

Initial report from: 10/25/2016 15:38:24

EMSL Order: 131605070 Customer ID: CDWC26

Customer PO: Project ID:

Attention: Susan Cahalan Phone: (508) 875-2657

CDW Consultants Fax:

40 Speen Street **Received Date:** 10/18/2016 9:30 AM

Suite 301 Analysis Date: 10/25/2016 Framingham, MA 01701 Collected Date: 09/30/2016

Project: Fernald #42

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-As	sbestos .	<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
Α	Exterior Winows - White Glaze	Gray Non-Fibrous		98% Non-fibrous (Other)	2% Chrysotile
31605070-0001		Homogeneous	HA: 1		
IB	Exterior Winows - White Glaze				Positive Stop (Not Analyzed)
131605070-0002	Willie Glaze		HA: 1		
1C	Exterior Winows -				Positive Stop (Not Analyzed)
131605070-0003	White Glaze		HA: 1		
1D	Exterior Winows - White Glaze		TIA. I		Positive Stop (Not Analyzed)
131605070-0004	Willie Glaze		HA: 1		
1E	Exterior Winows - White Glaze				Positive Stop (Not Analyzed)
131605070-0005			HA: 1		
2A	Large Rooms - 9"x9" Gray Floor Tile	Gray Non-Fibrous		98% Non-fibrous (Other)	2% Chrysotile
131605070-0006	Gray Floor Tile	Homogeneous	HA: 2		
2B	Large Rooms - 9"x9" Gray Floor Tile				Positive Stop (Not Analyzed)
131605070-0007	Gray Floor file		HA: 2		
2C	Large Rooms - 9"x9" Gray Floor Tile				Positive Stop (Not Analyzed)
131605070-0008			HA: 2		
3A	Large Rooms Under 9"x9" Gray FT - Black	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605070-0009	Mastic	Homogeneous	HA: 3		
3B	Large Rooms Under 9"x9" Gray FT - Black	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605070-0010	Mastic Mastic	Homogeneous	HA: 3		
3C	Large Rooms Under	Black		100% Non-fibrous (Other)	None Detected
131605070-0011	9"x9" Gray FT - Black Mastic	Non-Fibrous Homogeneous	HA: 3		
4A	Main Area Central -	Tan	10.0	97% Non-fibrous (Other)	3% Chrysotile
131605070-0012	1'x1' Tan Floor Tile	Non-Fibrous Homogeneous	LIA. 4		
			HA: 4		

Initial report from: 10/25/2016 14:55:37

EMSL Order: 131605070 **Customer ID:** CDWC26

Customer PO: Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-Asbes	tos	Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
4B	Main Area Central - 1'x1' Tan Floor Tile				Positive Stop (Not Analyzed)
31605070-0013			HA: 4		
łC	Main Area Central - 1'x1' Tan Floor Tile				Positive Stop (Not Analyzed)
131605070-0014			HA: 4		
5A	Under 1'x1' Tan Floor Tile - Black Mastic	Black Non-Fibrous		95% Non-fibrous (Other)	5% Chrysotile
131605070-0015		Homogeneous	HA: 5		
5B	Under 1'x1' Tan Floor Tile - Black Mastic				Positive Stop (Not Analyzed)
131605070-0016			HA: 5		
5C	Under 1'x1' Tan Floor Tile - Black Mastic		TIA. 3		Positive Stop (Not Analyzed)
131605070-0017	THE BIRST HILDER		HA: 5		
6A	Central Area - 2'x4' Suspended Ceiling	Brown/White Fibrous	90% Cellulose	10% Non-fibrous (Other)	None Detected
131605070-0018	Tile	Homogeneous	HA: 6		
6B	Central Area - 2'x4' Suspended Ceiling	Brown/White Fibrous	90% Cellulose	10% Non-fibrous (Other)	None Detected
131605070-0019	Tile	Homogeneous	HA: 6		
6C	Central Area - 2'x4' Suspended Ceiling	Brown/White Fibrous	90% Cellulose	10% Non-fibrous (Other)	None Detected
131605070-0020	Tile	Homogeneous	HA: 6		
7A	Under Slate Roof - Black Felt	Black Fibrous	30% Cellulose 3% Synthetic	67% Non-fibrous (Other)	None Detected
131605070-0021		Homogeneous	HA: 7		
7B	Under Slate Roof - Black Felt	Black Fibrous	30% Cellulose 3% Synthetic	67% Non-fibrous (Other)	None Detected
131605070-0022	SIGOR FOR	Homogeneous	HA: 7		
7C	Under Slate Roof - Black Felt	Black Fibrous	30% Cellulose 3% Synthetic	67% Non-fibrous (Other)	None Detected
131605070-0023		Homogeneous	HA: 7		
ЗА	Roof - Flat Portion - Roof Tar	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605070-0024		Homogeneous	HA: 8		
ВВ	Roof - Flat Portion - Roof Tar	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605070-0025	NOOLIGI	Homogeneous	HA: 8		
BC	Roof - Flat Portion -	Black Non Fibrous		100% Non-fibrous (Other)	None Detected
131605070-0026	Roof Tar	Non-Fibrous Homogeneous	HA: 8		

Initial report from: 10/25/2016 14:55:37

EMSL Order: 131605070 Customer ID: CDWC26 Customer PO:

Project ID:

Analyst(s)

Michael Mink (16)

Steve Grise, Laboratory Manager or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3, VT AL998919, Maine Bulk Asbestos BA039

Initial report from: 10/25/2016 14:55:37

CDW Consultants

40 Speen Street

Suite 301

EMSL Order: 131605077 **Customer ID:** CDWC26

Customer PO: Project ID:

Phone: (508) 875-2657

Fax:

Received Date: 10/18/2016 9:30 AM

Analysis Date: 10/25/2016 **Collected Date**: 09/28/2016

Framingham, MA 01701

Project: Fernald #48

Attention: Susan Cahalan

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

		Non-Asbestos			<u>Asbestos</u>	
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type	
1A	Ceiling - Brown Fiberboard	Brown Fibrous	98% Cellulose	2% Non-fibrous (Other)	None Detected	
131605077-0001		Homogeneous	HA: 1			
1B	Ceiling - Brown Fiberboard	Brown Fibrous	98% Cellulose	2% Non-fibrous (Other)	None Detected	
131605077-0002		Homogeneous	HA: 1			
1C	Ceiling - Brown Fiberboard	Brown Fibrous	98% Cellulose	2% Non-fibrous (Other)	None Detected	
131605077-0003		Homogeneous	HA: 1			
1D	Ceiling - Brown Fiberboard	Brown Fibrous	98% Cellulose	2% Non-fibrous (Other)	None Detected	
131605077-0004		Homogeneous	HA: 1			
1E	Ceiling - Brown Fiberboard	Brown Fibrous	98% Cellulose	2% Non-fibrous (Other)	None Detected	
131605077-0005		Homogeneous	HA: 1			
2A	Top Roof Core Over Foam - Black	Black Fibrous	50% Cellulose 5% Glass	45% Non-fibrous (Other)	None Detected	
131605077-0006	Tarpaper	Homogeneous	HA: 2			
2B	Top Roof Core Over Foam - Black	Black Fibrous	50% Cellulose 5% Glass	45% Non-fibrous (Other)	None Detected	
131605077-0007	Tarpaper	Homogeneous	HA: 2			
2C	Top Roof Core Over Foam - Black	Black Fibrous	50% Cellulose 5% Glass	45% Non-fibrous (Other)	None Detected	
131605077-0008	Tarpaper	Homogeneous	HA: 2			
ЗА	Bottom Roof Core Over Concrete Deck -	Black Fibrous	50% Cellulose 5% Glass	45% Non-fibrous (Other)	None Detected	
131605077-0009	Black Tarpaper	Homogeneous	HA: 3			
3B	Bottom Roof Core Over Concrete Deck -	Black Fibrous	50% Cellulose 5% Glass	45% Non-fibrous (Other)	None Detected	
131605077-0010	Black Tarpaper	Homogeneous	HA: 3			
3C	Bottom Roof Core Over Concrete Deck -	Black Fibrous	50% Cellulose 5% Glass	45% Non-fibrous (Other)	None Detected	
131605077-0011	Black Tarpaper	Homogeneous	HA: 3			

Initial report from: 10/25/2016 10:10:37

EMSL Order: 131605077
Customer ID: CDWC26
Customer PO:

Project ID:

Analyst(s)	
Michael Mink (11)	

Steve Grise, Laboratory Manager or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3, VT AL998919, Maine Bulk Asbestos BA039

Initial report from: 10/25/2016 10:10:37

Asbestos Identification Laboratory

165 New Boston St., Ste 227 Woburn, MA 01801 781-932-9600

Web: www.asbestosidentificationlab.com Email: mikemanning@asbestosidentificationlab.com **Batch**: 17044

October 24, 2016

Susan Cahalan CDW Consultants, Inc. 40 Speen St. Suite 301

Framingham, MA 01701

Project Number:

Project Name: Waltham Fernald Building 50

 Date Sampled:
 2016-09-23

 Work Received:
 2016-10-13

 Work Analyzed:
 2016-10-21

Analysis Method: BULK PLM ANALYSIS EPA/600/R-93/116

Dear Susan Cahalan,

Asbestos Identification Laboratory has completed the analysis of the samples from your office for the above referenced project .

The information and analysis contained in this report have been generated using the EPA /600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials. Materials or products that contain more than 1% of any kind or combination of asbestos are considered an asbestos containing building material as determined by the EPA. This Polarized Light Microscope (PLM) technique may be performed either by visual estimation or point counting. Point counting provides a determination of the area percentage of asbestos in a sample. If the asbestos is estimated to be less than 10% by visual estimation of friable material, the determination may be repeated using the point counting technique. The results of the point counting supersede visual PLM results. Results in this report only relate to the items tested. This report may not be used by the customer to claim product endorsement by NVLAP or any other U.S. Government Agency.

Laboratory results represent the analysis of samples as submitted by the customer. Information regarding sample location, description, area, volume, etc., was provided by the customer. Asbestos Identification Laboratory is not responsible for sample collection activities or analytical method limitations. Unless notified in writing to return samples, Asbestos Identification Laboratory discards customer samples after 30 days. Samples containing subsamples or layers will be analyzed separately when applicable. Reports are kept at Asbestos Identification Laboratory for three years. This report shall not be reproduced, except in full, without the written consent of Asbestos Identification Laboratory.

• NVLAP Lab Code: 200919-0

Mechael Thamy

- Massachusetts Certification License: AA000208
- State of Connecticut, Department of Public Health Approved Environmental Laboratory Registration Number: PH-0142
- State of Maine, Department of Environmental Protection Asbestos Analytical Laboratory License Number: LB-0078(Bulk) LA-0087(Air)
- State of Rhode Island and Providence Plantations. Department of Health Certification: AAL-121
- State of Vermont, Department of Health Environmental Health License AL934461

Thank you Susan Cahalan for your business.

Michael Manning Owner/Director Susan Cahalan CDW Consultants, Inc. 40 Speen St. Suite 301

Framingham, MA 01701

Monday 24 October

Project Number:

Project Name: Waltham Fernald Building 50

Page 1 of 3

Date Sampled: 2016-09-23

Work Received: 2016-10-13 **Work Analyzed:** 2016-10-21

Analysis Method: BULK PLM ANALYSIS EPA/600/R-93/116

FieldID	Material	Location	Color	Non-Asbestos %	Asbestos %	
LabID						
1	End Cap Sealant	On FG Pipe Fitting Basement	gray	Cellulose 20		
188578				Non-Fibrous 40	<u> </u>	
2	Pipe Fitting Insulation Large	Basement	gray	Mineral Wool 15 Cellulose 35 Non-Fibrous 50		
188579 3	Pipe Fitting Insulation Small	Basement	gray		None Detected	
188580				Non-Fibrous 60		
4	End Cap Sealant	Basement	gray	Mineral Wool 20 Cellulose 30 Non-Fibrous 50		
188581 5A	White Door Caulk	Exterior	ton		Detected	
188582		Exterior	tan	Non-Fibrous 96	Chrysotile 2	
5B	White Door Caulk	Exterior			Not Analyzed	
188583						
5C	White Door Caulk	Exterior			Not Analyzed	
188584						
6A	Gray Window Caulk	Exterior Windows	black	Non-Fibrous 100	None Detected	
188585					_	
6B	Gray Window Caulk	Exterior Windows	black	Non-Fibrous 100	None Detected	
188586 6C	Gray Window Caulk	Exterior Windows	black	Non-Fibrous 100	None Detected	
100507						
188587 6D	Gray Window Caulk	Exterior Windows	black	Non-Fibrous 100	None Detected	
188588						
6E	Gray Window Caulk	Exterior Windows	black	Non-Fibrous 100	None Detected	
188589						
7A	1x1 Gray Floor Tile	Main Floor	gray	Non-Fibrous 100	Detected Chrysotile < 1	
188590						

Fiel	dID	Material	Location	Color	Non-Asbestos %	Asbestos %
	LabID					
7B		1x1 Gray Floor Tile	Main Floor	gray	Non-Fibrous 100	Detected Chrysotile < 1
7C	188591	4.4 Oray Flaga Tila	Maio Elean		100	Data at a d
/C		1x1 Gray Floor Tile	Main Floor	gray	Non-Fibrous 100	Detected Chrysotile < 1
70	188592	1 1 0 5 7				
7D		1x1 Gray Floor Tile	Main Floor	gray	Non-Fibrous 100	Detected Chrysotile < 1
7E	188593	1x1 Gray Floor Tile	Main Floor	grov	Non-Fibrous 100	Detected
-		— TXT Gray Floor Tile	Main Floor	gray	Non-Fibrous 100	Chrysotile < 1
8A	188594	Vallani Onen Mantin	Hadardad Orac Flaga Tila		7. 7.1	None Detected
OA		Yellow Gray Mastic	Under 1x1 Gray Floor Tile	yellow	Non-Fibrous 100	None Detected
8B	188595	Valley Cray Mastis	Under 4x4 Crev Floor Tile	vellevi	N	Mana Dahaahad
ОВ		Yellow Gray Mastic	Under 1x1 Gray Floor Tile	yellow	Non-Fibrous 100	None Detected
8C	188596	Valle On Marks	Haland A One Floor The	- 11 -	100	N D-+
80		Yellow Gray Mastic	Under 1x1 Gray Floor Tile	yellow	Non-Fibrous 100	None Detected
0.0	188597	V. II. O. M. ii				7 7 1
8D		Yellow Gray Mastic	Under 1x1 Gray Floor Tile	yellow	Non-Fibrous 100	None Detected
	188598			<u> </u>		
8E		Yellow Gray Mastic	Under 1x1 Gray Floor Tile	yellow	Non-Fibrous 100	None Detected
	188599					
9A		Gray Cove Base	Main Room	gray	Non-Fibrous 100	None Detected
	188600					
9B		Gray Cove Base	Main Room	gray	Non-Fibrous 100	None Detected
	188601					
9C		Gray Cove Base	Main Room	gray	Non-Fibrous 100	None Detected
101	188602)		1.		
10A		Yellow Mastic	Under Grey Cove Base	tan	Non-Fibrous 100	None Detected
100	188603			1.		
10B		Yellow Mastic	Under Grey Cove Base	tan	Non-Fibrous 100	None Detected
	188604					
10C		Yellow Mastic	Under Grey Cove Base	tan	Non-Fibrous 100	None Detected
	188605					
11A		Gray Expansion Joint	Floor Paint Room	gray	Non-Fibrous 100	None Detected
	188606					
11B		Gray Expansion Joint	Floor Paint Room	gray	Non-Fibrous 100	None Detected
	188607					
11C		Gray Expansion Joint	Floor Paint Room	gray	Non-Fibrous 100	None Detected
	188608					
Mond	day 24 Octol	ber			Pa	age 2 of 3

Monday 24 October Page 2 of 3

FieldID	Material	Location	Color	Non-Asbestos	%	Asbestos %
LabID						
12A	Skim Coat	Walls	white	Non-Fibrous	100	None Detected
188609						
12B	Skim Coat	Walls	white	Non-Fibrous	100	None Detected
188610						
12C	Skim Coat	Walls	white	Non-Fibrous	100	None Detected
188611						
12D	Skim Coat	Walls	white	Non-Fibrous	100	None Detected
188612						
12E	Skim Coat	Walls	white	Non-Fibrous	100	None Detected
188613						

Monday 24 October

Dantine

End of Report

Page 3 of 3

Analyzed by:

Batch: 17044

	-		8	0				<u>フ</u>	9	1	18	<u> </u>	7	5	78	7	Lab ID#	# Only)		# of S	Sece	Rein	Contact	8 800	Phon	Proje	Client: (
			G			<u>.</u>	2	<u>ک</u>	>			***		<u>۔</u> ک			(Client Reference)			# of Samples Received:	.venerven.ch/gate:	Rettinquish by/date:	ack Whin		Phone / email address:	Project Site & #: Waltham	
	Gasement	Location	A.A.	Marerial Amy Involun		Parners	Location /	al	Min. Literal Hisulant	Hornen .	al to planting	Location		tod cat on	Wisterial Chan't	Material	Material / Location		renib in ceicius = 7	ved:	CICIONAMO	Med 10/13	(akala)	727	ess:	hum femalo	ADSMONST, Ruk 301, Kaningman
(2)	<u>o</u>			<u> </u>	₩	<u>2</u>				0				_		╀┈	of Asbestos		/0	7	0	_	J	1	(N Az	Sour
	4	<u>C</u>			т	ったの				13	<u>.</u>					┞	olor	4	Stere							0	MA
	770				┝	7				7	7	۹			_	╌	omogeneity exture	\dashv	Stereo Scope	DAI CH#	7 7	Date Sampled:	WWW.8	Wob	Suite 227	165	1
-	7				97		<u> </u>			2 /	<u>`</u>		_	_		⊢	iable	-	þe	7		Samp	asbes	urn,	9 227	New	<u> </u>
Carlolle	Anthophylite Actinolite	Tremolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Amosite	Chrysotile	Actinolite	Anthonhylita	Tremolite	Crocidolite	Amosite	Chrysotile	ш					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	led:///23/16	www.asbestosidentificationlah.com (**o**)aok-aok-aok-aok-aok-aok-aok-aok-aok-aok-	Woburn, MA 01801	7	165 New Boston St.	CHAIN OF EPA/600
<u> </u>		_			_	1	_	$oldsymbol{\perp}$								As	sbestos %	T		了 了	- -		halah				60 F
																Mo	rphology			سلس	_		3			St.	IN OF CUST(EPA/600/R-93/116
					1		\dagger			\dagger	†	-	\dagger	+	1	Ext	tinction	1	Optical Properties	'			ها.	e service in		lion	310
										-	†	\dagger	\dagger	\dagger	ķ	Sig	n of Elongation	-	Pro	Rev			S.	101-	3	Lab	ODY
											T			T	E	Bire	efringence	1	pertie	Rev 12/15					\⊒ ₹		
-	\perp	\perp		1	1										F	le	ochroism		Š				Service Control	4B - 5			
-	+		-	1	1	-			\downarrow	\downarrow	L			\perp	ŀ	=			22	Date	> .	Stop		П	П	П	1
\vdash			_	╀					\downarrow		L.	_		L	1	_				Allayze d b y: Date:		Stop on 1st Positive?	Two Day	Next Day		Less	Page_ Turnaround Time
7	 >	1			<u> </u>		((+	_		ļ.			+	_	erglass		<u>z</u>	NΪ		st Po	a	}	, Day	Less 3 Hrs	Page and Tim
<u> </u>	2	5	<u> </u>		<u> </u>		2		-	70/2		17/10		_	✝		eral Wool		Ash	0/	\ <u>\</u>	sitive	4/2016	-			ime
	}_ _		<u>-</u>	+	+					_لا		2	_	_	t	ellı air	ulose	9.00		13	21 E		$\qquad \qquad \Box$		_	1 J	Sam
				T			_		\dagger						t		hetic	rerce		pre	A Service And Annual Market Pal	YES/No	∐ _{Po}	Wipe	Lisoi		nple N
				I				_	I							he		marcatos reficentage (%)	-	1,	<u> </u>		Point Count	pe	<u> </u>	눚	of Sample Method
8	<u> </u>	·		0	}				10,	6					No	n-	Fibrous	e (%)					큺				ď

					8	Ž	-				8	Y	′			Σ	<u>}</u>	3				ξ	2	>				ξ	7		Lab ID# (Lab Use Only)
			£	<u> </u>	/ ₂₄ //	•				V (1				ļ	70	7					$ \preceq $	\mathcal{L}			_		I	<i>)</i>		Field ID/ (Client Reference)	
		のならアニシアに	Location	. (1889)	CIRCLE VINCOUN CAUL	Material			;		4	Material		(1	Location			Material		なまとなり	Location		White your carly	Material		bourse	Location		tod cap fracan	Material	Material / Location	Temp in Celcius =
	0	<u> </u>														_				0			·		9	<u>></u>					% of Asbestos	
	クスイソ	<u>ج</u>					L						L						Ŀ	<u> </u>					•						Color	Stereo Scope
Ė	<u> </u>	0					_						<u> </u>							_						2					Homogeneity	o Sc
Ļ	7	7					L				. 									>					7	<u>></u>	17				Texture	opa
L	C FT	~ ∑ा		o	ī≽	ि	I ≽	T≽	13	llo	I≽	ि	Þ	עו	ī =	ि	ı⊳	To	<u> </u>	✓ ⊳	II	0	<u> </u>	0		7	_	<u> </u>	Iъ	<u> </u>	Friable	
	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	ctinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	nthophylite	remolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals	į
										L			L		L		L							j			i				Asbestos %	
L																								ω							Morphology	do d
) 1							Extinction	tical
L			ļ					L																t							Sign of Elongation	Prop
-		_																						7							Birefringence	Optical Properties
L	\downarrow	4	_	_			_	_		L	L						_		_	\perp				2	_		_			_	Pleochroism	
L	1	+	_	_					_	_	_				_	_	_		_	_	_	_	ļ	ortiliza".	\perp		\downarrow	_			=	굔
L	_	\perp	4						<u> </u>			Ц			4						_		_	3							<u> </u>	Ш
L			_	_						_		4			_						_						_			_	Fiberglass	Non
F			4	_								_			4			_			4			4		7	_	4	<u>\</u>		Mineral Wool	-Asb
L			-			_									-			4			4			4	2	<i>y</i>	1	3	<u> </u>	_	Cellulose	esto
L			4									4			4			_			\downarrow			4			4				Hair	s Pe
L			\dashv			4			_			\dashv			_			_			1			4			_			_	Synthetic	Non-Asbastos Percantage (%)
H	7	_	+			4			_			-			4			4		_	1			4		^	_				Other	age (
Ľ	R	_	_					أسن		<u>- , </u>			1				_	_	4	\mathcal{V}					,	()					Non-Fibrous	%
								サンチ					1/07	セな																		

Femald #50

Page of S

		9()					Е	9		·			\mathcal{S}_{ℓ}	8				8	?	7				S	ŧ	,	(ab ID# Use On	ly)	
	7					()	7	<i>[]</i>				<i>(</i>		 ン			,		\ \ -	•				(F)	105	, ,			Kererence)	Field ID/ (Client		
Main hav	0 4	1x 1 crant of	ı			Location	_	2	Material		(-	Location	· -		Material			Location		-	Material			Location		-	Material		material / Eccation	Material / Location	•	Temp in Calcius =
6				Ø							y					2						0						% of	Asb	estos		
064464			1	びて						Z	<i>c</i>					3	3					Ş	<u> </u>					Colo	• 	,		Stereo Scope
4			╁	<u> </u>					•	7							<u>(</u>					!	2					Home		eity		O Scc
12			+	7	0					(<u>_</u>					_	0					0	0					Textu				aqo
<u>}</u> ≱[≩]∃	IΩI	215	2	∠ इा		7	Ω	I≥	Ω	>	_ [≥	ΙΞ	្រ	[≥	<u> </u>	Ľ	_	ΙΞ	O]≥	0	•	_	I	ि	ı≻	റ	Friab	le			
Tremolite Anthophylite Actinolite	Crocidolite	Amosite	nvectila	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinalite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	ctinolite	Anthophylite	Tremolite	Cracidolite	Amosite	Chrysotile	Asbestos Minerals				
			1																									Asb	esto	s %		
		8																										Morpi	holog	gy		qo
			1																									Extin	ction	1		tical
		1	1																									Sign (of Ele	ongatio	n	Prop
		1	,													i												Birefr	inge	nce		Optical Properties
		>	2																									Pleoc	hrois	sm		S
		102/12	Ì																													-
		12 C																										F				R
														_														Fiberg	lass			Nor
												_																Miner	al W	ool		า-Ask
						4																						Cellul	ose			esto
			L						_			_						_										Hair				š Pe
			Ļ			_			_			_			_			\downarrow			1							Synth	etic			Non-Asbastos Percentage (%)
			2	_		4			4			_	_		_	~		\downarrow			_			4				Other			_	age (
8			8	~						8	<u> </u>					B	_					8	<u>\</u>				ì	Non-F	ibro	us	Ĺ	%)

Fernald # 50

Page 3 of S

			q	5	•				,	Q_l	٠. ر	/				Z	13)				($\widehat{I}_{\mathcal{L}}$	7				0	7	/	Lab ID# (Lab Use Only
			0 1		<i> </i>				•	7	7	\						<u>」</u> ブ			(7)				E		. ,		Field ID/ (Client Reference)
	VIII KAYTA			ACHOO I III	MUNICIPAL MUNICIPAL	Material			Location			Material		<u>-</u>	Location	:		Waterial			Location			Material		•	Location	=		Material	Material / Location
Ĺ		S 7 2 4 0) 			-1-	0		•				1						6	<u>z</u>					1	<u>`</u>					% of Asbestos
-		7	>				$\frac{1}{2}$						₽	2						<u> </u>				+	6	.` 			_		Color Homogeneity
F		7	<u> </u>					<u> </u>					1 1	Y (/ L / L)					Ş						5	•					Texture
t	•	<u></u>	`										7	<u></u>					2	Z					5						Friable
Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile		Actinolita	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolita	Amosito	Chrysotile	Asbestos Minerals
					I	I						K						J.						7/2]	人 人	Asbestos %
												3						\mathcal{E}						5						ح	Morphology
												_											-	1						//	Extinction
												1						1						4					-	+	Sign of Elongation
L												1						1					1							1	Birefringence
L						L						Z						Z					2	\					- 1	-	Pleochroism
L						L	\downarrow	_				£5.7	-					133/1552						Š		\perp	\perp	╧	2	(20) / ED)	=
\downarrow		Ц				L						72.57						282					(A) (C)	3			_		Č	3	<u> </u>
\vdash		_				L			_						_						_			1			\downarrow				Fiberglass
-		\dashv				L			\dashv	_		-			_			_			4			4			-			7	Mineral Wool
\vdash		\dashv				┡		-	_			_			_	-		\dashv			\dashv			+			+			ᅱ	Cellulose
-		\dashv		-		\vdash			-{			-			1			\dashv			\dashv			╀	· · ·		+			┪	Hair
\vdash		\dashv				\vdash			+			\dashv			\dashv			\dashv			+			+			+			-	Synthetic
1		+				"			+			ᅥ	É	_	-			+	E		\dashv			╁	6	_	+			┪	Other Non-Fibrous

ternald # 50

	_	_		_	_				,	9	4			_	(9	ş	T		-	C	~)	T		,	U	_ Հ			(1		ID# se Or	/v)		_
									CF.	R				, ,	77	シン					7	5	_			(<u>: (</u>	2				Z,	Field ID/	- <i>3)</i>		
		Location						rocation		2	Material			Location	•	<u> </u>	Material			Location	, Ad		Waterial			Location						Material / Location			reinh ill ceicins =	Toma in Calaine
							0	<u>.</u>					0					9	2		·				0					%	of A	sbes	tos			
						ļ-	7	<u></u>				L	<u><</u>			_	•	L	<u>_</u>					-	<	-				C	lor				Stereo Scope	!
L				_		Ľ	<u>←</u>	»		-		-	<u>۲</u>					-	<u>د</u>						ζ		_			₽	omo	_	ity		SC SC	,
F						-	$\frac{1}{\sqrt{2}}$	7				L	$\frac{\mathcal{F}}{\mathcal{F}}$					-	£					Ŀ	7	-				┺	xtur				ope	
Ž	≱	=	δ	≱	IΩ	Þ	ـ ⊈آ	<u>`</u>]∃	ĪΩ]≥	Ω	 ≥	C I∑I	I .	<u></u>	Ī≽	ি	\ <u>\</u>	<u>}</u> }	<u>I</u> ∃	റ	ı⊳	o			T≕	ि	Īъ	10	!	elde					4
Actinolite	Anthophylite	Fremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Fremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	ctinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Minerals	Asbestos					
							L	L											L											A۶	bes	tos	%			1
						_																								Мс	rpho	ology	/		ဝူ	
L																			j											Ex	tinct	ion			tical	١
		_								L					_															Sig	n of	Elor	ngatio	n	Optical Properties	l
L																														Bir	efrin	gen	e		ertie	l
																														Ple	ochi	oisn	1		U)	
Ŀ	4	\downarrow		_				 				_	_	\downarrow																11				1	71	1
		_			4	_										ŀ														H					22	
_		_			4						4			_			⇃			_						\perp				Fib	ergla	ISS			Nor	
<u> </u>		4			4			4			4	_		\downarrow			_						_						_	Mir	eral	Woo	ol		1-Asb	6
\vdash		\downarrow			\downarrow	_		_			4			1	-		_	_		-			_			4		_		Cel	lulos	e	<u>.</u> .		esto	ľ
\vdash	<u>,</u>	+			4						-			\downarrow			4			\downarrow			1			4				Hai	r				s Pel	9
\vdash		+			+		_	\dashv		_	4			4			4			\downarrow			4			\downarrow				Syr	thet	С			Non-Asbestos Percentage (%)	
\vdash		+			+	~	_	-			+	~	_	+			\downarrow	_		4			4	~		\downarrow			_[Oth	er				age ($\ '$
<u> </u>					1	8	`				\perp	90			_		\perp	00	_					60	_		_			Vor	-Fib	rous		[3	%)	1

Page of

		C	1					(<u>ر</u> س))				С	7			·		(0	<u> </u>			6	O	6			Lab ID# b Use Only))
			<u> </u>										7	9/	, ?				(2/5	7				6					Field ID/ (Client Reference)	
	Location	-		Material		Word along on the	Location / / / / / / / / / / / / / / / / / / /			Material AA		<u></u>	Location	-		Material		-	Location		==	Material		Manter	Location A	Star Wiener	ムスランプ	Material		Material / Location	lemp in Celcius =
Q					9	7					C)						0					Ľ	3					% of As	bestos	
7	•				Ŀ	4					001	<u>`</u>						199					_	10 1 22					Color		Stereo Scope
4 4					-	<u>~</u>					Ľ	ς_					Ļ	_	· 			-	L	<u> </u>					Homog	eneity	Sc o
#					7						7	<u>></u>					Ļ	7	7				(0					Texture		- ope
\ <u>\</u>	1-	വ	⊳		Š		14	I O	>	<u></u>	\sim	_ D	1	10	12	10	\ _	<u>_</u>	П		<u> </u>	10	Ľ			_	<u></u>	_	Friable		
Anthophylite Actinolite	Tremolite	Crocidolite	Amosite	Chrysotile	ctinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals		
																													Asbes	tos %	
																													Morpho	logy	ခွ
																													Extincti	on	tical
																													Sign of	Elongation	Optical Properties
				Î																									Birefring	gence	ertie
		7																											Pleochr	oism	S
																													=		_
																													H		꼰
	_									╛																			Fibergla	ss	No
								_																					Mineral \	Vool	1-Asb
	_																												Cellulos	е	esto
	_									_						_			\downarrow								_		Hair		Non-Asbestos Percentage (%)
<u> </u>	_			_			4			_			\downarrow			4			_			_			\bot				Syntheti	c	cent
	\downarrow			_	~		_			_	~		_			_			_									_	Other		age
8,					0	_					0	`					60	_					00	_					Non-Fibi	ous	%

femald #50

Page O of

		(0	7				Ų	8				ĺ	ر کا	—)		T			C	V	,	T			Ò	5			ab ID# Use Only)	}
	-	T T	ー ノ ラ			<u>, </u>	7/1		<u> </u>							7				7		•								Field ID/ (Client	
Walls	Location		Sylvy Coat	Material	-	<i>}</i> {	Location			Material		=	Location			Material	1 1 1 1	+ lour faint cour	Wocation, I	ALCON CICHOLISTON JOHN	でから ごこう こりか	Material			Location	-		Material		Material / Location	Temp in celcius =
0 WHY 60 4					4	<u>)</u>					0	\$					7				1		5	2					% of Ast	estos	
14					-	5				•	1 10	2					0	2					Ŀ	1					Color		Stereo Scope
1					_	<u> </u>					7	<u></u>					ľ	<i>(</i>					_	7					Homoge	neity	o Sc
رځ						2					100	<u>ニ</u> シ					5	<u>. </u>						7					Texture	<u></u>	-loge
<u> </u>	1 .	റ	⊳	റ	•	√	ΙΞ	To	Ī≽	i O		-	I →	_ ਨ	>	- اه		•	Γ≕ï	0	_	റ	L		` [∓	ام ما	I≽	10	Friable	<u>.</u>	
Anthophylite Actinolite	Tremolite	Crocidolite	Amosite	Chrysotile	ctinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals		
																													Asbest	os %	
																													Morpholo	gy	o Q
Ш																													Extinction	n	tical
																													Sign of E	longation	Prop
									l																				Birefringe	ence	Optical Properties
																													Pleochro	sm	S
																													=		
																													 -		꼰
																													Fiberglas	s	No
																													Mineral W	lool	n-Ast
																													Cellulose		esto
				4															\perp			_[_	Hair	····	s Pe
	_			4						_			\downarrow			_			_			4			\bot			_	Synthetic	·	Non-Asbestos Percentage (%)
	_			4			1				_		_			4			4			\bot						_	Other		age
Col					6	<u></u>	٠				Ca	_					S	<u>\</u>					100	`					Non-Fibro	us	<u>જ</u>

tomaid #50

Page of C

		_	_	_	_	T	j.	7	5	1	3					Į	2					-	1	T				()		(1.		iD# se On	(1/2)	
								į	7	<u> </u>				()	レン				(7)	•			•	2		- - s			(70	Field ID/	·97_	
		Location			Material			Location			Material			Location	. 4		Material		-	Location	_		Material			Location		=	Material			Material / Location			Temp in Celcius =
						7					-	0	Ĭ,					7	5	•				(7		-			% (of A	sbes	tos		
						7	1.11.					C 144 7	<i>, , ,</i>					1 420	1.11					70	7					Co	or				Ster
L											•							1	<u> </u>					-	~					Ho	mog	ene	ity		Stereo Scope
						5						6/0 4	_					go						0/0	10 m					Тех	tur	-			cope
Ļ	I .			1 =	-		<u>.</u>		T =		_								<u><</u>						<u>ر</u>					Frie	ble				
Actinolite	Anthophylite	Tremolite	Cracidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Cracidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Minerals	Asbestos				
																														As	bes	tos	%		
																														Моі	pho	ology	,		o O
							_																							Ext	nct	on	-		tical
																														Sig	n of	Eloi	ngatio	n	Pro
																														Bire	frin	gen	ce		Optical Properties
																														Pled	chi	oisn	n	7	s
			_																											=	•			1.	
Ш										İ																				一				7	₽│
_					_							_																		Fibe	rgla	ss		3	Z
		4			_			_			_						_													Min	eral	Woo	oi		2
<u> </u>		4			_			_			_			\downarrow						1			1							Cell	ulos	е			
L		\downarrow		_	_		_	_			1			_			_			1										Hair					
_		\downarrow			4			4			1			_			1			1			_			1				Synf	het	ic		roll-Assestes Felicalidge (76)	
_		\dashv			+	~		\downarrow			4	<u> </u>		\perp			_			\downarrow			1	_					_	Othe	r			lage Lage	
<u></u>						8	_					g,	_					8	`			_	\perp	8					ŀ	Non-	Fib	rous	.	(8)	ا

Walka Enald#50

Page of S

Asbestos Identification Laboratory

165 New Boston St., Ste 227 Woburn, MA 01801 781-932-9600

Web: www.asbestosidentificationlab.com Email: mikemanning@asbestosidentificationlab.com **Batch:** 17049

October 24, 2016

Susan Cahalan CDW Consultants, Inc. 40 Speen St. Suite 301

Framingham, MA 01701

Project Number:

Project Name: Waltham Fernald #55

 Date Sampled:
 2016-10-04

 Work Received:
 2016-10-17

 Work Analyzed:
 2016-10-22

Analysis Method: BULK PLM ANALYSIS EPA/600/R-93/116

Dear Susan Cahalan,

Asbestos Identification Laboratory has completed the analysis of the samples from your office for the above referenced project .

The information and analysis contained in this report have been generated using the EPA /600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials. Materials or products that contain more than 1% of any kind or combination of asbestos are considered an asbestos containing building material as determined by the EPA. This Polarized Light Microscope (PLM) technique may be performed either by visual estimation or point counting. Point counting provides a determination of the area percentage of asbestos in a sample. If the asbestos is estimated to be less than 10% by visual estimation of friable material, the determination may be repeated using the point counting technique. The results of the point counting supersede visual PLM results. Results in this report only relate to the items tested. This report may not be used by the customer to claim product endorsement by NVLAP or any other U.S. Government Agency.

Laboratory results represent the analysis of samples as submitted by the customer. Information regarding sample location, description, area, volume, etc., was provided by the customer. Asbestos Identification Laboratory is not responsible for sample collection activities or analytical method limitations. Unless notified in writing to return samples, Asbestos Identification Laboratory discards customer samples after 30 days. Samples containing subsamples or layers will be analyzed separately when applicable. Reports are kept at Asbestos Identification Laboratory for three years. This report shall not be reproduced, except in full, without the written consent of Asbestos Identification Laboratory.

• NVLAP Lab Code: 200919-0

Mechael Thamy

- Massachusetts Certification License: AA000208
- State of Connecticut, Department of Public Health Approved Environmental Laboratory Registration Number: PH-0142
- State of Maine, Department of Environmental Protection Asbestos Analytical Laboratory License Number: LB-0078(Bulk) LA-0087(Air)
- State of Rhode Island and Providence Plantations. Department of Health Certification: AAL-121
- State of Vermont, Department of Health Environmental Health License AL934461

Thank you Susan Cahalan for your business.

Michael Manning Owner/Director Susan Cahalan CDW Consultants, Inc. 40 Speen St. Suite 301

Framingham, MA 01701

Project Number:

Project Name: Waltham Fernald #55

Date Sampled: 2016-10-04 **Work Received:** 2016-10-17

Work Analyzed: 2016-10-22

Analysis Method: BULK PLM ANALYSIS EPA/600/R-93/116

FieldID	Material	Location	Color	Non-Asbestos %	Asbestos %
LabID					
1A	Grey White Glaze	Exterior Windows	gray	Non-Fibrous 100	None Detected
188763					
1B	Grey White Glaze	Exterior Windows	white	Non-Fibrous 100	None Detected
188764					
C	Grey White Glaze	Exterior Windows	white	Non-Fibrous 100	None Detected
188765					
D	Grey White Glaze	Exterior Windows	white	Non-Fibrous 100	None Detected
188766					
E	Grey White Glaze	Exterior Windows	multi	Non-Fibrous 100	None Detected
188767					
2A	Tar ——	On Ceiling Large Metal Freezer	black	Non-Fibrous 95	Detected Chrysotile 5
188768					
2B	Tar ——	On Ceiling Large Metal Freezer			Not Analyzed
188769					
C	Tar ——	On Ceiling Large Metal Freezer			Not Analyzed
188770	Disal Ossilas	O . O . d We . de .	1.11		5 5 1 1
SA	Black Coating	On Cork in Wooden Freezer Walk In	black	Non-Fibrous 100	None Detected
188771 BB	Plack Coating	On Cork in Wooden	black	Non-Fibrous 100	None Detected
	Black Coating	Freezer Walk In	black	Non-Fibrous 100	None Detected
188772 BC	Black Coating	On Cork in Wooden	black	Non-Fibrous 100	None Detected
	— Black Coating	Freezer Walk In	DIACK	Non-Fibrous 100	None Beteeted
188773 BD	Black Coating	On Cork in Wooden	black	Non-Fibrous 100	None Detected
	— Black Goating	Freezer Walk In	black	Non Tibloub 100	
188774 BE	Black Coating	On Cork in Wooden	black	Non-Fibrous 100	None Detected
		Freezer Walk In			
188775 IA	Black Roof Tar	Roof	black	Cellulose 40	None Detected
				Non-Fibrous 60	
188776 Monday 24 Octo	pher				 age 1 of 2

FieldID	Material	Location	Color	Non-Asbestos	%	Asbestos %
LabID						
4B	Black Roof Tar	Roof	black	Cellulose Non-Fibrous	40 60	None Detected
188777						
4C	Black Roof Tar	Roof	black	Cellulose	_	None Detected
188778				Non-Fibrous	55	
4D	Black Roof Tar	Roof	black	Cellulose	30	None Detected
100770				Non-Fibrous	70	
188779 4 E	Black Roof Tar	Roof	black	Cellulose Non-Fibrous	30 70	None Detected
188780				Non-Fibrous	70	
5A	White Board	Roof Layer	multi	Cellulose Non-Fibrous	10 90	None Detected
188781				1.011 1 1.01 0 0.0	, ,	
5B	White Board	Roof Layer	multi	Cellulose Non-Fibrous	10 90	None Detected
188782						
5C	White Board	Roof Layer	multi	Cellulose		None Detected
188783				Non-Fibrous	85	
5D	White Board	Roof Layer	multi	Cellulose	5	None Detected
188784				Non-Fibrous	95	
5E	White Board	Roof Layer	multi	Cellulose		None Detected
188785				Non-Fibrous	90	

Monday 24 October

Analyzed by:

Michael Thamy

End of Report

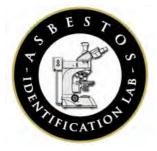
Batch: 17049

Page 2 of 2

	0	Location)S		rocation ()	()		1 Waterial		 Location	The In Cold and The	100 H 100 H	Material	Lab Reference) Material / Location Asbestos	nly)	lemp in Celcius =	# of Samples Received:	CO COLL	Received building	Relinquish bulleton	87 VSD 170	/ email address:	ham ternal #	Client: CDW CONSUltants Address 40 Spen St Rive 20) Kaminahan MA
- PORTIFOLIS	Anthophylite	Tremolite	Crocidalite	Chrysotile	Actinolite	1 1 m mm	// Crocidolite	Amosite	Chrysotile	Actinolite	1 / N my	 Amosite		T F WINEIGHS A M E Si	Color Iomogeneity Texture		Stereo Scope Optical Properties	Rev 12/15	BATCH# COLON	Date Sampled: 1814/16	-	(781)932-9600		Asbestos Identification Lab 165 New Boston St.	
	/00									/00			F A C	ib Wiir Cellai	perglass neral Wool Ilulose	mon-Asbestos refcentage (%)		Date: 10/22/16	Anavzed By	Notify Method: Mail/E-Mail/Verhal	ositive?	Next Day Wipe	Sol	j	Page of 5 Turneround Time Sample Method

	^	1-0	<u> </u>		Lab ID#
20	64	08	67	66	(Lab Use Only)
25	28	2A	M		Field ID/ (Client Reference)
Material (Location / (Material (\ Location)	Material THE Location of Large Metal Meru	Material ({ Location ()	Material () Location	Material / Location
		0	0		% of Asbestos
		916	ML	ν.	Color
		2	7	•	Color Homogeneity Texture
	<u>.</u>	, in	ar	Ev.	Texture Cope
SISTER	SISTRACTA	(~		Friable
Chrysottle Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Asbestos Minerals
		or or			Asbestos %
		3			Morphology
		0			Extinction
					Sign of Elongation
					Extinction Sign of Elongation Birefringence
		1112			Pleochroism
		1/35.6			=
		(ASS o			
				-	fineral Wool
					dineral Wool cellulose lair ynthetic on-Fibrous
				H	lair o
				s	ynthetic C
					ther ge
		25	8	N B	on-Fibrous
Dura	DUA				

Femaled # 55


Page

			_		7			-			_	_					_					_	-									
			<u>) </u>	$\sum_{i=1}^{n}$					7	4				_	7	3					/	2	_				7,	ı	Lab IC (Lab Use		<i>(</i>)	
	(X	7				,	Y		,			7	S)				()				(2))	77	Field ID/	<u> </u>	
(f	Location			Waterial		<u></u>	10000101	Ocation		Š	Material			Location	()	-	Material	=		Location			Material Material	Control Wally	Cocalibility of Disorder	Continue	Klack Cath	-	Material / Location		1	Temp in Celcius = 2/
	7	-			L		O (F	<u> </u>	_		1	<	<u>ئ</u>					()					1	Ö			-	% of Asbestos	· .	<u> </u>	1
	\	`			L		<u>7</u>	<u> </u>			\perp		7	· 		_	╀	<u>_</u> 2	\vec{z}	<u> </u>			\perp		から	<u>.</u>			Color			?
		<u> </u>			L		3	<u>></u>			1		$\frac{2}{2}$				ļ		2				L		2	`			Homogeneity		Stereo Scope	
-		<u>ج</u>		_			7	<u>~</u>	•••		1		6	; ;			$oldsymbol{\perp}$		5	· 			L		3	<u> </u>			Texture		jöpe	
≱⊵	·1=	<u> </u>	≥∣	C	A	Þ	v I⊒	<u>्</u> ा	T⊳	ाठ	ļ	T≽	7-	<u>}</u>	TS	TG	Ļ	त्र	<u>-</u>	Па	. T.	T =	L	Γ.		٤	1		Friable			
Anthophylite Actinolite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotlle	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals			
				_				L	L	L	L	_		L			L												Asbestos %			1
																													Morphology		0	
		1	_	\downarrow					L		L																		Extinction		Optical	
		+	\downarrow	1	\downarrow	4	_																						Sign of Elongat	ion	Prop	
		\perp	1	1	4	1							_															_	Birefringence		ical Properties	
		\perp	1	+	4	1	\dashv	4	_		_		_		\dashv				_					╛					Pleochroism			
	-	+	+	╀	+	+	4	4	\dashv	_	_		\dashv	_	4	_	_	4	4	_	_	1	\downarrow	1	_			1			꼰	
	+			╀			+			-						4			4			\perp			1					_	<u>-</u>	
<u> </u>	-		_	╁	-		+			4			4			4			4			_			\downarrow			F	iberglass	$ \bot $	Non	
}	+			╀			╬			\dashv			+		_	4			-			4			1		_	<u> </u>	/lineral Wool		Non-Asbestos	Page
 	+			╀	_		+		-	+			+			+	_		+			\downarrow			\downarrow			4	ellulose		esto	
-	+	<u>.</u>		\vdash			+		_	+			+	_		+			+			+		_	+			┰	lair	_ :	Par	ef.
 	+			-			+			+	_		+			+			+			+			+			╅	ynthetic	_	Cents	
100	\dagger			\vdash	700		+			+	6	`	+	-	•	+	8		+			╀	100		+			╁	ther	· ciccinage (%)	100/6	
				<u> </u>	<u></u>							<u>-</u>	Д.			1		_				L	<u>Č</u>	<u>.</u>			_	N	on-Fibrous	<i>(</i> 0 <i>)</i>	ُ ا	•

_							_								-													
	5 i	SC			,	79	1			_	7	8					_	7	7			1	6	,		Lab ID# Use On	'y)	
	77	<u> </u>		~	9	/ />			-						7	7/2	<u> </u>				,	/41 ==	11	///		Field ID/ (Client Reference)		
	Location	Material		Location		Marcilal	Aptoriol	()	Location		()	Note I di	Matorial	4	Location	, ,		Moterial	Metorial	Aroux.	Location	Continu	15/all rees la	1) I don't to		Material / Location	1177	Temp in Celcius =
-	0816			0 <i>V</i>	<u>. </u>		1	(ر ارتخ				_	(<u> </u>						200	>		,	% of Ast	estos		-
-	\frac{\frac}\fint}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac{\frac}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\			1			╀		1/1				Ļ		7				_		2	<u>></u>			Color			Stere
-	3/17	-			<u>_</u>		_		$\frac{2}{\tau}$	<u></u>			L	_	<u> </u>	· 			L			<u> </u>			Homoge	neity		Stereo Scone
-	2117	\dashv		$\frac{S}{U_{I}}$	12	-	L	\mathcal{I}	<u> </u>	8	<u>. </u>		L	1	<u> </u>	Ž			L	_	Ĭ,	10	<u>`</u>		Texture			3
≱∣≱	<u></u> ⊒ <u>וסו</u> ≥	<u>ا</u>	<u> </u>	ाना	~ ठाउ	हात		· \[\]		- [중]	<u> </u>	<u> </u>	Ļ	T.	<u>_</u>	ر احما		<u> </u>	Ļ		· ·	<u>_</u>		,-	Friable			
Anthophylite Actinolite	Amosite Crocidolite Tremolite	Chrysotile	Anthophylite Actinolite	Tremolite	Crocidolite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals			
			_						_																Asbesto	s %		7
			_			1																			Morpholo	gy	90	,
			\perp					\perp	1																Extinction	1	tica	
		1	L			Ц																			Sign of El	ongation	Pro	
		_			1		_	1	1	_							\int								Birefringe	nce	Optical Properties	
1-1-1		4	-		1		_	_	_	\downarrow	\downarrow	1	_		1		\perp								Pleochrois	sm]"	
		1	+		┦_		1	4	1	\downarrow	\downarrow	1	\downarrow	\downarrow	1			1		\perp					=		-,,	1
	444	1		_		Ц		\perp	1			1			\perp					\perp	\perp				H		₽	l
		+		\bot		4			_			1			\perp			1			\perp			F	iberglass		N _O	1
63		+	्र	-		\dashv			<u> </u>			1	- C*		_			1						ŀ	fineral Wo	ool	1-Asl	r dge
5	7	╀	0		7	-	3	<u>`</u>	-	#		1	70		1	#		\downarrow	5		1	<u></u>		k	ellulose		esto	ľ
-		╀		+	_	4		-	igdash	_		1			1		_	1		_				┢	lair)S Pe	
<u> </u>	 	╀	<u>.</u>	-		+			-			\downarrow			igspace					_				s	ynthetic		rcen	윽
17	-	+	J	+		+	S		-			1	_		1			$oldsymbol{\perp}$	_		\perp			c	ther		Non-Asbestos Percentage (%)	
70		ŢĠ	7				8						60						E					N	on-Fibrou	s	%	

Page of

10000 -					1 1 15 "	
188 185	8	1 83	8	57	Lab ID# (Lab Use Only	<i>(</i>)
M	9	1 X	\Re	B	Field ID/ (Client Reference)	
	{/ Location }}	Material	waterial) Location /)	Material Biant Location Location	Material / Location	Temp in Celcius =
o MC 2 Con	0	3	- 2		% of Asbestos	
>	AC >	MC /	MC	300	Color	Stere
218	311	3/12	2	121	Homogeneity	Stereo Scope
	1111	15/10	TIE		exture	윷
And Tree	8 2 2 2 2		ol≼lol⊑l≼l≼		riable	
Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Amosite Crocidolite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocldolite Tremolite Anthophylite Actinolite	Asbestos	
					Asbestos %	П
				M	lorphology	Op
	4			E	xtinction	tica
			44444	s	ign of Elongation	Prop
				В	irefringence	Properties
				PI	eochroism	
+ + + + + + + + + + + + + + + + + + +				<u> </u>		2
┠┸┸╉						
				Fil	perglass	No.
7 7	N	T = 1	J I	<u></u>	neral Wool	Page -Ash
		Z I) I	Ce	llulose 3	
				Ha	<u></u>	이
					nthetic	
20	0	\$ 5	0	Oth	ner (c	
				O No	n-Fibrous ్ర్ట్రి	ال

Asbestos Identification Laboratory

165 New Boston St., Ste 227 Woburn, MA 01801 781-932-9600

Web: www.asbestosidentificationlab.com Email: mikemanning@asbestosidentificationlab.com **Batch:** 17047

October 24, 2016

Susan Cahalan CDW Consultants, Inc. 40 Speen St. Suite 301 Framingham, MA 01701 **Project Number:**

Project Name: Waltham Fernald #57

 Date Sampled:
 2016-10-15

 Work Received:
 2016-10-18

 Work Analyzed:
 2016-10-23

Analysis Method: BULK PLM ANALYSIS EPA/600/R-93/116

Dear Susan Cahalan,

Asbestos Identification Laboratory has completed the analysis of the samples from your office for the above referenced project .

The information and analysis contained in this report have been generated using the EPA /600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials. Materials or products that contain more than 1% of any kind or combination of asbestos are considered an asbestos containing building material as determined by the EPA. This Polarized Light Microscope (PLM) technique may be performed either by visual estimation or point counting. Point counting provides a determination of the area percentage of asbestos in a sample. If the asbestos is estimated to be less than 10% by visual estimation of friable material, the determination may be repeated using the point counting technique. The results of the point counting supersede visual PLM results. Results in this report only relate to the items tested. This report may not be used by the customer to claim product endorsement by NVLAP or any other U.S. Government Agency.

Laboratory results represent the analysis of samples as submitted by the customer. Information regarding sample location, description, area, volume, etc., was provided by the customer. Asbestos Identification Laboratory is not responsible for sample collection activities or analytical method limitations. Unless notified in writing to return samples, Asbestos Identification Laboratory discards customer samples after 30 days. Samples containing subsamples or layers will be analyzed separately when applicable. Reports are kept at Asbestos Identification Laboratory for three years. This report shall not be reproduced, except in full, without the written consent of Asbestos Identification Laboratory.

• NVLAP Lab Code: 200919-0

Mechael Thamy

- Massachusetts Certification License: AA000208
- State of Connecticut, Department of Public Health Approved Environmental Laboratory Registration Number: PH-0142
- State of Maine, Department of Environmental Protection Asbestos Analytical Laboratory License Number: LB-0078(Bulk) LA-0087(Air)
- State of Rhode Island and Providence Plantations. Department of Health Certification: AAL-121
- · State of Vermont, Department of Health Environmental Health License AL934461

Thank you Susan Cahalan for your business.

Michael Manning Owner/Director

October 24, 2016

Susan Cahalan CDW Consultants, Inc. 40 Speen St. Suite 301

Framingham, MA 01701

Project Number:

Project Name: Waltham Fernald #57

Date Sampled: 2

2016-10-15 2016-10-18

Work Received: Work Analyzed:

2016-10-23

Analysis Method: BULK PLM ANALYSIS EPA/600/R-93/116

Fiel	dID	Material	Location	Color	Non-Asbestos %	Asbestos %
	LabID					
1A		Gray White Caulk	Interior of Exterior Window	tan	Non-Fibrous 95	Detected Chrysotile 5
	188670					
1B		Gray White Caulk	Interior of Exterior Window			Not Analyzed
	188671					
1C		Gray White Caulk	Interior of Exterior Window			Not Analyzed
	188672					
1D		Gray White Caulk	Interior of Exterior Window			Not Analyzed
	188673					
1E		Gray White Caulk	Interior of Exterior Window			Not Analyzed
	188674					
2A		1x1 Tan Floor Tile	Basement	tan	Non-Fibrous 90	Detected Chrysotile 10
	188675					
2B		1x1 Tan Floor Tile	Basement			Not Analyzed
	188676					
2C		1x1 Tan Floor Tile	Basement			Not Analyzed
	188677					
3A		Black Mastic —	Under 1x1 Tan Floor Tile	black	Non-Fibrous 95	Detected Chrysotile 5
	188678					
3B		Black Mastic —	Under 1x1 Tan Floor Tile			Not Analyzed
	188679					
3C		Black Mastic —	Under 1x1 Tan Floor Tile			Not Analyzed
	188680					
4A		9x9 Dark Brown Floor Tile	Basement	gray	Non-Fibrous 95	Detected Chrysotile 5
	188681					
4B		9x9 Dark Brown Floor Tile	Basement			Not Analyzed
	188682					
4C		9x9 Dark Brown Floor Tile	Basement			Not Analyzed
	188683					

Fiel	dID	Material	Location	Color	Non-Asbestos %	Asbestos %
	LabID					
5A		Black Mastic	Under 9x9 Floor Tile	black	Non-Fibrous 95	Detected
	188684					Chrysotile 5
5B		Black Mastic	Under 9x9 Floor Tile			Not Analyzed
	188685					
5C		Black Mastic	Under 9x9 Floor Tile			Not Analyzed
	188686					
6A		White/Gray Glaze	Exterior Windows	multi	Non-Fibrous 100	None Detected
	188687					
6B		White/Gray Glaze	Exterior Windows	multi	Non-Fibrous 100	None Detected
	188688					
6C		White/Gray Glaze	Exterior Windows	white	Non-Fibrous 100	None Detected
	188689					
6D		White/Gray Glaze	Exterior Windows	multi	Non-Fibrous 100	None Detected
	188690					
6E		White/Gray Glaze	Exterior Windows	multi	Non-Fibrous 100	None Detected
	188691					
7A		Black Coating	Basement Ceiling	gray	Non-Fibrous 100	None Detected
	188692					
7B		Black Coating	Basement Ceiling	black	Non-Fibrous 100	None Detected
	188693					
7C		Black Coating	Basement Ceiling	black	Non-Fibrous 100	None Detected
	188694					
8A		Textured Ceiling Plaster	1st Floor	white	Non-Fibrous 100	None Detected
	188695					
8B		Textured Ceiling Plaster	1st Floor	white	Non-Fibrous 100	None Detected
	188696					
8C		Textured Ceiling Plaster	1st Floor	white	Non-Fibrous 100	None Detected
	188697					
9A		Textured Wall Plaster	1st Floor	white	Non-Fibrous 100	None Detected
	188698					
9B		Textured Wall Plaster	1st Floor	white	Non-Fibrous 100	None Detected
	188699					
9C		Textured Wall Plaster	1st Floor	white	Non-Fibrous 100	None Detected
	188700					
10A		Black Flooring	Under Carpet 1st Floor	black		None Detected
	188701				Non-Fibrous 95	
Mond	day 24 Octo	hor			D,	age 2 of 3

Monday 24 October Page 2 of 3

FieldID	Material	Location	Color	Non-Asbestos %	Asbestos %
LabID					
10B	Black Flooring	Under Carpet 1st Floor	black	Cellulose 5 Non-Fibrous 95	None Detected
188702					
10C	Black Flooring	Under Carpet 1st Floor	black	Cellulose 5 Non-Fibrous 95	None Detected
188703			<u> </u>		
11A	Black Mastic	Under Black Flooring	brown	Non-Fibrous 100	None Detected
188704					
11B	Black Mastic	Under Black Flooring	brown	Non-Fibrous 100	None Detected
188705					
11C	Black Mastic	Under Black Flooring	brown	Non-Fibrous 100	None Detected
188706					
12A	Yellow Glue	Under Carpet	tan	Non-Fibrous 100	None Detected
188707					
12B	Yellow Glue	Under Carpet	tan	Non-Fibrous 100	None Detected
188708					
12C	Yellow Glue	Under Carpet	tan	Non-Fibrous 100	None Detected
188709					
13A	Roof Shingle	Roof	multi		None Detected
188710				Non-Fibrous 80	
13B	Roof Shingle	Roof	multi		None Detected
188711				Non-Fibrous 80	
188711 14A	Black Underlayment Paper	Under Roof Shingle	black	Cellulose 60	None Detected
		J		Non-Fibrous 40	
188712	Die als Lie de de vere ent De re	Linday Doof Chinale	blook	G 11 1 60	Nama Datasta 3
14B	Black Underlayment Paper	Junuer Rooi Sningle	black	Cellulose 60 Non-Fibrous 40	None Detected
188713					

Monday 24 October

Pan Pine

End of Report

Page 3 of 3

Analyzed by:

Batch: 17047

Material (1 Location		In Celcius = <u>13</u> laterial / Location % of Asbestos	
Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile 5 4 1 5 in a 2	Color Homogeneity Fexture Friable Minorals tos Asbestos % Iorphology Astinction Ign of Elongation Frefringence Ecochroism	CHAIN OF CUSTODY EPA/600/R-93/116 Asbestos Identification Lab 165 New Boston St. Suite 227 Woburn, MA 01801 (781)932-9600 www.asbestosidentificationlab.com Date Sampled: BATCH# Rev 12/15
	Min Cel Hai	perglass neral Wool Blulose r nthetic	Page Page Paround Time Less 3 Hrs Same Day Next Day Next Day No Day On 1st Positive? Method: Mail/E- zed By:

ı		_			フ	<u>ー</u> つ	Τ		_			-/	6	Γ			_		7=		Γ					7/	,1						Lab II	D#		
						<u>/</u>	╀	_		0		-	6	L	_	_	_	l	(L					Ζ	4				7	3	(Lab Use		y)	
			2 (/ /		_				<u> </u>	_ /					-	7	ح د ا					•	d	7				`\		ヺ		(Client Reference)	Field ID/		
		Location			-	Material	•	<u></u>	Focation	Ocation		-	Material	Bod Carrier 12	JA182	Location		1 x 1 -tan 1/00/ 1/6		Material	į		Location		<u> </u>		Material	~ (Location	~		Material / Location			Temp in Celcius =
						1						_	1	0	}					1			_										% of Asbesto	3	<u> </u>	
-		_	-			+							1	<u> </u>	1					4							╧	_					Color		of the let	}
\vdash	_	_	Tremolite Anthophylite Actinolite Chrysotile Armosite Crocidolite											202	· 	_		_		\downarrow							Ļ						Homogeneity		Stereo Scope	
-	•			Location () Material								_	-	<u> </u>	<u> </u>				•	╀	_		_				ig						Texture		ope	
Acti	ı≧	Tre	င္ပ	À	Ş	2	<u>}</u>	Ant	Tre	ဂ္ဂ	Ī≩	S				訮	তু	¥	ΙŞ	1 2	<u> </u>	<u>₹</u>	<u></u>	ਨੂੰ	₽	ĪΩ	ΙÀ	I≥	T	Ω	ı≽	10	Friable		1	4
Actinolite	Anthophylite	Tremolite	cidolite	osite	ysotile	10110	inolife	honhvlite	molite	cidolite	Amosile	Chrysotile	inolite	A adia alia	honbulito	Tremolite	Crocidolite	Amosite	Chrysotile	Veritionile	tinolita	Anthonhylite	Tremolite	Crocidolite	Amosile	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals			
\downarrow		_			_		1	4			_	L	L						0														Asbestos %			1
L		-	_			_	1	1	_				L		\downarrow		_		6	L		1			_								Morphology		ခြင	
\vdash	-	-	\dashv		_	L	+	+	4		_	_	L	L	\downarrow	4	_	(H	L	ļ	+	1	\downarrow	_	_	-					Щ	Extinction		Optical Properties	
\vdash		+	-	\dashv		H	+	+	+	\dashv	_			-	╁	4	4	4	クイ	_	L	+	+	\downarrow	4	4			Ц				Sign of Elongat	ion	rope	
H	\dashv	+	\dashv	\dashv	-	L	+	+	+	\dashv				_	╀	+	-		<u>></u>		L	\perp	+	+	4	4	_	_		_			Birefringence		rties	
	+	†	+	\dashv	1	_	1	+	+	1	1	-			\vdash	+	+				L	+	+	+	+	\dashv	4	4		_	_	4	Pleochroism	_		
		1	1	1	1	_	1	T	\dagger	7	\dashv	1			\vdash	t	+	-	7			┝	+	+	+	+	\perp	+	\dashv		\dashv	-	= -		₽	
		I						_						_	Ь.			!(<u> </u>	T	_		†		!	+			-	Fiberglass	-	z	
_		1																								†	-	_	+			7	Mineral Wool		ېږ-no	Page
_	·	\downarrow			4			_	1			1				L																十	Cellulose		Non-Asbestos	68
-	·	+	-		+				1			1		_					\downarrow	_						1						ŀ	lair		DS Pa	1
\vdash		-			+	_		_	-			+		_	_				\downarrow				 -			1			1		_	s	Synthetic		rent	유
一		<u> </u>			\dagger				-		_	+	K	7	-		_		+		-	_	_			$m{\downarrow}$			+		<u>. </u>	十	Other	r circultage (70)	2006	70
	4	<u>. </u>		_		7	J	-	<u> </u>		-	1						_		7-	ţ		_			L	1					N	on-Fibrous	6)	ا دُ	1

temale # 59

Page of //5

			8	2	.				8	1						Á	2	7			7	g				7	J	ا	(L	Lab ID: ab Use C		1)
													7	? ?						X	7					145 C				(Client Reference)	- - -	
	Location		2	Maleila	Matorial	Barren	LOCULION TO THE PARTY OF THE PA	いたしいつける	1X 9 JUVIE WOW	waterial Committee	Partocio				=	Wateria			Location		1	200	Material	15. C. C. C. C. C. C. C. C. C. C. C. C. C.	100 / / Tac		Kiner Nustin	0) / 00 .	Maferial	Material / Location		
					5	<u>></u>																	7	3					% of A	sbestas		†
				_	_	い					L												17	3					Color			100
				_	Ļ	<u>ر</u>					L												Ŀ	<u>(</u>					Homog	eneity		ordied acobe
					7	<u> </u>					L			_	_					_			Ŀ	7					Texture			ope
≥ ≥	ान	0	⊳	0	7	> 	1 -1	Ιο	Þ	10	Ļ	<u> </u>	1 -	<u> </u>	15	10	Ļ	15		-	T	_	2						Friable			
Anthophylite Actinolite	Tremolite	Crocidolite	Amosite	Chrysotile	ctinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysofile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotlle	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals			
_ _										2																		N	Asbes	tos %		Τ
-										ω																		2	Morpho	logy		Opt
\downarrow		\Box		_		Ц			_																				Extincti	on		Tical
-			_	_						1					_	_												+	Sign of	Elongati	on	ical Properties
										7													ĺ					6	Birefring	ence		ěrtie
										S																		ح	Pleochr	oism		S
		4	1	1	\downarrow	4		_	ı	23.7							\perp											11/1/2	=		7	
	\downarrow	[4				\perp		ğ	i		_			1												411	<u> </u>	 		2
	4			4			4			1			4			1			1		_								Fibergla	ss		Zo
	+			4			+		_	4			\downarrow			1			1		_	1							Mineral V	Vool		1-Ask
	+			╁			4			1			4			1			\downarrow			1			1			_	Cellulose	<u> </u>		Non-Asbestos
	+	_	, ,	╀			+			\downarrow	_		+			1			\downarrow			1			\downarrow	_			Hair			Š Peji
 .	+			╀			+			+			+			╀			1			\downarrow		_	\downarrow		_	_	Synthetic	; 		Percentage
	\dashv			+,		<u>n</u>	+			+			+			╀			\downarrow			Ļ		_	\perp			4	Other			
f i	<u></u>		_	<u>L</u>	Ĭ	۲	\perp				į,	J				\bot	7		_			Ľ	7	<u>, </u>	$oldsymbol{\perp}$	_		1	lon-Fibro	ous	(6)	%

Ternald \$7

Page S of U

						F,	7				S	Ъ	T				E	3	-		•	J	کر	1	Ī			E	_ کـر	3		(<i>L</i>		ab ID Use		·)	
									7	7	ì					Y		/			<u>\</u>	7	1				(74.	2	•			Kererence)	(Client	Field ID/		
		_	Cocation Carlo	Sale	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Material			Location		=	Material			Location			Waterial	V	JULY DYD JUND		J. Com. 2 1 Cod	マラ Sac フ	Material			Location		11		Material		materia: / Location	Material / Location			Temp in Celcius =
	<u> </u>					_							L						L	OBKY)										%	of A	sbe	estos	;		
ļ	2	1 2 2					L			_			L							2											C	olor				oreleo ocobe	Ctoro
ŀ	7	<u>-</u>					L					•	L							<u>٠</u>					_						Н	omo	gen	eity		30.00	ç
ŀ	7						L						L						Ĺ	7					L						╂-	extur				ope	;
ŀ			<u> </u>	0	≥	ि	<u>≯</u>	ī≥	I =	ि	>	ि	 >	>	ī	10	1>	ि		> 	1 – ī	ि	Ъ	10	⊳	\	Г	10	<u> </u>	10	┸-	iable	1			\perp	╛
	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidojite	Amosite	Chrysotile	Minerals	Asbestos					
				L				L																4							A	sbe	sto	s %			1
		_																						00							Mo	orph	olog	ЭУ		opt	,
	1																						1	>							Ex	tinct	ion			Ca	.
	1																							1							Sig	gn of	Elc	nga	tion	Properties	<u>'</u>
											_				Ī									7							Bi	efrin	ger	ıce		er e	
																								2			1	1			Ple	och	rois	m		S	
		1																						13		7					=					_	1
		\perp																						in land							F					꼰	
						_		<u></u>				_																			Fib	ergla	ass			No	1
L			_			4			\bot										_												Mir	neral	Wo	ol		n-Asl	9
			\downarrow			4			4]																			Cel	lulos	e			Non-Asbestos Percentage (%)	ľ
L			4			1			1			4			1			_[\perp							Hai	r)s Pe	L
L			\downarrow			\downarrow			_			1			1			1			1			1							Syr	thet	iç			rcen	Ĭ,
Ļ	\overline{z}		4			4			_			1			\downarrow				_	_	_			1					_		Oth	er				tage	
Ľ	<u>o</u>	`					Œ												7	_											Nor	ı-Fib	rou	s		8	
							Tra	\(\frac{1}{2}\)					The state of	ダニ											Tieth												

Hemald 57

Page of O

					T						Ţ				\sim		T				-		Ţ						1	Lab ID#	
ļ				9	2					U/					9	0				δ	7	9				8	J	,		Lab ID# (Lab Use Onl)	<i>(</i>)
		Ī		.			(8	+				d	ラン					\in	- - - -	9				6		12/	.		Field ID/ (Client Reference)	
4	Baxwar (0) V	ocation	Duck	Lanco) 17" Z	Material /	سمب سر		Location		Material		~~~	Location		=	Waterial			Location				Material		Location			Maleria		Material / Location	ently in cercius =
	2/				Ī	0						0)				7	<u>v</u>			•••	-	1	E					%	of Asbestos	\dagger
<u> </u>	<u>م</u> م					Mal N		_			2	OMP					12.5	<u>5</u>					7	0					C	olor	Ster
	6				Ţ	<u>></u>					2	<u>-</u>						<u>C</u>					(>			-		Н	omogeneity	Starao Scope
	<u> </u>				-	F			_		7	<u> </u>					I	_	_				7	F					Te	exture	cope
(_ ন হান	116			1	<u> </u>		<u> </u>	1	16	Į	<u>(</u>	 .	_	-	-		<u>C</u>		_		_	è	<u>«</u>					Fr	iable	
Actinolite	Tremolite Anthophylite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Minerals	Asbestos	
				L																					Γ				As	sbestos %	T
								<u> </u>																					Мо	rphology	Optio
		L					L												_										Ext	tinction	tical
			_																										Sig	n of Elongation	Pro
				L									_																Bir	efringence	cal Properties
					L																					1			Ple	ochroism	S
																													=		
					L																								F		꼰
							_							_		_[Fib	erglass	No
				_						_			4			1			_			_			4			ŀ	Vin	eral Wool	1-Asb
\vdash				_					_	4	_		1			4			1						1			_	Cell	ulose	esto
\vdash			_	4			_			4			-			1			1			_			_			₽	lalı	•	s Pe
\vdash				4			4			4			4.			4		_	4			1			1			Ŀ	yn	thetic	cent
1/6	=			-	3	_	\dashv			+	7		+			4	_		+			1			_			k)the	er	Non-Asbestos Percentage (%)
ΓQ			_	_	S	·					3					8	<u>}</u>				_		B)					N	lon	-Fibrous	%

femal St.

Page S of (O

as	96	95	94	93	Lab ID# (Lab Use Only)	i
8C	28	AS AS	8	B	Field ID/ (Client Reference)	
Material ({ Location (}	Material	Material TEXTURE ORIUND LOCATION IN FROM	Material	Material } (Location	Material / Location	Temp in Celcius =
11m1 O	Oh	0	0	0	% of Asbestos	S
7	N	WH X	2 NB	BK V	Color Homogeneity	tereo
N 600 7	E	N 6N	7		Texture	Stereo Scope
	7	2	2	7	Friable	ē
Chrysottle Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotlle Amosite Crocidollte Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Asbestos Minerals	<u></u>
					Asbestos %	
					Morphology	O _F
					Extinction	Optical Properties
	<u> </u>				Sign of Elongation	Prop
					Birefringence	erties
					Pleochroism	
				 - - 		굔
	<u>-1- </u>				·	z
					iberglass //ineral Wool	on-A
					ellulose	-Asbest
				H	lair	os Pe
				s	ynthetic	Non-Asbestos Percentage
					ther	ane (
8	8 \ 8	3 8		N	on-Fibrous	8

femald S7.

Page O of O

	_		_			_			_	T						1						Т				_	_	Lab II	\#		_
			<i>5</i> 2				(ク]					1)((4	9			(_	d of	}	(Lab Use		1)	
	(7												⊋)				Ţ	75	0 0								(Client Reference)	Field ID/		
	Location	=		Material	Thank I have	INT CORRECT	Cocation	DackHooned	Material			Location			Waterial			Location			ale		1 Han	Location	1001	Cytolog cyan	Waterial	Material / Location			Temp in Celcius =
0					Ō					0)						<u>J</u>				,	7	3					% of Asbesto	s	\dagger	_
0847				_[`	<u> </u>					7	: = —					7	(11)					4	611					Color		Oter	7
7				+	<u> </u>					2	<u>-</u> -					2						2						Homogeneity		Stereo Scope)
#	-			Ţ	F				_	8	2					2						200	`					Texture		cope)
() 	.1 1	<u> </u>	<u> </u>	4.	2		ii o	<u> </u>	_		<u>C</u>	· · ·	_	-	-	Ę	2					<u>!</u>					,	Friable			
Anthophylite Actinolite	Tremolite	Crocidolite	Amosita	harati	Actinophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidalite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidalite	Amosite	Chrysotile	Asbestos Minerals			
																												Asbestos %	_	Τ	٦
																												Morphology		Opti	,
	Ш		╧										_															Extinction		tical	
																												Sign of Elonga	tion	cal Properties	l
																								\Box				Birefringence		ertie	I
																											1	Pleochroism		Š	
		\perp		L																				1				=			1
				L													_											<u> </u>		꼰	İ
<u> </u>									1																			Fiberglass		No	1
ļ					· <u>-</u>	_			1			4			1			_									ŀ	Mineral Wool		n-Ast	ļ
X	R		_	Ú	7	_	3	_	_			1			1				_					_				Cellulose		esto	
	+					_			-			-			4			4			1			1			┢	łair		s Pe	
<u> </u>	+			_		-			4			_			1			\perp			1	<u>.</u>	_	1				Synthetic		rcent	
120	\dashv			1	30	\dashv			\downarrow	_		+	_		-	~		\downarrow						\downarrow		_	ļ	Other		Non-Asbestos Percentage (%)	
17					7				18	3	١				Ç	3		\perp			ξ	3				_	N	lon-Fibrous		%	ľ

ternally 57

Page of 6

		7	<u> </u>					 57.	_					<i>ر</i> ر	_	Γ				<u></u>		Γ			0	2		Lab ID# (Lab Use Only)	·
	Ž		<u>/_</u>			- (·-			5			<u>)</u>		-			•	<u>-j</u>			(ー 			Field ID/ (Client Reference)	
UNIW CORRECT		ショシ ケラク	Material / /			Location		-	Material		-	Location			Material		Unal State Line	Location C	Black II	Masa 2	Material			Location	2		Material	Material / Location	Temp III Celcius =
Ó	\			(<u>C</u>	•					6	•						1~)`				Ì				_	% of Asbestos	اً.
7				}	<u> </u>				_		Z Z	<u> </u>				L		て	<u>2</u>			Ľ	7 7					Color	Stereo Scope
7 7				_	<u>.ر</u>	,				٠	<u>-</u>					_	_						<u> </u>					Homogeneity	100 100 100 100 100 100 100 100 100 100
+				Ļ	+	:					7	_				L		F				7						Texture	_jĕ
<u> </u>	اما	<u> </u>	<u>.</u>	Ş	<u>Z</u>	<u> </u>	10	<u> </u>	<u> </u>	, ,	<u></u>	_	10	15	10	Ļ		۲	_	15	10	4		I —	<u> </u>	-	To	Friable	
Tremolite Anthophylite Actinolite	Crocidolite	Amosite	Chrysotile	ctinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals	
																												Asbestos %	
																												Morphology	ြုင္စ
	-																											Extinction	tical
						Γ			Г					Γ		-											Γ	Sign of Elongation	녆
																												Birefringence	Optical Properties
														_													Γ	Pleochroism	"
																											Γ	=	
	\Box																			Γ							Γ	H	콛
	1													<u> </u>			<u> </u>			1							<u> </u>	Fiberglass	Z
																												Mineral Wool] <u>-As</u>
																						N			3		:	Cellulose	pesto
																							•					Hair)s Pe
																												Synthetic	Non-Asbestos Percentage (%)
																												Other	tage
loo				160	`					0	<u> </u>]				8	`					U	b_{\perp}					Non-Fibrous	(%)

temald # 57

Page of Lo

Temp in Celcius = Stree Scope Color Co				17	Ţ				۱ ،		Τ	_		7	<u>~</u>	_						7			_	/ C		7		1	ab II	ገ#		
Temp in Celcius Stereo Scope Optical Properties		 			4				\ \		igapha				<u>0</u>	_				0	9	4			_	J &	_	_	(Lab	Use		y)	
Anthophylite An	ļ													200	<u></u>			ζ		>				9	ファ	•				(cichenter)	(Client	Field ID/		
Color Homogeneity Texture Homogeneity Texture Friable Annosite Annosite Chrysolile Annosite Chrysolile Annosite Chrysolile Annosite Chrysolile Annosite Chrysolile Annosite Chrysolile Annosite Chrysolile Annosite Chrysolile Annosite Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chryolile Chrysolile Chrysolile Chrysolile Chrysolile Chrysolile Chryolile Chrysolile C		lax Shinsle	april	<u> </u>			Location		7	Material	JORT .		Location –	()	1	Material			- Coation			Material	11	Carco	Oration			Material			Material / Location			Temp in Celcius =
Homogeneity Texture Friable Amosile Crocidoilie Condoilie Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Conddoilie Conddoilie Conddoilie Conddoilie Conddoilie Conddoilie Conddoilie Conddoilie Conddoilie Conddoilie Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Conddoilie Co	}				┸												0			_		10	7					%	of A	Asb	estos	3]	
Prizable Anthophylite	-	7		_	╀	<u>う</u>				_	10 /2 10 /2	2				-	+	_					4					c	olor					Stare
Prizable Anthophylite	ŀ	<u></u>	77		10	$\frac{\sqrt{N}}{N}$		<u> </u>	_	\dashv	_ <u></u>	<u>.</u>	11	π		-	7				_	þ	7	_				+-			eity		٥	5
Asbestos % Morphology Chrysolile Anthophylit	ŀ	7	<u>``</u>		15		7	1.	<u>''</u>	-	<u> </u>	<u> </u>	<u> </u>		. <u> </u>	2	F					7	-					╂					- ado	3
Comparison Com		<u>}</u>	S	<u> </u>	2 A	An	널	٥	}	<u> </u>	<u>`</u> इ इ	 ≥T:	7 0	21≥	गट) 	_ 1≥	TH	o	I≽	ि	[Ъ	1=	lo.	T 5		╀			_			_
Morphology Extinction Sign of Elongation Birefringence Pleochroism — 2	ione	hophylite	ocidolite	rysotile losite	linolite	thophylite	molite	ocidolite	nosite	rysotile	tinolite	thonhylite	omolito	nosite	nrysotile	ctinolite	nthophylite	emolite	rocidolite	mosite	hrysotile	ctinolite	nthophylite	remolite	rocidolite	mosite	hrysotile	dinerals	Asbestos					
Extinction Sign of Elongation Properties	-	1	-	_	L		\downarrow	4	1	4		_	1	\perp		L	_											A	bes	sto	s %			1
Sign of Elongation Birefringence Pleochroism — Pleochroism — Pleochroism	-						\downarrow			\downarrow			_															Мс	rpho	olog	ıy		o Q	
Sign of Elongation Formula Birefringence Pleochroism — 2	-			\perp			4	1	\perp				\perp		L					İ								Ex	tinct	ion			otical	
Pleochroism = 2				_		\perp	_	\downarrow	4	1	1	\downarrow																Sig	n of	Elo	ngat	ion	Prop	
Pleochroism = 2						_	1	\downarrow	1	$oldsymbol{\perp}$	_			_								_						Bir	efrin	gen	ce		ertie	
2	-		_	\square		4	\downarrow	1	\downarrow	\perp	1	<u> </u>	L	L														Ple	ochr	ois	m		S	
<u> </u>	-		#			-	-	_	\downarrow	\downarrow	_	L	L		_			_].	╛								=						1
Fiberglass Mineral Wool Cellulose Hair Synthetic Other Non-Fibrous	\vdash						\downarrow			╀	_				4			1						\perp				<u> </u>					~	
Mineral Wool State Cellulose Hair Synthetic Other Non-Fibrous	\vdash					_	-			╀-				_	4			1			\downarrow			\downarrow				ibe	ergla	ss			Nor	
Cellulose Hair Synthetic Other Non-Fibrous	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>		<u>-</u>	\dashv	1	_	 -			1	1		-		4			\downarrow			1			1			1	Vlin	егаі	Woo	ol		l-Asb	Page
Hair Synthetic Other Non-Fibrous	1		<u>~</u>	\dashv	0		+	-	_	8		_	<u> </u>	<u>-</u> _	+			\downarrow	_		1			\downarrow			4	Cell	ulos	е		_	esto	
Synthetic Crimital Other Crimital Crimi	\vdash	-		\dashv	-		+			├		_			+			+			1			+			#	lair					s Per	0
Other S Non-Fibrous S				╁			╁	·		\vdash		-		_	╀			+			╀			\downarrow			5	yn	heti	С			cent	L
Non-Fibrous S	12			\dashv	~	,	+			کر	J	+			+		_	+			3)	_		1			╁				<u> </u>		ane (
					<u> </u>					LC	<u>} </u>			-	ļĊ	<u> </u>					8						N	on	Fibr	ous	·	è	گ	J

Lendid S7

Page of 6

	<u></u>	_			1						\prod										·			/	8	8	-/	7/3	3	(La	Lab ID#)
									10.00																8		ンし	· 			Field ID/ (Client Reference)		
	rocation				Material			Contion			Material			ocation		•	Material		1	Location			Material			Location		-	Material		Material / Location		remp in cercins =
-	_		_		╀		_				1						1						1	(2				- -		bestos		
\vdash	_				╀			_			+				 .		+	_		_			1	<u>^</u>	<u>ر</u>	_			┰	olor			Stereo Scope
					╁			_			\dagger	_			_		╁	-					1		* *1				╅	omoge exture	neity		Sco
													_			_	t						1	<u> </u>	77.				╂-	iable		_	pe
Anthophylite Actinolite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Palalophyne	Tremolite	Ciocidolite	Ainosile	Chrysottle	Minerals	Asbestos			
-					_		-	_	L		L		_	L															A:	sbest	os %		
			_																										Мс	orpholo	эду		_
					'												┞		-						-		 	\dagger	Ex	tinctio	 n		Optical Properties
_		\downarrow																						-	+-			-	Sig	n of E	longatio	$\frac{1}{n}$	Pro
																													Bir	efringe	ence		pertie
11		_	4	4	4	_		_		4			_																Ple	ochroi	sm	ة	[^]
	+	+	-	+	\dashv	4	_	\dashv	\dashv	4	4	4	\downarrow	4	_	_	4	_	4			_							=				
<u> </u>	+			+			\dashv			+			4			4	_		4			4			\square				<u> </u>				
	\dashv			\dagger			$\frac{1}{1}$	-		+			+			+		_	\downarrow			\dashv			\dashv	_		_		erglass		Non-	
	\dagger			\dagger			+			\dagger			\dagger	_		╁			+			-	5	_	-	<u></u>		-		eral W	ool	Non-Asbestos Percentage	
				T			1		_	†		_	1			†			\dagger			\perp	<u>y</u> _		+	_		┪	Gell Hair	ulose		stos	
													1			†	-		†			1			\dashv			-		thetic		Perce	1
	1			$oldsymbol{\perp}$									I						T			1	_		1		-	十	Othe		<u> </u>	ntag	$\ \cdot\ $
									_	1												-	2				_	╅		-Fibrou	ıs	e (%)	

Fernald 57

Page | O of /O

EMSL Order: 131605071 **Customer ID:** CDWC26

Customer PO: Project ID:

Attention: Susan Cahalan Phone: (508) 875-2657

CDW Consultants Fax:

40 Speen Street Received Date: 10/18/2016 9:30 AM

Suite 301 Analysis Date: 10/25/2016 Framingham, MA 01701 Collected Date: 09/30/2016

Project: Fernald #59

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-Asb	<u>estos</u>	<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
1A	On Fiberglass Pipe in Basement - End Cap	White Non-Fibrous		95% Non-fibrous (Other)	5% Chrysotile
31605071-0001	Sealant	Homogeneous	HA: 1		
1B	On Fiberglass Pipe in Basement - End Cap				Positive Stop (Not Analyzed)
131605071-0002	Sealant		HA: 1		
IC	On Fiberglass Pipe in Basement - End Cap		100.1		Positive Stop (Not Analyzed)
131605071-0003	Sealant		HA: 1		
2A	On HVAC Mechanical Room - Gray Seam	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605071-0004	Sealant	Homogeneous	HA: 2		
2B	On HVAC Mechanical Room - Gray Seam	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605071-0005	Sealant	Homogeneous	HA: 2		
BA	Mechanical Room - Flex Connector	White/Black Fibrous	35% Glass	65% Non-fibrous (Other)	None Detected
131605071-0006		Homogeneous	HA: 3		
BB	Mechanical Room - Flex Connector	White/Black Fibrous	35% Glass	65% Non-fibrous (Other)	None Detected
131605071-0007		Homogeneous	HA: 3		
4A	Exterior Doors - Gray Lintel Caulk	Gray/Tan Non-Fibrous		97% Non-fibrous (Other)	3% Chrysotile
131605071-0008		Homogeneous	HA: 4		
4B	Exterior Doors - Gray Lintel Caulk				Positive Stop (Not Analyzed)
131605071-0009			HA: 4		
IC	Exterior Doors - Gray Lintel Caulk				Positive Stop (Not Analyzed)
131605071-0010			HA: 4		
5A	Exterior Doors - Gray Brown Caulk	Tan Non-Fibrous		98% Non-fibrous (Other)	2% Chrysotile
131605071-0011		Homogeneous	HA: 5		
5B	Exterior Doors - Gray Brown Caulk		100.0		Positive Stop (Not Analyzed)
131605071-0012			HA: 5		
			HA. U		

Initial report from: 10/25/2016 16:44:00

EMSL Order: 131605071 **Customer ID:** CDWC26

Customer PO: Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Annearance	Non-Asbes % Fibrous	stos % Non-Fibrous	<u>Asbestos</u> % Type
Sample 5C	Description Exterior Doors - Gray	Appearance	% FIDIOUS	76 NUII-FIDIOUS	Positive Stop (Not Analyzed)
O	Brown Caulk				1 ositive otop (Not7 thaty2ea)
31605071-0013			HA: 5		
٠,٨	Malla 9 Cailing	\\/\bito	па. э	1000/ Non fibrous (Other)	None Detected
SA .	Walls & Ceiling - Skim Coat	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
31605071-0014		Homogeneous			
			HA: 6		
6B	Walls & Ceiling - Skim Coat	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605071-0015	Skilli Coat	Homogeneous			
			HA: 6		
6C	Walls & Ceiling -	White		100% Non-fibrous (Other)	None Detected
131605071-0016	Skim Coat	Non-Fibrous Homogeneous			
137003077-0070		Homogeneous	HA: 6		
 3D	Walls & Ceiling -	White		100% Non-fibrous (Other)	None Detected
	Skim Coat	Non-Fibrous		,	
131605071-0017		Homogeneous	HA: 6		
 6E	Walls & Ceiling -	White		100% Non-fibrous (Other)	None Detected
OL	Skim Coat	Non-Fibrous		100 / Non-infodds (Other)	None Detected
131605071-0018		Homogeneous			
			HA: 6		
SF .	Walls & Ceiling - Skim Coat	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605071-0019	Skilli Coat	Homogeneous			
			HA: 6		
6G	Walls & Ceiling -	White		100% Non-fibrous (Other)	None Detected
131605071-0020	Skim Coat	Non-Fibrous			
131003071-0020		Homogeneous	HA: 6		
7A	Sheetrock - Walls &	Gray/Tan	10% Cellulose	90% Non-fibrous (Other)	None Detected
	Ceiling - Sheetrock	Fibrous		,	
131605071-0021		Homogeneous	HA: 7		
7B	Sheetrock - Walls &	Gray	2% Cellulose	95% Non-fibrous (Other)	None Detected
<i>/</i> D	Ceiling - Sheetrock	Non-Fibrous	3% Glass	95 /6 Non-ilbrous (Other)	None Detected
131605071-0022	•	Homogeneous			
			HA: 7		
7C	Sheetrock - Walls & Ceiling - Sheetrock	Gray/Tan Fibrous	10% Cellulose	90% Non-fibrous (Other)	None Detected
131605071-0023	Celling - Sheetrock	Homogeneous			
			HA: 7		
7D	Sheetrock - Walls &	Gray/Tan	10% Cellulose	90% Non-fibrous (Other)	None Detected
131605071-0024	Ceiling - Sheetrock	Fibrous Homogeneous			
15 150507 1-0024		Tiomogeneous	HA: 7		
7E	Sheetrock - Walls &	Gray/Tan	10% Cellulose	90% Non-fibrous (Other)	None Detected
	Ceiling - Sheetrock	Fibrous			
131605071-0025		Homogeneous	HA: 7		
7 C	Chaotrask Malla 9	Crow/Ton		000/ Non fibrage (Other)	None Detected
7F	Sheetrock - Walls & Ceiling - Sheetrock	Gray/Tan Fibrous	10% Cellulose	90% Non-fibrous (Other)	None Detected
131605071-0026	22	Homogeneous			
			HA: 7		
7G	Sheetrock - Walls &	Gray/Tan	10% Cellulose	90% Non-fibrous (Other)	None Detected
131605071-0027	Ceiling - Sheetrock	Fibrous			
31003071-0027		Homogeneous			

EMSL Order: 131605071 **Customer ID:** CDWC26

Customer PO: Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

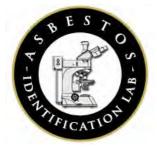
			Non-Asbes	stos_	<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
			HA: 7		
8A	Exterior Windows - Glaze	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605071-0028	Glaze	Homogeneous			
			HA: 8		
8B	Exterior Windows -	White		100% Non-fibrous (Other)	None Detected
31605071-0029	Glaze	Non-Fibrous Homogeneous			
			HA: 8		
3C	Exterior Windows -	White		100% Non-fibrous (Other)	None Detected
31605071-0030	Glaze	Non-Fibrous Homogeneous			
37003077-0030		Homogeneous	HA: 8		
9A	Exterior Windows -	Brown		100% Non-fibrous (Other)	None Detected
101005071 0001	Brown Caulk	Non-Fibrous			
131605071-0031		Homogeneous	HA: 9		
 9В	Exterior Windows -	Brown		100% Non-fibrous (Other)	None Detected
	Brown Caulk	Non-Fibrous		,	
131605071-0032		Homogeneous	HA: 9		
9C	Exterior Windows -	Brown	10.0	100% Non-fibrous (Other)	None Detected
	Brown Caulk	Non-Fibrous		100 % Non horodo (Guier)	Trono Botostoa
131605071-0033		Homogeneous	HA: 9		
10A	Ceiling - Ceiling Tile	White	65% Min. Wool	35% Non-fibrous (Other)	None Detected
IUA	2'x4'	Fibrous	05% WIII. WOOI	35% Non-librous (Other)	None Detected
131605071-0034		Homogeneous			
400	0.25. 0.25. 70	VA/1-14 -	HA: 10	050/ Nov. 51 (011)	News P. C. C.
10B	Ceiling - Ceiling Tile 2'x4'	White Fibrous	65% Min. Wool	35% Non-fibrous (Other)	None Detected
131605071-0035		Homogeneous			
			HA: 10		
10C	Ceiling - Ceiling Tile 2'x4'	White Fibrous	65% Min. Wool	35% Non-fibrous (Other)	None Detected
131605071-0036	2 X 4	Homogeneous			
			HA: 10		
10D	Ceiling - Ceiling Tile	White	65% Min. Wool	35% Non-fibrous (Other)	None Detected
131605071-0037	2'x4'	Fibrous Homogeneous			
			HA: 10		
10E	Ceiling - Ceiling Tile	White	65% Min. Wool	35% Non-fibrous (Other)	None Detected
131605071-0038	2'x4'	Fibrous			
13 100307 1-0038		Homogeneous	HA: 10		

Initial report from: 10/25/2016 16:44:00

EMSL Order: 131605071 Customer ID: CDWC26

Customer PO: Project ID:

Analyst(s)


Steve Grise (32)

Steve Grise, Laboratory Manager or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3, VT AL998919, Maine Bulk Asbestos BA039

Initial report from: 10/25/2016 16:44:00

Asbestos Identification Laboratory

165 New Boston St., Ste 227 Woburn, MA 01801 781-932-9600

Web: www.asbestosidentificationlab.com Email: mikemanning@asbestosidentificationlab.com **Batch:** 17045

October 24, 2016

Susan Cahalan CDW Consultants, Inc. 40 Speen St. Suite 301 Framingham, MA 01701 **Project Number:**

Project Name: Waltham Fernald #60

Date Sampled: 2016-10-07 **Work Received:** 2016-10-27

Work Analyzed: 2016-10-23

Analysis Method: BULK PLM ANALYSIS EPA/600/R-93/116

Dear Susan Cahalan,

Asbestos Identification Laboratory has completed the analysis of the samples from your office for the above referenced project .

The information and analysis contained in this report have been generated using the EPA /600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials. Materials or products that contain more than 1% of any kind or combination of asbestos are considered an asbestos containing building material as determined by the EPA. This Polarized Light Microscope (PLM) technique may be performed either by visual estimation or point counting. Point counting provides a determination of the area percentage of asbestos in a sample. If the asbestos is estimated to be less than 10% by visual estimation of friable material, the determination may be repeated using the point counting technique. The results of the point counting supersede visual PLM results. Results in this report only relate to the items tested. This report may not be used by the customer to claim product endorsement by NVLAP or any other U.S. Government Agency.

Laboratory results represent the analysis of samples as submitted by the customer. Information regarding sample location, description, area, volume, etc., was provided by the customer. Asbestos Identification Laboratory is not responsible for sample collection activities or analytical method limitations. Unless notified in writing to return samples, Asbestos Identification Laboratory discards customer samples after 30 days. Samples containing subsamples or layers will be analyzed separately when applicable. Reports are kept at Asbestos Identification Laboratory for three years. This report shall not be reproduced, except in full, without the written consent of Asbestos Identification Laboratory.

• NVLAP Lab Code: 200919-0

Mechael Thamy

- Massachusetts Certification License: AA000208
- State of Connecticut, Department of Public Health Approved Environmental Laboratory Registration Number: PH-0142
- State of Maine, Department of Environmental Protection Asbestos Analytical Laboratory License Number: LB-0078(Bulk) LA-0087(Air)
- State of Rhode Island and Providence Plantations. Department of Health Certification: AAL-121
- State of Vermont, Department of Health Environmental Health License AL934461

Thank you Susan Cahalan for your business.

Michael Manning Owner/Director Susan Cahalan CDW Consultants, Inc. 40 Speen St. Suite 301

Project Number:

Date Sampled:

Project Name: Waltham Fernald #60

2016-10-07

Framingham, MA 01701

Work Received: 2016-10-27 Work Analyzed: 2016-10-23

Analysis Method: BULK PLM ANALYSIS EPA/600/R-93/116

Fiel	ldID	Material	Location	Color	Non-Asbestos %	Asbestos %
	LabID					
1A		Glaze	Interior Doors	tan	Non-Fibrous 9	Detected Chrysotile 2
	188614					Chrysotile 2
1B		Glaze	Interior Doors			Not Analyzed
	188615					
1C		Glaze	Interior Doors			Not Analyzed
	188616					
2A		Glaze	Interior 4x6 Windows on	tan	Non-Fibrous 10	O Detected
	188617		Doors			Chrysotile < 1
2B		Glaze	Interior 4x6 Windows on	tan	Non-Fibrous 10	O Detected
	188618		Doors			Chrysotile < 1
2C		Glaze	Interior 4x6 Windows on	tan	Non-Fibrous 10	Detected
	188619		Doors			Chrysotile < 1
3A	100013	Brown Caulk	Exterior Windows	brown	Non-Fibrous 10	00 None Detected
	188620					
3B	100010	Brown Caulk	Exterior Windows	brown	Non-Fibrous 10	00 None Detected
	188621					
3C	100021	Brown Caulk	Exterior Windows	brown	Non-Fibrous 10	00 None Detected
	188622					
3D	100022	Brown Caulk	Exterior Windows	brown	Non-Fibrous 10	00 None Detected
	188623					
3E	100023	Brown Caulk	Exterior Windows	brown	Non-Fibrous 10	00 None Detected
	188624					
3F	100021	Brown Caulk	Exterior Windows	brown	Non-Fibrous 10	00 None Detected
	188625					
3G	100023	Brown Caulk	Exterior Windows	brown	Non-Fibrous 10	00 None Detected
	188626					
4A	100020	Plaster Skim	Walls	white	Non-Fibrous 10	00 None Detected
	100607					
Mon	188627 day 24 Octob	<u>l</u> ber				I Page 1 of 3

Fie	ldID	Material	Location	Color	Non-Asbestos %	Asbestos %
	LabID					
4B		Plaster Skim	Walls	white	Non-Fibrous 10	None Detected
	188628					
4C		Plaster Skim —	Walls	white	Non-Fibrous 10) None Detected
4D	188629	Diagram China	MAI-II-	la it a	77 71 100	Nama Datastad
40		Plaster Skim —	Walls	white	Non-Fibrous 10) None Detected
4E	188630	Plaster Skim	Walls	white	Non-Fibrous 10	None Detected
-		— I laster Skim	VValis	Wille	Noil Fibrous 100	, None Beeceda
45	188631					
4F		Plaster Skim	Walls	white	Non-Fibrous 10	None Detected
10	188632					_
4G		Plaster Skim —	Walls	white	Non-Fibrous 10) None Detected
	188633			1.		
5A		Gray Levelastic	Kitchen Floor	tan	Non-Fibrous 10	None Detected
	188634					
5B		Gray Levelastic	Kitchen Floor	tan	Non-Fibrous 10	None Detected
	188635					
6A		1x1 White with Gray Streaks Floor Tile	1/2 of Building	white	Non-Fibrous 10	None Detected
	188636					
6B		1x1 White with Gray Streaks Floor Tile	1/2 of Building	white	Non-Fibrous 10	None Detected
	188637					
6C		1x1 White with Gray —Streaks Floor Tile	1/2 of Building	white	Non-Fibrous 10) None Detected
	188638					
6D	100620	1x1 White with Gray Streaks Floor Tile	1/2 of Building	white	Non-Fibrous 10) None Detected
6E	188639	1x1 White with Gray	1/2 of Building	white	Non-Fibrous 10	None Detected
		Streaks Floor Tile	, and the second			
6F	188640	1v1 White with Crov	1/2 of Building	white	Non-Fibrous 10	None Detected
		1x1 White with Gray —Streaks Floor Tile	1/2 of Building	write	Non-Fibrous 100	None Detected
	188641					
6G		1x1 White with Gray —Streaks Floor Tile	1/2 of Building	white	Non-Fibrous 10	None Detected
	188642	Januario Francis				
7A		Black Mastic	Under 1x1 White with Gray Streaks FT	black	Cellulose ! Non-Fibrous 9!	None Detected
	188643					
7B		Black Mastic	Under 1x1 White with Gray Streaks FT	black		Detected Chrysotile 10
	188644				1	
7C		Black Mastic	Under 1x1 White with Gray Streaks FT	black		Not Analyzed
	188645 day 24 Octo					Page 2 of 3

Monday 24 October Page 2 of 3

Fie	ldID	Material	Location	Color	Non-Asbestos %	Asbestos %
	LabID					
7D		Black Mastic	Under 1x1 White with Gray Streaks FT			Not Analyzed
7E	188646	Black Mastic	Under 1x1 White with Gray Streaks FT			Not Analyzed
	188647		Our cano i i			
7F		Black Mastic	Under 1x1 White with Gray Streaks FT			Not Analyzed
7G	188648	Black Mastic	Under 1x1 White with Gray Streaks FT			Not Analyzed
	188649		Otroano i i			
8A	100550	Sheetrock	Walls	multi	Cellulose 10 Non-Fibrous 90	None Detected
8B	188650	Sheetrock	Walls	multi	Cellulose 5 Non-Fibrous 95	None Detected
	188651					
8C		Sheetrock —	Walls	multi	Cellulose 25 Non-Fibrous 75	None Detected
8D	188652	Sheetrock	Walls	multi	Fiberglass < 1 Cellulose 30	None Detected
	188653				Non-Fibrous 70	
8E		Sheetrock	Walls	multi	Cellulose 25	
8F	188654	Sheetrock	Walls	multi		None Detected
	188655				Non-Fibrous 95	
8G		Sheetrock	Walls	multi	Cellulose 5 Non-Fibrous 95	None Detected
9A	188656	Gray Caulk	Exterior Doors	brown	Non-Fibrous 100	None Detected
	188657					
9B		Gray Caulk	Exterior Doors	brown	Non-Fibrous 100	None Detected
9C	188658	Gray Caulk	Exterior Doors	brown	Non-Fibrous 100	None Detected
	188659	— Stay Saulk	Extensi Bools	Siowii	1.011 1 121 0 43 100	2000000
						1

Monday 24 October

End of Report Page 3 of 3

Batch: 17045

Analyzed by:

	.(Location	=	上 10 ———————————————————————————————————	Waterial			Localoi	Continu		marcial	9	is total Joses	Cocalion	(S)	10 N 17.00	/ C	rial / Location	Only)		# of Samples Received:	received by/date: EUR VV COIL II (C	Relinquish by/date: 1119 10 1911	The Carrier	5	100 075 25 4 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	Phone / email address:	Project Site & #: Will Man + Boy 1 1 +1 5	Consultry to
-						\vdash			_		•	t	7					% of Asbestos Color	\dashv	St		10	6	,	,	non a		100	
						T						2	<u>\</u> >			_		Homogeneity	-	Stereo Scope	H	0	D	¥	7	≨ '	<u>s</u> =		<u>≫</u>
						T						2			-			Texture	-	Scop	DAICH#	2	Date Sampled:	ww.as	(781)932-9600	ngo/	165 New Suite 227		1
											_	1					_	Friable		n	#	Ē	mple	besto	32-9	3 !	e₩ E 227	λsb	
Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals	 -		-	5	id: 18/1/	www.asbestosidentificationlab.com	600	Woburn, MA 01801	165 New Boston St. Suite 227	Asbestos Identificatio	CHAIN OF EPA/600/
		_	_		_		_	L	L	L	_	L		L	L	L	1	Asbestos %			9	2	6	nlab.c				ntif	9 7/000 7/000
																	2	Morphology		0	7	$\left \cdot \right $		öm				icati	IN OF CUST
																,		Extinction	1	Optical Properties	V				30			3	TODY
		4	\downarrow													·	4	Sign of Elongation	,	l Prop	Rev 12/15		l			型	E E	Lab	
_		1	\perp		╛												1	Birefringence		ertie	12/15	1		CATIO	D.	8. O.		İ	
		\perp	1	_	_	_											کا	Pleochroism		S					AB	- S			1
-		1	1	4	1	4	_	_	\downarrow					_			ling line			7	Date	<u>ک</u>	Not:	2	П			П	
		+			_		_	4			4			\downarrow		_	lives	_		<u>"</u>	Date:	1	Notify Method: Maine		The second	Next Day	Same Day	Less	Page /
		+	_		-			+		_	4			4			F	iberglass		Z On	, 		thod:		go my	Day	e Day	Less 3 Hrs	Page und Tim
		+		_	╁			+		_	+			\downarrow			N	lineral Wool		-Asb	16		Mai	4	4				ge
		+			╀			+			╁			+	-		+			estos	77	H		ΛĹ	<u> </u>	_			ا
	_	╀			╁		-	+			+	_		+	Cellulose Hair Synthetic Other			Non-Asbestos Percentage (%)		War Da	Ces/No	1_	֡֡֞֞֞֓֓֓֓֓֡֡֡֡֡֡֡֡֓֓֓֓֓֡֡֡֡֡֡֡֡֡֡֡֡֡			Bulk Bulk	of l		
-		+		_	+	_		+			+			Synthetic			anta	7/2	<u>אַר פֿ</u>	<i>i</i>	Point Count	· - (Wipe	Soi	Bulk	110			
	<u>-</u>	+			t			+			+	K	<u> </u>				() ()		ł)ount				loa			
70	<i>*</i>					Į,	X					Ţ		_			I _M	Oil-ribrous		1						_			

DUA

u	20	19	18	17	Lab ID# (Lab Use Only))
38	31	20	28	3	Field ID/ (Client Reference)	
Material (from Mindaus	•	(Location	Material Material	Material / Location	Temp in Celcius =
a	1 1	<u> </u>	þ	q	% of Asbestos	
30 80 80	BR	4	+	4	Color	Ster
7		2	<u>3</u>		Homogeneity	Stereo Scope
6	P	73	\$	6v	Texture	öpe
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					Friable	
Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Asbestos Minerals	
			1	ST.	Asbestos %	
			3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Morphology	၀
					Extinction	Optical
		1111	+	1 1	Sign of Elongation	al Properties
			7		Birefringence	ertie
	4	2		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Pleochroism	"
	 	1.03	(SS)		=	
		Large	1000	Tarich		₽│
				F	iberglass	Z
				N	lineral Wool sellulose	Achae
				c	ellulose g	
 -				s	ynthetic ther	
8	3				ther (9)	
<u>v i c</u>	<u> </u>		loo	e n	on-Fibrous	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֡

Emald # 160

				2	6						7	5		_		2/						Z	3	7			Z	7	•	Lab ID# (Lab Use Or	oly)	
		(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2					<u>\</u>	7) 				_	170				7		Ş					7			Field ID/ (Client Reference)		
		1000001				Waterial	_	-	Location			Material	Ź	rocognon	ocation		Material	Motorial		Location	: =	_	Material			Location			Wiaterial	Meterial / Location		Temp In Celcius =
	O		•			7	<u>)</u>						7						<u>C</u>	·					7		_			% of Asbestos	1	
-	BR 4					12	20						00					Ì	02					27	200					Color		Ster
F	$\frac{\checkmark}{}$					<u> </u>	<u>_</u>				_	<u> </u>	<u>_</u>					Ŀ	<u> </u>					١.	_					Homogeneity		Stereo Scope
Ę	0					7	9					7	0					<u> </u>	0			_		7	1					Texture		cope
1	-,-		Ω	[≥	Ω	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_	1=	i o	7 ≥	> I C		_	ī	त	ΙÞ	Jo.	ļ.,	<u>_</u> ক	<u> </u>		<u></u>	<u> </u>	2		1_	-	_	_	Friable		
Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	ctinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysofile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals		
_						Ļ		-	-	\vdash	-	L							\sqcup			4						_		Asbestos %	T	
							_			-	igg									_										Morphology	<u> </u>	2
		-	-	-	_			_	_		_			-						_	_				-	4	_		-	Extinction	Optical	2
	\dashv	\dashv	\dashv	\dashv	1			_		\vdash	-		_	-	\dashv	4	4	4	\dashv	+	4	\dashv	4	\dashv	\downarrow	4	\downarrow	4	-	Sign of Elongation	Properties	Ĭ
\dashv	-	\dashv	\dashv	4	4		_	L		L	\perp		4	\dashv	4	4	4	_		\downarrow	4	4	4	4		_			ŀ	Birefringence	iries	
-	+	+	\dashv	\dashv	4	-					H	4	+	-	\dashv	\downarrow	4	4	1	4	1	\downarrow	4	1	4	\downarrow	4	4	Į.	Pleochroism		
-	-	\dashv	+	\dashv	-	4	\dashv				\sqcup	-	+	\downarrow	_	\dashv	4	4	4	1	4	4	1	4	_	\downarrow	1	\perp	1		 2	,
		+	_ļ		+	_1	_	4			Ц			\downarrow			+			\downarrow]	1		\perp	4						
_		+			+			4			_	_	···· <u>·</u>	+			1			\downarrow			\downarrow			\downarrow			F	iberglass	N S	:
_		+			+			\dashv	_		-			\downarrow		_	+		_	\downarrow		_	1			4			N	fineral Wool	-Asb	6.5
		+		_	╁	_		_			-			+			+			+			1			\downarrow			c	ellulose	esto	
		+			+			+			-	_		+			╀		<u>.</u>	+		_	╀			1			Н	air	S Per	9
	-	+			+			\dashv		_	+		_	+			+			+			\downarrow	_		_			s	ynthetic	cent	
		+			1		_	+			+	8	_	+			A	_		+			ļ.,	_		\downarrow			þ	ther	Non-Asbestos Percentage (%)	K
		Т,	_		L	Ŏ.		⊥				Q	`				Ç		· —		_		ľ	3					N	on-Fibrous	(%)]

fundle (III)

WIJ

					_						Т						_						_	_						
İ				3,)				٠	36				2	9					Ź	28	7			6	2	7		Lab ID# (Lab Use Oni	v)
ı		77		,			7	2	<u> </u>			-	7	7	- - - - - - - - - - - - -			•	J		-			-	-		<u> </u>		Field ID/ (Client Reference)	,,
	Location	•	<u>~</u>	Material		<u></u>	Location	·		Material		-	Location	•	_	Material			Location		~	Material	0000		Location		March シブミ	Material	Material / Location	Temp in Celcius =
Ø					0	y					0)					,	9					,	Ŋ					% of Asbestos	\top
#					Щ						WH	_					-	427	-				24	Z L Z					Color	Ster
4				-	4	•					7	`					-	7	•										Homogeneity	eo S
WHY 6N 7					\$						00 7							1 60 V					Ş	25.7					Texture	Stereo Scope
1				,		2					l	-					,	7	-				F	2					Friable	
Anthophylite Actinolite	Tremolite	Cracidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals	
								_					\rfloor		\rfloor														Asbestos %	╛
																	_												Morphology	၀
														ı	1	ı													Extinction	tical
																													Sign of Elongatio	Pro
																													Birefringence	Optical Properties
			_																										Pleochroism	7"
		ot																											=	_
										_																			-	콛
				_									\downarrow																Fiberglass	No
	_			4			\downarrow			1			1			1			4										Mineral Wool	1-Ask
	_			1						_			_			1												_	Cellulose	esto
	_			4			_			1			\downarrow			1													Hair)s Pe
<u> </u>	\downarrow			1			\downarrow			1			_						\perp									Ş	Synthetic	rcen
	_	_		_	ځ	_	_										~		_				_						Other	Non-Asbestos Percentage (%)
				- 1	3		ı			1	8		F			I	Ô		- 1			1	00					Ι	Non-Fibrous	1 3

femal Wo

Page A of 10

		30		T				3	>	1			Ş	ر ا					3	3			**		3	2		Lab ID# (Lab Use Onl)	y)
							\ \ -	l.				`		2				Ç	2 	<u>_</u>					7	25		Field ID/ (Client Reference)	
They series	LA Clark Shicals		Material MALL INTO			Location		1	Wateraj		Kitres Loo	Coallon	Continu	Star William	The state of the s	Material	(l ocation	=	Material			Location			Material		- cholora -
o wy y con				2	3						0						0)					0	\				% of Asbestos	\dagger
#				_	4		_			Ľ	4	<u> </u>					7						7	-				Color	Ster
7					7	•	_			r	<u> </u>	-				ŀ	7 00					-	7	•				Homogeneity	Stereo Scope
1			4	_	<u> </u>					Ŀ	2	_	_				8	` 	_			L	3				-	Texture	Sope
	lol	>	<u>.</u>		<u>←</u>	1-4	ि	Τъ	16		マ	Τ	10	1	16	Ţ		<u> </u>		T =	T	Ĺ	2		1 _	1.5		Friable	
Tremolite Anthophylite Actinolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals	
		4	1	4			_			L	L		L	_		L				L								Asbestos %	
												_																Morphology	စ္ခ
		4	1	_	_			_										L										Extinction	Optical Properties
	\bot	4	1	4	_		_																					Sign of Elongation	Prop
	_	\downarrow	1	\perp																			_					Birefringence	ertie
		_	1	1	\downarrow																							Pleochroism	1
	\perp	_	1	_	4	_		4	4	_			_															=	
			╀			\dashv			-			4			_							_		_			_	_	꼰
			╀			4			4			_	_		_	_		_			_		_	4				iberglass	Non
			+	_		+			+			\downarrow			4			1	·		4			\downarrow			ŗ	Mineral Wool	Non-Asbestos Percentage
			╀			+			-			\dashv			1			4			1			1			4	Cellulose	esto
			\vdash			+			╬			+			4			-	_	_	4			\downarrow			1	lair	s Per
	<u> </u>	·-·	┞			+		_	+			+		-	+			+			4			\downarrow			+	Synthetic	cent
8			6	<u></u>		+			+	100	_	+			-	À.	_	+	<u>_</u>	-	4	7	_	\downarrow			+		
		٠.	7	<u>ン</u> _		上				Ö	_				10	3,				_	j	3	_				N	lon-Fibrous	(%)

Fernald 40

Page S of ()

YI UK	20	0 39	38	37	Lab ID# (Lab Use Only) (Client Reference))
Location	Location	Location	Material	Material \{ Location		lamp in Celcius =
0 m 4 60	Diul 4 for	out h the a	1 mg 1 tm 0	14 HW	% of Asbestos Color Homogeneity Fexture	Stereo Scope
Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Amosite Crocidolite Tremolite Anthophylite Actinolite			ک	riable Asbestos	De
				N E	Asbestos % Iorphology xtinction ign of Elongation irefringence	Optical Prope
				╌╏╸╏┈╏┈╏ ┈	eochroism =	
				Mi Ce Ha	neral Wool Illulose ir nthetic ner n-Fibrous	
8	3	à le		Oti	ner ge %	

terrold 60

Page Of (

				6	16	7			١	43	ţ					ι (1				(ب.	3	Ţ		ĺ	ı	<u>_</u>		Lab ID# (Lab Use Onl	y)		
		_	7	ラー	7			(2 				Ŧ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7					1	\int_{0}^{∞}	ı				2	~ >		Field ID/ (C/lent Reference)			
	<u></u>	Location	Ocation			A a to so a la company de la c	وسند	Location		=	Waterial			Location		-	mater at	Sixled 1	Onder XI with around	Location () White	Demon Wasse	March March	Waterial			Location	•	7	Waterial	Material / Location	reinb in celcius -		
L	п.					-		•				\ \ \ \ \						6	<u>5</u>						0					% of Asbestos	-		
┡	· <u>-</u>			·		╀				-		Ĭ	<u> </u>					+-	100					Ľ	1					Color	Stereo Scope		
ŀ						╀						F	<u>,</u>					F	<u>, </u>					۲	2					Homogeneity	Sco	١,	,
H				-		╁						5	<u>}</u>					-	7					Ļ	2					Texture Friable	_ ĕ		Jan.
Acti	<u>}</u>	Tie	Cro	Αm	달	Act) E	Tre	ဒ္ဓ	Am	을	Act	Ant	T To	당	Am	<u> </u>	Act	_ [}	급	ठ	A				_	ठि	≩	오			- 2	
Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	inolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals		()X	00)
		·															0											-		Asbestos %		7	0
																	C													Morphology	٥		
						L											\mathcal{U}													Extinction	Optical Properties		
																	4													Sign of Elongation	Prog		
																	1													Birefringence	ertie		
													_				ک													Pleochroism] °		
	\perp	_		_							4						5001													=	-2	1	
		\dashv			_						_			4			1,,,			_			_							<u> -</u>			
		+			4			_			\dashv			4						_			_			\downarrow			_	Fiberglass	Non		
_	_	+			\dashv			4		_	4	N i	<u> </u>	_			_	(/-		\perp			4		_	_			_	Mineral Wool	-Asb	Page	ı
		+			-			+			+	1)	+	7		4	<u></u>	<u> </u>	4	2		4			4			╅	Cellulose	estos	_	1
		+	-		\dashv		_	+			\dashv			+			\dashv			+			+			+			7	Hair	Non-Asbestos Percentage	의 유	1
		+			+			+			+			+		•	╣			+	-		+			+			┪	Synthetic	enta	_	_
		\dagger			\dagger			+			+	Q.	3	+			+	Ţ	5	+	_		+	8	_	+			十	Other	ge (%)		<u></u>
	Zy					Ţ	J			_		_	1					_						å	_				T _L	ion-Fibrous	္		

DNA

	_	5			T		<	5 0			Ī		Ц	9			T	Ź	7	8			Ī	4	<i> </i>	7 -	_		Lab ID# (Lab Use Only)		
	•	Z		<u>}</u>				7	>						7				•	7	7				- (7	7		Field ID/ (Client Reference)		
11	Location			Material	C C	1 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lecation	() Centre	() and 000	Material 1			Location		=	Meteria	(-	Location		-	Material	, ,	• [Location		-	Materia	Material / Location	lemp in Celcius =	
0					1	\overline{c}					f						l						l						% of Asbestos	T	-
MC					6						Γ																		Color	Ster	!
ح		•			7			•		•			•																Homogeneity	eo S	
OMENTY	77	`			8	-/	7	<u> </u>			Γ														•				Texture	Stereo Scope	
	-				F	2																							Friable		
Anthophylite Actinolite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals		
																													Asbestos %		1
																													Morphology	ဝွ	
								i																					Extinction	Optical Properties	1
																													Sign of Elongation	Prop	
																										i			Birefringen ce	erties	1
																													Pleochroism	"	
							L																						=	<u>R</u>	1
																													F	~	
																													Fiberglass	Non	
	_															_[_										Mineral Wool	Non-Asbestos Percentage (%)	
		3	-		7	<u>></u>		ک	_							_													Cellulose	esto	
	_			_						_			_			_			_									_	Hair	s Per	
	_												_			4			_			_						_	Synthetic	cent	
77	\dashv			_	-	<u>"</u>				_			_						_			_			_				Other	age (
7					Ö	70)						A						g						Ŧ					Non-Fibrous	<u>%</u>	ľ

Scope I On

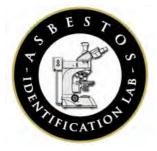
Page S of 10

DNA.

ASA

AND

			,	5	P					5	5				ζ.	5 (1	I				S	3			•	2	ک			(Li		I D# se Only	/)	_
		1	9	, E))				R	2)			0	2	\					O ×	5)			(2	2				Reference)	Field ID/		
		Location			Material			Location	•		Material			Location	•		Material			Location			Material			Location			Material			Material / Location			Temp in Celcius =
	0					,	2						C						0	,				•	K					%	of A	sbes	tos	1	
1	<u>ネ</u> こ こ						M /2					7,,,	120						がけく	•				7.10	<u>※</u> こ		_			Со	lor			1	Star
Ľ	ک_					ζ	<u></u>					•	_					Ľ	<u>خ</u>						ح					Но	mog	enei	ty	Cial ed acope	20
L	- C	4	•		_	22	<u>-</u> /-	77					1	7	\			5	5/	7	7,			9,	2	7				Тех	cture	•		Pdo	2
┸		٠.		_	<u> </u>	Ę	<u></u>		_	1	T =	<u> </u>	<u>_</u>		-	1			~					<u> </u>	۲.			_		!	able			ļ	
Acunolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Minerals	Asbestos				
L		L									Ш									L										As	bes	tos	%		
																														Мо	rpho	logy		ွှင့	۱
L																														Ext	incti	ion		Tical	<u> </u>
																														Sig	n of	Elon	gation	ון אַ	7
																														Bire	efrin	genc	е	Optical Properties	
L																														Ple	ochr	oism		°	
L					╝																									=				<u> </u>	1
			l					_																						H				┦┸	ا '
		_			_							1	,		4	7		$\not \succeq$	<u> </u>		4									Fibe	ergla	iss		No	•
Ļ	<u>(</u> t	_			4												_[,			K v						Min	eral	Woo	l	7-Ast	.
	1 /	_	E	•	4	S	_	\downarrow	£		K	7			3	•		S	7		$\overline{\mathcal{S}}$	· 	_	2	,		3	<u>-</u>	_	Cell	ulos	е		esto	
\vdash		_			4			-			4			4			4			\perp			_			\downarrow			_	Hair				S Pe	
		\downarrow			1			4			4			4			1			_			4			_			_	Syn	thet	ic		Non-Asbestos Percentage (%)	
F	Ω	+			+	₹	5	+			4			_				<u></u>		_		·-	-			4			_	Oth	er			age (
	-					_	1					W	7				_	70	<u> </u>	\perp				7	_				ļ	Von	-Fib	rous		8	_]'


femily Les

Page of

													7	18	78	6	5	9						SF				5		7	Lab ID# (Lab Use Only)	
														<	78	ン ブ	ı			_	Ö		,)		Field ID/ (Client Reference)	
	Location				Material				Location			Material	-		Location	ź		Material	1.1	-	Location		=	Material	2	Frood board	Location /	Con Con	Compact	Material	Material / Location	Temp in Celcius =
									-				O						0	,					7	<u>></u>				-	% of Asbestos	
													ЫL	2					いって	2 2 2					7	200					Color	Stereo Scope
					•							,	~	<u></u>				•	_	,					_	~					Homogeneity	SC O
													1	<u>,</u>					7							0					Texture	ope
								_		_	T .	1 =	2	_	1 .	_	1	-	/ در	_		-	_	ra	_			<u> </u>	_		Friable	
Anthophylite Actinolite	remolite	ramolito	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Andhonbudian	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals	
		1				Γ		T																							Asbestos %	
																															Morphology	၂မွ
						Γ	Ī	1			i	Γ																			Extinction	tical
		1					T	1				T																			Sign of Elongation	Prog
		1					T	1																							Birefringence	Optical Properties
		1					T	1																	ľ						Pleochroism	ď
		1					T	1							Γ				Γ											Γ	=	
	T	1						1																							H	교
																															Fiberglass	N _O
																			L												Mineral Wool	-Asb
																			L						L						Cellulose	esto
		1				L													_						L						Hair	Non-Asbestos Percentage (%)
		\downarrow				L																L									Synthetic	cent
		\downarrow				L							1						1	_					Ļ	_					Other	ege (
													<u>(2</u>	<u>></u>					00			L			00						Non-Fibrous	క్రి

famild 40

Page Of (

Asbestos Identification Laboratory

165 New Boston St., Ste 227 Woburn, MA 01801 781-932-9600

Web: www.asbestosidentificationlab.com Email: mikemanning@asbestosidentificationlab.com **Batch**: 16974

October 20, 2016

Susan Cahalan CDW Consultants, Inc. 40 Speen St. Suite 301 Framingham, MA 01701 **Project Number:**

Project Name: Waltham Fernard #61 Tarbell Hall

 Date Sampled:
 2016-10-03

 Work Received:
 2016-10-14

 Work Analyzed:
 2016-10-18

Analysis Method: BULK PLM ANALYSIS EPA/600/R-93/116

Dear Susan Cahalan,

Asbestos Identification Laboratory has completed the analysis of the samples from your office for the above referenced project .

The information and analysis contained in this report have been generated using the EPA /600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials. Materials or products that contain more than 1% of any kind or combination of asbestos are considered an asbestos containing building material as determined by the EPA. This Polarized Light Microscope (PLM) technique may be performed either by visual estimation or point counting. Point counting provides a determination of the area percentage of asbestos in a sample. If the asbestos is estimated to be less than 10% by visual estimation of friable material, the determination may be repeated using the point counting technique. The results of the point counting supersede visual PLM results. Results in this report only relate to the items tested. This report may not be used by the customer to claim product endorsement by NVLAP or any other U.S. Government Agency.

Laboratory results represent the analysis of samples as submitted by the customer. Information regarding sample location, description, area, volume, etc., was provided by the customer. Asbestos Identification Laboratory is not responsible for sample collection activities or analytical method limitations. Unless notified in writing to return samples, Asbestos Identification Laboratory discards customer samples after 30 days. Samples containing subsamples or layers will be analyzed separately when applicable. Reports are kept at Asbestos Identification Laboratory for three years. This report shall not be reproduced, except in full, without the written consent of Asbestos Identification Laboratory.

• NVLAP Lab Code: 200919-0

Mechael Thamy

- Massachusetts Certification License: AA000208
- State of Connecticut, Department of Public Health Approved Environmental Laboratory Registration Number: PH-0142
- State of Maine, Department of Environmental Protection Asbestos Analytical Laboratory License Number: LB-0078(Bulk) LA-0087(Air)
- State of Rhode Island and Providence Plantations. Department of Health Certification: AAL-121
- State of Vermont, Department of Health Environmental Health License AL934461

Thank you Susan Cahalan for your business.

Michael Manning Owner/Director October 20, 2016

Susan Cahalan CDW Consultants, Inc. 40 Speen St. Suite 301

Project Number:

Project Name: Waltham Fernard #61 Tarbell Hall

2016-10-03

Framingham, MA 01701

Date Sampled: Work Received: 2016-10-14 Work Analyzed: 2016-10-18

Analysis Method: BULK PLM ANALYSIS EPA/600/R-93/116

Fiel	dID	Material	Location	Color	Non-Asbestos %	Asbestos %
	LabID					
1A		1x1 Tan Light Floor Tile	Basement	tan	Non-Fibrous 100	None Detected
	187532					
1B		1x1 Tan Light Floor Tile	Basement	tan	Non-Fibrous 100	None Detected
	187533					
1C		1x1 Tan Light Floor Tile	Basement	tan	Non-Fibrous 100	None Detected
	187534					
1D		1x1 Tan Light Floor Tile	Basement	tan	Non-Fibrous 100	None Detected
45	187535					
1E		1x1 Tan Light Floor Tile	Basement	tan	Non-Fibrous 100	None Detected
2A	187536	Disab Mastia Hadan Tan	Decement	blask	77 71 00) Detected
ZA		Black Mastic Under Tan 1x1 Floor Tile	Basement	black	Non-Fibrous 90	Chrysotile 10
2B	187537	Black Mastic Under Tan	Basement			Not Analyzed
		1x1 Floor Tile	Basement			NOC Analyzed
2C	187538	Black Mastic Under Tan	Basement			Not Analyzed
		1x1 Floor Tile	Basement			live imaryzeu
 2D	187539	Black Mastic Under Tan	Basement			Not Analyzed
		1x1 Floor Tile				
2E	187540	Black Mastic Under Tan	Basement			Not Analyzed
	187541	1x1 Floor Tile				
3A	107311	Exterior Window Caulk	Exterior Windows	gray	Non-Fibrous 100) None Detected
	187542	_				
3B		Exterior Window Caulk	Exterior Windows	gray	Non-Fibrous 100	None Detected
	187543					
3C		Exterior Window Caulk	Exterior Windows	gray	Non-Fibrous 100	None Detected
	187544					
3D		Exterior Window Caulk	Exterior Windows	gray	Non-Fibrous 100	None Detected
	187545					

Fiel	dID	Material	Location	Color	Non-Asbestos % Asbestos %	
	LabID					
3E		Exterior Window Caulk	Exterior Windows	gray	Non-Fibrous 100 None Detecte	∍d
	187546					
3F		Exterior Window Caulk	Exterior Windows	gray	Non-Fibrous 100 None Detecte	∍d
	187547					
3G		Exterior Window Caulk	Exterior Windows	gray	Non-Fibrous 100 None Detecte	∍d
<u></u>	187548			1		
4A		Glaze, White	Exterior Windows	white	Non-Fibrous 100 None Detecte	}d
	187549					
4B		Glaze, White	Exterior Windows	white	Non-Fibrous 100 None Detecte	}d
	187550					
4C		Glaze, White	Exterior Windows	white	Non-Fibrous 100 None Detecte	èd
	187551					
4D		Glaze, White	Exterior Windows	white	Non-Fibrous 100 None Detecte	≱d
	187552					
4E		Glaze, White	Exterior Windows	white	Non-Fibrous 100 None Detecte	∍d
	187553					
4F		Glaze, White	Exterior Windows	white	Non-Fibrous 100 None Detecte	èd
	187554					
4G		Glaze, White	Exterior Windows	tan	Non-Fibrous 100 None Detecte	∍d
	187555					
5A		1x1 Tan Floor Tile with Brown Streaks	1st, 2nd Floors	tan	Non-Fibrous 100 None Detecte	∍d
	187556	Drown Caroano				
5B		1x1 Tan Floor Tile with Brown Streaks	1st, 2nd Floors	tan	Non-Fibrous 100 None Detecte	èd
	187557					
5C		1x1 Tan Floor Tile with —Brown Streaks	1st, 2nd Floors	tan	Non-Fibrous 100 None Detecte	≟d
<u> </u>	187558	A 4 T EL TU 10	4 + 0 + 151	ļ.		
5D		1x1 Tan Floor Tile with Brown Streaks	1st, 2nd Floors	ltan	Non-Fibrous 100 None Detecte	ea
	187559					
5E		1x1 Tan Floor Tile with Brown Streaks	1st, 2nd Floors	tan	Non-Fibrous 100 None Detecte	}d
	187560					
5F		1x1 Tan Floor Tile with Brown Streaks	1st, 2nd Floors	tan	Non-Fibrous 100 None Detecte	èd
	187561		1	1.		
5G		1x1 Tan Floor Tile with Brown Streaks	1st, 2nd Floors	tan	Non-Fibrous 100 None Detecte	ed
6A	187562	Black Mastic	Under 1x1 Tan Floor Tile	black	Cellulose 10 None Detecte	
			with Brown Streaks	DIACK	Non-Fibrous 90	٠
Thur	187563 sday 20 Oct	ohor			Page 2 of 5	

Thursday 20 October Page 2 of 5

With Brown Streaks	Fie	ldID	Material	Location	Color	Non-Asbestos %	Asbestos %
with Brown Streaks Non-Pibrous 95		LabID					
Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks Under 1x1 Tan Floor Tile with Brown Streaks Under 1x1 Tan Floor Tile with Brown Streaks EE Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks EF Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks EF Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks EF Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks EF Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks EF Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks EF Black Mastic Under 1x1 Tan Floor Tile black Non-Fibrous 95 EF Black Mastic Under 1x1 Tan Floor Tile black Non-Fibrous 95 EF Black Mastic Under 1x1 Tan Floor Tile black Non-Fibrous 95 EF Black Mastic Under 1x1 Tan Floor Tile black Non-Fibrous 90 EF Black Mastic Under 1x1 Tan Floor Tile black Non-Fibrous 100 None Detected Non-Fibrous 90 EF STOOR Mottled 1870 Non-Fibrous 100 None Detected Non-Fibrous 100 None Detected Non-Fibrous 100 None Detected 1870 Non-Fibrous 100 None Detected 1870 Non-Fibrous 100 None Detected 1870 Non-Fibrous 100 None Detected 1870 Non-Fibrous 100 None Detected 1870 Non-Fibrous 100 None Detected 1870 Non-Fibrous 100 None Detected 1870 Non-Fibrous 100 None Detected 1870 Non-Fibrous 100 None Detected 1870 Non-Fibrous 100 None Detected 1870 Non-Fibrous 100 None Detected 1870 Non-Fibrous 100 None Detected 1870 Non-Fibrous 100 None Detected 1870 Non-Fibrous 95 EF STOWN Mottled Stown Floor Tile with 2+3rd Floors Non-Fibrous 100 None Detected 1870 Non-Fibrous 95 EF STOWN Mottled Stown Floor Tile with 2+3rd Floors Non-Fibrous 95 EF STOWN Mottled Stown Mottled Non-Fibrous 95 EF STOWN Mottled Non-Fibrous 95 EF STOWN Mottled Non-Fibrous 95 EF STOWN Mottled Non-Fibrous 95 EF STOWN Mottled Non-Fibrous 95 EF STOWN Mottled Non-Fibrous 95 EF STOWN Mottled Non-Fibrous 95 EF STOWN Mottled Non-Fibrous 95 EF STOWN Mottled Non-Fibrous 95 EF STOWN Mottled Non-Fibrous 95 EF STOWN Mottled Non-Fibrous 95 EF STOWN Mottled Non-Fibrous 95 EF STOWN Mottled Non-Fibrous 95 EF STOWN Mottled Non-F	6B		Black Mastic		black		
with Brown Streaks Non-Fibrous 90		187564		Will Blown Streaks		Non-Fibrous 95	
Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks Black Mastic Under 1x1 Tan Floor Tile black Non-Fibrous 95 Black Mastic Under 1x1 Tan Floor Tile with Non-Fibrous 95 Black Mastic Under 1x1 Tan Floor Tile with Non-Fibrous 95 Black Mastic Under 1x1 Tan Floor Tile black Non-Fibrous 95 Black Mastic Under 1x1 Tan Floor Tile with Non-Fibrous 95 Black Mastic Under 1x1 Tan Floor Tile black Non-Fibrous 95 A 1x1 Brown Floor Tile with Prown Streaks Brown Mottled Strown Mottled 1a7570 Brown Mottled 1a7571 Brown Floor Tile with 2+3rd Floors 1an Non-Fibrous 100 None Detected Non-Fibrous 100 None D	6C		Black Mastic	I	black	00==0=0	
### Brown Streaks Non-Pibrous 90 ### Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks ### Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks ### Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks ### Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks ### Brown Streaks Dack Cellulose 5 None Detected with Brown Streaks ### Brown Streaks Dack Cellulose 10 None Detected Non-Pibrous 90 ### Brown Mottled 187579 ### Brown Mottled 2 + 3rd Floors tan Non-Pibrous 100 None Detected Brown Mottled ### Brown Mottled 2 + 3rd Floors tan Non-Pibrous 100 None Detected Brown Mottled ### Brown Mottled 2 + 3rd Floors tan Non-Pibrous 100 None Detected Brown Mottled ### Brown Mottled 2 + 3rd Floors tan Non-Pibrous 100 None Detected Brown Mottled ### Brown Mottled 2 + 3rd Floors tan Non-Pibrous 100 None Detected Brown Mottled ### Brown Mottled 2 + 3rd Floors tan Non-Pibrous 100 None Detected Brown Mottled ### Brown Mottled 2 + 3rd Floors tan Non-Pibrous 100 None Detected Brown Mottled ### Brown Mottled 2 + 3rd Floors tan Non-Pibrous 100 None Detected Brown Mottled ### Brown Mottled 2 + 3rd Floors tan Non-Pibrous 100 None Detected Brown Mottled ### Brown Mottled 2 + 3rd Floors tan Non-Pibrous 100 None Detected Brown Mottled ### Brown Mottled 2 + 3rd Floors tan Non-Pibrous 100 None Detected Non-Pibrous 90 None Detected Non-Pibrous 90 None Detected Non-Pibrous 95 None Detected Non-Pibrous 95 None Detected Non-Pibrous 95 None Detected Non-Pibrous 95 None Detected Non-Pibrous 95 None Detected Non-Pibrous 95 None Detected Non-Pibrous 95 None Detected Non-Pibrous 95 None Detected Non-Pibrous 95 None Detected Non-Pibrous 95 None Detected Non-Pibrous 96 Non-Pibrous 96 Non-Pibrous 96 Non-Pibrous 96 Non-Pibrous 96 Non-Pibrous 96 Non-Pibrous 96 Non-Pibrous 96 Non-Pibrous 96 Non-Pibrous 96 Non-Pibrous 97 None Detected 187580 18		187565					
Black Mastic Under 1x1 Tan Floor Tile black Cellulose 5 None Detected with Brown Streaks Black Mastic Under 1x1 Tan Floor Tile black Cellulose 5 None Detected with Brown Streaks Black Mastic Under 1x1 Tan Floor Tile black Cellulose 5 None Detected with Brown Streaks Black Mastic Under 1x1 Tan Floor Tile black Cellulose 5 None Detected with Brown Streaks Black Mastic Under 1x1 Tan Floor Tile black Cellulose 5 None Detected Non-Fibrous 90 None Detected Non-Fibrous 90 None Detected Non-Fibrous 90 None Detected Non-Fibrous 100 None Detected 187570 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile With Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile black Cellulose Non-Fibrous 90 1x1 Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile black Cellulose 5 None Detected Non-Fibrous 95 None Detected	6D		Black Mastic —		black		
with Brown Streaks Non-Fibrous 95 Black Mastic Under 1x1 Tan Floor Tile black Non-Fibrous 95 Black Mastic Under 1x1 Tan Floor Tile black Non-Fibrous 95 MX1 Brown Floor Tile with Brown Streaks MX1 Brown Floor Tile with Brown Mottled 187570 1x1 Brown Floor Tile with Brown Mottled 187571 TX1 Brown Floor Tile with Brown Mottled 187572 1x1 Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Mottled 1x2 Brown Mottled 1x2 Brown Mottled 1x3 Brown Mottled 1x4 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x4 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x5 Brown Mottled 1x6 Brown Mottled 1x7 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x7 Brown Mottled 1x8 Brown Mottled 1x8 Brown Floor Tile with Brown Floor Tile black 1x8 Brown Mottled 1x8 Brown Mottled 1x8 Brown Floor Tile with Brown Floor Tile black 1x8 Brown Mottled 1x8 Brown Mottled 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Under 1x1 Brown Floor Tile black 1x8 Black Mastic Und	6F	187566	Black Mastic	I Inder 1v1 Tan Floor Tile	black	Celluloge 5	None Detected
Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks black Cellulose Non-Fibrous 5 None Detected			— Black Mastic		Diack		
Non-Fibrous 95 187568 Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks Non-Fibrous 95 None Detected 187569 Non-Fibrous 90 None Detected Non-Fibrous 90 None Detected Non-Fibrous 90 None Detected Non-Fibrous 90 None Detected Non-Fibrous 90 None Detected Non-Fibrous 100 None Detected Non-Fi	0.5	187567	51 114 11				
Black Mastic Under 1x1 Tan Floor Tile with Brown Streaks 187569	6F		Black Mastic —		black		
with Brown Streaks Non-Fibrous 90 7A	6C	187568	Plack Mastic	Under 1v1 Ten Floor Tile	blook	Gallulara 10	None Detected
1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1x1 Brown Floor Tile black Cellulose 10 None Detected Non-Fibrous 90 None Detected Non-Fibrous 90 None Detected Non-Fibrous 95 None	00		— Black Mastic	I	Diack		
Brown Mottled 187571 187571 187571 187571 187572 187572 187572 187572 187572 187573 187574 187575 187577 1888 187577 1888 187577 1888 187577 1888 187577 1888 187578 1888 187578 1888 187578 1888 187579 1888 187579 1888 187579 1888 187579 1888 187579 1888 187579 1888 187579 1888 187579 1888 187579 1888 187579 1888 187579 1888 187579 1888 187579 1888 187579 1888 187579 1888 187579 1888 187579 1888 187579 1888 1888 1887 187579 1888 1		187569					
1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors tan Non-Fibrous 100 None Detected 187571 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors tan Non-Fibrous 100 None Detected 187572 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors tan Non-Fibrous 100 None Detected 187573 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors tan Non-Fibrous 100 None Detected 187574 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors tan Non-Fibrous 100 None Detected 187575 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors tan Non-Fibrous 100 None Detected 187575 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors tan Non-Fibrous 100 None Detected 187576 1x1 Brown Floor Tile with Brown Floor Tile black Cellulose 10 None Detected 187576 None Detected Non-Fibrous 90 None Detected 187577 1x7 Brown Floor Tile black Cellulose 5 None Detected 187578 None Detected Non-Fibrous 95 None Detected 187579 None Detected Non-Fibrous 95 None Detected 187580 Black Mastic Under 1x1 Brown Floor Tile black Cellulose 5 None Detected 187580 None Detected Non-Fibrous 95 None Detected 187580 None Detected Non-Fibrous 95 None Detected 187580 None Detected Non-Fibrous 95 None Detected 187580 None Detected Non-Fibrous 95 None Detected 187580 None Detected Non-Fibrous 95 None Detected 187580 None Detected Non-Fibrous 95 None Detected 187580 None Detected Non-Fibrous 95 None Detected 187580 None Detected Non-Fibrous 95 None Detected 187580 None Detected Non-Fibrous 90 None Detected 187580 None Detected Non-Fibrous 95 None Detected 187580 None Detected Non-Fibrous 95 None Detected 187580 None Detected Non-Fibrous 95 None Detected 187580 None Detected Non-Fibrous 95 None Detected 187580 None Detected Non-Fibrous 95 None Detected 187580	7A			2 + 3rd Floors	tan	Non-Fibrous 100	None Detected
Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Floor Tile black 1x1 Brown Floor Tile with Brown Floor Tile black 1x1 Brown Floor Tile with Brown Floor Tile black 1x1 Brown Floor Tile with Brown Floor Tile black 1x1 Brown Floor Tile with Brown Floor Tile black 1x1 Brown Floor Tile black 1x1 Brown Floor Tile black 1x2 Brown Floor Tile black 1x3 Brown Floor Tile black 1x4 Brown Floor Tile black 1x5 Floor Black Mastic 1x4 Brown Floor Tile black 1x5 Floor Black Mastic		187570					
TX1 Brown Floor Tile with Brown Mottled 187572 TX1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 187573 TE 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 187574 TX1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 187575 TX1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 187575 TX1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 187575 TX1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 187575 TX1 Brown Floor Tile with Brown Floor Tile black 187576 Black Mastic Under 1x1 Brown Floor Tile black Under 1x1 Brown Floor Tile black Cellulose Sonon-Fibrous 90 None Detected Non-Fibrous 95	7B			2 + 3rd Floors	tan	Non-Fibrous 100	None Detected
Brown Mottled 1x1 Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile with Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile With Brown Floor Tile With Brown Mottled 1x1 Brown Floor Tile with Brown Floor Tile With Brown Floor Tile With Brown Floor Tile With Brown Floor Tile With Brown Floor Tile With Brown Floor Tile With With With With With With With Brown Floor Tile With With With With With With With With		187571	Drown Mottled				
187572 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1an Non-Fibrous 100 None Detected 187573 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1an Non-Fibrous 100 None Detected 187574 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1an Non-Fibrous 100 None Detected 187575 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1an Non-Fibrous 100 None Detected 187575 1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1an Non-Fibrous 100 None Detected 187576 1x1 Brown Floor Tile 1x1 Brown	7C			2 + 3rd Floors	tan	Non-Fibrous 100	None Detected
Brown Mottled 187573		187572	Brown Mottled				
TE	7D			2 + 3rd Floors	tan	Non-Fibrous 100	None Detected
Brown Mottled 187574 TF		187573					
1x1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors 1an Non-Fibrous 100 None Detected	7E			2 + 3rd Floors	tan	Non-Fibrous 100	None Detected
Brown Mottled 187575 7G	7F	187574	1x1 Brown Floor Tile with	2 + 3rd Floors	tan	Non Fibroug 100	None Detected
Tx1 Brown Floor Tile with Brown Mottled 2 + 3rd Floors tan Non-Fibrous 100 None Detected	,,	187575		2 + 310 1 10015	lan	NOII-FIDIOUS 100	None Detected
Black Mastic Under 1x1 Brown Floor Tile black Cellulose 10 None Detected Non-Fibrous 90 None Detected Non-Fibrous 95 None Detected Non-Fibrous 96 None Detected N	7G		1x1 Brown Floor Tile with	2 + 3rd Floors	tan	Non-Fibrous 100	None Detected
Black Mastic Under 1x1 Brown Floor Tile black Cellulose 10 None Detected Non-Fibrous 90 Black Mastic Under 1x1 Brown Floor Tile black Cellulose 5 None Detected Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose 5 None Detected Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose 5 None Detected Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose 5 None Detected Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose 5 None Detected Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose 10 None Detected Non-Fibrous 90		107576	Brown Mottled				
BB Black Mastic Under 1x1 Brown Floor Tile black Cellulose Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose Non-Fibrous 90	8A	18/5/6	Black Mastic	Under 1x1 Brown Floor Tile	black	Cellulose 10	None Detected
Black Mastic Under 1x1 Brown Floor Tile black Cellulose 5 None Detected Non-Fibrous 96 None Detected Non-Fibrous 96 None Detected Non-Fibrous 96 None Detected Non-Fibrous 97 None Detected Non-Fibrous 97 None Detected Non-Fibrous 98 None Detected Non-Fibrous 98 None Detected Non-Fibrous 99 None Detected Non-Fibrous 99 None Detected Non-Fibrous 99 None Detected Non-Fibrous 99 None Detected Non-Fibrous 99 None Detected Non-Fibrous 99 None Detected Non-Fibrous 99 None Detected Non-Fibrous 99 None Detected Non-Fibrous 99 None Detected Non-Fibrous 99 None Detected Non-Fibrous 90 None Detected No						Non-Fibrous 90	
Black Mastic Under 1x1 Brown Floor Tile black Cellulose 5 None Detected Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose 5 None Detected Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose 5 None Detected Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose 10 None Detected Non-Fibrous 90	8B	187577	Black Mastic	Under 1y1 Brown Floor Tile	hlack	Cellulose	None Detected
Black Mastic Under 1x1 Brown Floor Tile black Cellulose 5 None Detected Non-Fibrous 95 None Detected Non-Fibrous 95 None Detected Non-Fibrous 95 None Detected Non-Fibrous 95 None Detected Non-Fibrous 95 None Detected Non-Fibrous 95 None Detected Non-Fibrous 95 None Detected Non-Fibrous 95 None Detected Non-Fibrous 90 None Detected Non-Fibrous 90 None Detected Non-Fibrous 90			— Diack Mastic	Officer TXT Brown Fried	Diack		
Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose 5 None Detected Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose 10 None Detected Non-Fibrous 90		187578					
Black Mastic Under 1x1 Brown Floor Tile black Cellulose 5 None Detected Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose 10 None Detected Non-Fibrous 90	8C		Black Mastic	Under 1x1 Brown Floor Tile	black		
Non-Fibrous 95 Black Mastic Under 1x1 Brown Floor Tile black Cellulose 10 None Detected Non-Fibrous 90		187579					
8E Black Mastic Under 1x1 Brown Floor Tile black Cellulose 10 None Detected Non-Fibrous 90	8D		Black Mastic	Under 1x1 Brown Floor Tile	black		
Non-Fibrous 90		187580				1000	
	8E		Black Mastic	Under 1x1 Brown Floor Tile	black		
		187581					

Thursday 20 October Page 3 of 5

Fiel	dID	Material	Location	Color	Non-Asbestos %	Asbestos %
	LabID					
8F		Black Mastic	Under 1x1 Brown Floor Tile	black	001141000	None Detected
	187582				Non-Fibrous 95	
8G		Black Mastic	Under 1x1 Brown Floor Tile	black	001141000	None Detected
	187583				Non-Fibrous 95	
9A		1x1 Red Floor Tile	2nd + 3rd Floors	red	Non-Fibrous 100	None Detected
	187584					
9B		1x1 Red Floor Tile	2nd + 3rd Floors	red	Non-Fibrous 100	None Detected
	187585					
9C		1x1 Red Floor Tile	2nd + 3rd Floors	red	Non-Fibrous 100	None Detected
	187586					
9D		1x1 Red Floor Tile	2nd + 3rd Floors	red	Non-Fibrous 100	None Detected
	187587					
9E		1x1 Red Floor Tile	2nd + 3rd Floors	red	Non-Fibrous 100	None Detected
	187588					
10A		Black Mastic	Under 1x1 Red Floor Tile	black	Non-Fibrous 95	Detected Chrysotile 5
	187589					
10B		Black Mastic	Under 1x1 Red Floor Tile			Not Analyzed
	187590					
10C		Black Mastic —	Under 1x1 Red Floor Tile			Not Analyzed
	187591					
10D		Black Mastic —	Under 1x1 Red Floor Tile			Not Analyzed
	187592					
10E		Black Mastic —	Under 1x1 Red Floor Tile			Not Analyzed
44.0	187593	0:		141		
11A		Glaze —	Interior Windows of Office	multi	Non-Fibrous 100	None Detected
110	187594	Clore	Interior Windows (Office		N	Mono Datasta
11B		Glaze —	Interior Windows of Office	multi	Non-Fibrous 100	None Detected
11C	187595	Clozo	Interior Windows of Office	multi	Non Elbarra 100	None Detected
		Glaze —	Interior Windows of Office	multi	Non-Fibrous 100	None Detected
12A	187596	2v2 Toyturad Calling Tiles	1st L 2nd Floor	arov.	Minoral Masi 00	None Detected
IZA		2x2 Textured Ceiling Tiles	15t + 2110 F100f	gray	Mineral Wool 90 Non-Fibrous 10	Mone Defected
12B	187597	Over Toytured Colling Tiles	1at L 2nd Floor	arcy	Minorel Mari	None Detected
120		2x2 Textured Ceiling Tiles	15t + 2110 F100f	gray	Mineral Wool 80 Non-Fibrous 20	Morre Defected
12C	187598	Over Toytured Colling Tiles	1at L 2nd Floor	arcy	Minorel Mari	None Detected
120		2x2 Textured Ceiling Tiles	ISt + ∠na Floor	gray	Mineral Wool 85 Non-Fibrous 15	None Detected
	187599					ngo 4 of 5

Thursday 20 October Page 4 of 5

Fiel	dID	Material	Location	Color	Non-Asbestos %	Asbestos %
	LabID					
12D		2x2 Textured Ceiling Tiles	1st + 2nd Floor	gray		None Detected
	187600				Non-Fibrous 10	
12E		2x2 Textured Ceiling Tiles	1st + 2nd Floor	gray		None Detected
	187601				Non-Fibrous 15	
12F		2x2 Textured Ceiling Tiles	1st + 2nd Floor	gray		None Detected
	187602				Non-Fibrous 15	
12G		2x2 Textured Ceiling Tiles	1st + 2nd Floor	gray	Mineral Wool 85 Non-Fibrous 15	None Detected
	187603				Non-Fibrous 13	
13A		Joint Compound	Walls	white	Non-Fibrous 100	None Detected
100	187604					
13B		Joint Compound	Walls	white	Non-Fibrous 100	None Detected
	187605					
13C		Joint Compound	Walls	white	Non-Fibrous 100	None Detected
	187606					
13D		Joint Compound —	Walls	white	Non-Fibrous 100	None Detected
	187607					
13E		Joint Compound	Walls	white	Non-Fibrous 100	None Detected
	187608					
13F		Joint Compound	Walls	white	Non-Fibrous 100	None Detected
	187609					
13G		Joint Compound —	Walls	white	Non-Fibrous 100	None Detected
	187610					
13H		Joint Compound	Walls	white	Non-Fibrous 100	None Detected
	187611					
131		Joint Compound	Walls	white	Non-Fibrous 100	None Detected
	187612					
14A		Glaze —	Interior Doors	multi	Non-Fibrous 100	None Detected
	187613					
14B		Glaze	Interior Doors	multi	Non-Fibrous 100	None Detected
	187614					
14C		Glaze	Interior Doors	multi	Non-Fibrous 100	None Detected
	187615					

Thursday 20 October

End of Report

Page 5 of 5

Merhael Thanny Analyzed by:

Batch: 16974

As bestos identification Lab Project des as Multimor Periodia as (A) Total pull		 Dlient:	Client:(YXX) GAJV	Gazu Hunt					Ĺ	CHAIN OF		CUSTODY	8		İ			11	Page	e l		읔	1		
Woburn, MA 01801 Woburn, MA		Addre ^o rojec	ss: AD Space	1/0)- INTIME	Bell MA		165	Ne p	sbe ™ B	stos Idei oston St.	ntif	icatio	5	8	7	ļ		Less	3 Hrs		٥		Bulk	noa	
Color Homogeneity Texture Friable Amosile Am		² hone	حراد کا 'رحا email addre				Suit	te 2	۲27 ×	A 01801			-A 5					Next	Day •			76	Wipe		
Date Sampled: IQS		Sub Contac	ct: SWSCIN)	Supala.	1		(78 ₁)) 1)93 .asb	7, IVI 2-9(estos	IA 0 1001 600 sidentification	<u> </u>	Í	H301		Q.			N N	av A	京大			Point	Count	···
Material Location Material Loca		⊰elinq `∴	uish by/dato	10/13/16	;2 	.	Date	San	ple	103	6						Stop	y Me	st Pc thad:	Sitive Mai			erbal	\	
Date: 0 1/6	· -	Received Services	ved byvďate: _	DI VI VI	(BAT	CH#		0011	\supseteq			Rev 12	V15		Anay	zed l	<u> </u>			il	N	\$ 1	1
Collection Col	- I	Q Q	ampies Receiv	amn in Celcius								1					Date		10	118	7	6			_
Cocation Material Material Location Material Location Material Location Material Location Material Location Material Location Material Location Material Cocation Material Location Material Location Material Location Cocation Location Location Cocation Location Cocation Location	•	y)				Stere	o Sc	öpe				Q Q	tical	Prop	erties		λ Ι		Non	-Asb	esto	s Pe	rcent	age	(%)
Material			Field ID/ (Client Reference)	Material / Location	% of Asbestos	Color	Homogeneity	Texture	Friable	Asbestos Minerals	Asbestos %	Morphology	Extinction	Sign of Elongation	Birefringence	Pleochroism	=	<u> </u>	iberglass	Mineral Wool	Cellulose	lair	ynthetic	other	ол-Fibrous
Location Material Material Material Material Material Material Cocation Material Material Material Material Material Material Material Material Material Material Material Material Material Material Material Anthophylite Chrysolite Chrysolite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite		2		_1						Chrysotile									F	N		_	s	0	N
Composition Composition Composition Converted		35 5	F	How.				•	<u></u>	Crocidolite	\perp		╧		\perp										
Material Material Chrysotile Admosite Crocidolite Material Material Material Material Chrysotile Actinolite Chrysotile Amosite Chrysotile Amosite Anthophylite Anthophylite Actinolite Actinolite				Location	<u></u>	<u> </u>		<u> </u>		Tremolite	<u> </u>					Ш				$ \bot $	\bot	\perp	\downarrow	\downarrow	
Chrysotile Chrocite Amosite Chrocite Cocation Chrysotile Chrysotile Chrysotile Chrysotile Chrysotile Chrysotile Chrysotile Chrysotile Chrysotile Chrysotile Chrocitolile Chrysotile Chrocitolile Chrysotile Chrystophylice Chrysotile Chry	-	<u> [/</u>		Onderver (<u> </u>				Actinolite				_			\perp		-						Ö
Crocidolite Crocidolite Crocidolite Crocidolite Chrysotile Anthophylite Chrysotile Anthophylite Crocidolite		<u>3</u>	,	Material						Chrysotile Amosite	\perp			1			Ш	Ц		_	_		_	_	
Anthophylite Actinolite Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite		<u> </u>	5							Crocidolite															
Actinolite Chrysotile Amosile Crocidolite Tremolite Actinolite Actinolite			-		Q	<u></u>	<u> </u>	<u>~</u>	<u> </u>	Anthophylite	\perp		_			\perp	\perp								
Amosite Crocidolite Crocidolite Tremolite Anthophylite Actinolite	- 1	\perp		Material		lacksquare	↓		L	Actinolite	_														ਣ
Crocidolite Tremolite Anthophylite Actinolite		4	Ś							Amosite			_	\bot		_	1		_						
Tremolite Anthophylite Actinolite		3			-			•	_	Crocidolite							1								
Actinolite				Location	3	1	<u>></u>	2	5	Tremolite	_							Ц	_	4	_	4		\downarrow	
					(_				Anthophylite		_		_		\perp								=	ŏ
	r				-	L	-	L	L	Contoller				\perp			L	L	L	L	L			\vdash	<u>L</u>
				÷																				-	

					3	9						38					3	7	Ī				3	/)			•	3	Ś		Lab ID# (Lab Use O		1
			Ç) . (<u>ે</u>				Ç	<u> </u>))				Ş	<u>_</u>	> >				- (7	Ĩ				7	-	ラ		Field ID/ (Client Reference)		
			Location		=	Waterial		-				Waterial	- larl-rlaw occ	Ser Const	Location TYN IXI		Mari Marti	Naterial		1,	Location			Material			Location	-	==	Naterial	Material / Location		Temp in Celcius = 2
							L							,	0		·		L		0						0				% of Asbastos		
-													L		2 2 2 2 2 2				Ļ		_	\			L		1				Color		Stereo Scope
ŀ							L						L						L		$\frac{1}{2}$	_					<u> </u>		_		Homogeneity		o Sc
-							┞						L		<u> </u>	<u>}</u>	_		L		6	<u>}</u>			L		2				Texture		ခြင့်
ŀ	≥T	≱T	ㅋ	Ω	≥	Ω	 ≥	I≥	ΤĦ	10	I≥	ात	 ≥	I≥	ΙΞ	lo	- T>	10	Þ	- >		_	I>	To.	 >	ĪΣ		<u>_</u>	ī⊳	ाठ	Friable		
	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals		
																		õ													Asbestos %		
																		٤													Morphology		ဝ္ပ
	╧	_																0													Extinction		Optical Properties
L	\perp																	#													Sign of Elongati	on	Prop
L																		2									ŀ				Birefringence		ertie
L																		7	,						1						Pleochroism		S
																		1556													=		
L		\perp	1			\rfloor												755)													H		낕
			1																												Fiberglass		<u>Z</u>
			\downarrow			1						╛																			Mineral Wool		<u> </u>
L			1			4																									Cellulose		Non-Asbestos Percentage (%)
L			1	_		1		_				_						_													Hair		S Pe
L			1	_		1	_					_			\perp						\perp										Synthetic		řcen
L			1			_						4	•		\perp				•						_						Other		tage
			Ţ										9	SO.					Ì	<u>ਵੇ</u>				\perp	20	<u>`</u> ز					Non-Fibrous		8
		7/70	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						ASS.																								

	Г			_	/,,	7				-	,	7			-	_		-						7				-					- L In			_
		_			17	4					4	3				4	<u>2</u>						4	1			4	40)		(1		ab ID: Use ()	
		1	\ -	ン う —					E	ر م					5) ,			2	7	>				Q -	デ	>				Kererence)	(Client			
	-		Location			Material	=	1,	Location		water at	Material	Extens Windows	Focalion	aok	txtxx 2/000	The state of the s	Material			Location	<i>5</i>	Material	1		Location		-		Material		material / Focation	Matter			Temp in Celcius = 7./
		0				1		0	·	_		L	•	S																%	of A	\sbe	stos		<u> </u>	
Ļ		1	~			1		1,0	<u>-</u>			L		65	`															C	olor				Ster	؛ [
-	_	_ '	<u>></u>			\downarrow		<u> </u>	<u>.</u>			L		3			_	L												Н	omo	gen	eity		Stereo Scope	,
-			53			╀			× × ×			L		2				L												þι	extur	e			cope	ĺ
	<u> </u>		<u>े</u>	<u>`</u>]≥	ि) ≱	>	·T=	ात	T>	lo		Ī≽	_		┰	10	Ļ	.T.	1_		<u></u>	10	Ļ	Ι.		-	Y .	(<u>-</u>	4	iable	•				
Controlle	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Minerals	Asbestos					.000
-	_	-			L		\perp	_	_	_			_					L	L		L									A	sbe	stos	s %			1
				_				_																						Мс	rph	olog	у		Opti	
L		L	L			L		L	_	L																				Ex	tinct	ion			otical	
\vdash							_	L				_	_		_															Sig	ın of	Elo	ngəti	on	Prop	
										_																				Bir	efrin	gen	ce		Properties	
L		_					_	_			1			\perp		\rfloor														Ple	ochi	roisi	m		S	
\perp		\dashv	_	4						_	4	4	4	_		4	4													11					ית ייל	
\vdash	_	\dashv			\dashv			_			4			4			4			_]	_												꼰	
		\dashv			-			\dashv	_		4			\downarrow	_		4			\dashv			4			1				Fib	ergla	ss		\rfloor	Non	}
-		\dashv			\dashv			\dashv			+			+			4			\downarrow	_		4			1			_	Min	eral	Woo	oi		-Asb	Page
\vdash		\dashv		_	+			-			+	_		+			╬			4		_	4			\downarrow			_	Cel	lulos	e		_	esto	ľ
\vdash	-	\dashv			\dagger			\dashv			+			+	_		╀			\perp	<u></u>		\downarrow			4		_	4	Hai	<u>-</u>			_ ;	SPar	9
H		\dagger	_	_	\dagger	_		\dashv			+			+	_	_	╁			+			+			+	-		7		theti	ic			cant	L
	5	\dagger			+		5	+			┿	/oo		+			╀			+		_	╀			+			╅	Oth					Non-Asbestos Percentage (%)	C
							-			_	_ _	Ö					1			<u>^</u>			1.		,	ل ک	_	_		Von	-Fib	rous		,0,		
																			7	<u>5</u>						Ž										

Scope Tarball Hour

Page 3 of 16

72A

XX AX

			_	1		_		Ţ			_	,		T		_	_			Т						Т	_			_		_			1=		_
	L				1	$\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{$	<u> </u>					L	18				(4	2				4	16	· •				4	5	-		(1		b I D # 'se On	ly)	
			•		ユエ	<u> </u>				_		_ ? ((<u>_</u>	27	ı				77.77) }				(<u> </u>	ング				Reference)	Field ID/ (Client		
		TATON IN MOONS	Location			Chan was	Material () // /	11			ocation			Matoriol	<u>-</u>	Focation					1	Location			Note 191	760		Location		_	d	Material		Material / Location			Temp in Celcius = '21
			2	3			╛		_	<u>3</u>				L		0)					<u></u>						0				%	of A	sbes	tos		
			2	<u>ک</u>	_					6	<u>``</u>				_	7.0						120	>					0 67 20	•			Co	lor				Ster
-		_		<u>کہ</u> 	_		4	_			<u>}</u>			L			خ.					<u> </u>	-					5				Но	mo	genei	ty		Stereo Scope
-			_	<u>ک</u> ک			4				2			L			5			L			<u> </u>					5				Те	xtur	8			מב כי
	<u> </u>	<u>- 1</u>	7	0	T>	> 1 (_	Þ	>	Ii	<u>ح</u>	- \b	مان	Ļ	1	1	<u>ک</u>	_	16	Ĺ	T~		<u>_</u>	T .	Ι_	Ĺ		7	_	Τ.	_	1_	able				
Componic	Animophylite	othorhuli.	Tremolite	Crocidolite	Amosite	in yaome	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Cracidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Minerals	Asbestos				
L	\perp	1	_		L		1	_			L	L			L	L			L	L												As	bes	stos	%	T	
		1																														Мо	rpho	ology	,	2	,
L	L	\perp				L																										Ext	inct	ion		Optical	
L	L	L	1		L	L		_				L																				Sig	n of	Elon	gatio	al Properties	
L	<u> </u>	Ĺ				L													1	Ì												Bir	frin	geno	а	ertie	:
		_																														Ple	ochi	oism)	Š	
L		L	\downarrow				L	1			╛															1						=	-				1
L		_	1	_		L	L																									F				콛	
L			╀				L	_					_				_															Fibe	rgla	ıss		Z	1
L			-				L			_			4	_		_															ļ	Min	eral	Woo		n-Asi	
L			ļ				L			4	_		4		_	_			1			1			1			\perp				Cell	ulos	e		est	
\vdash			╀				L			4			4			_			4			1			1			1			_	lair	.,,			S Pe	
-			\vdash			_	<u> </u>	_		+			4			\downarrow		_	4			\downarrow			1		_	\perp			ķ	Syn	heti	С		rcent	
\vdash	100	- .	-		_			700	-	+			+	~		\downarrow		_	4	>	<u>. </u>	4			1	_	_	\downarrow			_ (Othe	ır	<u></u>		Non-Asbestos Percentage (%)	
	ŏ		_					?	Š		<u>. </u>		\perp	9	<u>></u> ن				$oldsymbol{\perp}$	00	,)	\perp			\perp	8	<u>ح</u>				h	lon	Fib	ous		8	1

come labell Hall

Page of (8)

	54				L	-	}			5	2		T			S	7	,				5	<u>}</u>		Lab ID# (Lab Use C		
-	7			7,0	7	,				-	22	·			-	77	Z	•			Ī	\ \ \ \	<u>, </u>		(Client Reference)		<u>'</u>
Location	Material I			Location	۲,		Matorial		Location		_	Material	Min .		Location		_	Waterial			Location		=	Material	Material / Location		
0			•	0				(<u> </u>						0				Ī		<u>ت</u>				% of Asbestos		\dagger
2				\sum			L	•	ζ	•					Σ						٦				Color		
2				<u> </u>			╽		3	_					3										Homogeneity		100000
\$			_	<u>\$</u>					5	<u>}</u>					· `	<u>``</u>					2	,			Texture	<u>.</u>	_\ <u>\</u>
<u> </u>	ा≱ात	≱I	⊳	 	<u>ा</u>	ा र		- ⊡	 ∢ □	_ [0	<u> </u>	ि	>	∡T		<u>`</u>	ı≥	<u> </u>	Ļ	<u>-</u>	- <u>-</u> -	<u> </u>	<u> </u>	16	Friable		L
Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite	Actinolite	Anthophylite	Tremolite	Crocidolite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotlle	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals		
																Ì									Asbestos %	_	Γ
																									Morphology		Optio
																									Extinction		Alical
		_																							Sign of Elongat	on	carriopenies
								1			_											ĺ			Birefringence		enie
																									Pleochroism		S
		\downarrow	\downarrow	_	_				_																		,
	Щ					Ц			\downarrow			_			_										<u> </u>		즈
				-		4			_			4			\downarrow									_	Fiberglass		Non
				-	<u> </u>	4			4			4	_		\downarrow			4			4			ļ	Mineral Wool		-Asb
		-		+		\dashv			_			4			4			4			4			_(Cellulose	_	estos
				+		-			\dashv			+	_		+			+			+			-1-	Hair	_	s Per
				+				·	+			+	_		+			+			+			十	Synthetic	_	centa
30	\dashv	3	<u>.</u>	+		\dashv	3	-	+			╁	ر ص	.	+			+	~	_	+			+	Other	_ '	Non-Asbestos Percentage (%)
							<u> </u>	<u> </u>		_			<u> </u>	<u>) </u>				_1_	<u> </u>	3				1	lon-Fibrous	_	ల

Tarbou Hall

Page S of 16

Stereo Scope Color				T	<u> </u>		
Material / Location Material / Location Material / Location Material / Location Material / Location Material / Location Material / Location Material / Location Material / Material	59	78	57	56	55)
Stereo Scope Optical Properties Color Homogeneity Texture Friable Anthophylic	5)	3	8	SA	F	Field ID/ (Client Reference)	
Color Homogeneity Texture Friable Asbestos Anhophylite Annosite An	viaterial \ \ \ \cocation	l l	Material Location	was Many was	Material \{ Location \	Material / Location	Temp in Celcius = 21
Priable Chrysollie Anosite Chrysollie Anthophylite An	Ö	<u> </u>	<u></u>	0_	Ø	% of Asbestos	
Priable Chrysollie Anosite Chrysollie Anthophylite An	-	1	1 -	-		Color	Ster
Priable Chrysollie Anosite Chrysollie Anthophylite An	\$		2	3	5	Homogeneity	o Sc
Optical Properties Asbestos % Minerals Crocidolite Annosite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Anthophylite Crocidolite Crocidolite Crocidolite Crocidolite Crocidolite Crocidolite Crocidolite Anthophylite	\$			- \$	\$	Texture	ope
Asbestos % Morphology Properties Pleochroism Pleochroism Properties Properties Pro	<u> </u>						
Morphology Extinction Sign of Elongation Birefringence Pleochroism — Pleochroism	nosite ocidolite amolite thophylite tinolite	nysotile nosite ocidolite emolite emolite othophylite	mosite rocidolite emolite emolite enthophylite	hrysotile mosite rocidolite remolite rhophylite otinolite	Chrysotile Amosite Amosite Crocidolite remolite Anthophylite Anthophylite Anthophylite	Asbestos Vinerals	
Extinction Sign of Elongation Birefringence Pleochroism = P						Asbestos %	П
Pleochroism = Z					n	Norphology	ام
Pleochroism = Z					<u> </u>	extinction	říc <u>a</u>
Pleochroism = Z					s	ign of Elongation	Pro
Pleochroism = Z					В	irefringence	ertie
2					Р		Š.
┠ ╵╵┪╘╸┪╸		 				1]
Fiberglass Mineral Wool Cellulose Hair Synthetic Other Non-Fibrous Non-Fibrous					F		<u>" </u>
Mineral Wool Cellulose Hair Synthetic Other Non-Fibrous					Fi	berglass	N N
Cellulose Hair Synthetic Other Non-Fibrous Non-Fibrous					М	ineral Wool	Page_
Hair Synthetic Other Non-Fibrous Non-Fibrous					Ce	ellulose	Set 1
Synthetic Other Oge (%)					He	air r	
S S S Non-Fibrous S					sy	nthetic S	
O O O O Non-Fibrous	2	<u> </u>	5		<u>> </u>	her g	(
		0	Ō	0	No Diagram	n-Fibrous	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓

Julbell Hall

Page \bigcup of $|\mathcal{E}|$

64	63	62	61	60	Lab ID# (Lab Use Only)	
63	Left.	B	Z	A	Field ID/ (Client Reference)	
Location	Mosnz 1/2/1-ton flow	Material (Location (((((((((((((Material (, Location	Material \(\) Location \(\)	Materiał / Location	Temp in Celcius =
0	0	0	Ö	0	% of Asbestos	
0 24	3/6	4	1	1	Color	Stere
2	\$	2	_ \(\int \)	3	Homogeneity	Stereo Scope
\$	Ş	an	7	6	Texture	öpe
		7	کا جا جا جا ج		Friable	
Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Asbestos Minerals	
					Asbestos %	
					Morphology	Optic
					Extinction	tical
					Sign of Elongation	eal Properties
					Birefringence	ertie
					Pleochroism	°
						\prod
					-	2
				F	iberglass	Z S
				N	/lineral Wool	Asb.
S	7 7				Cellulose	esto
					fair	s Perc
		-		s	Synthetic	cent
9	2				Other	Non-Asbestos Percentage (%)
N	90	Ö	$\hat{\beta}$	S N	lon-Fibrous	<u>\$</u>

Tabel Hall

Page of 18

					T						_		_				_		_				<u> </u>									
		_(9	9					6	8				(0	2				6	26	>			Q	<u>ي</u>	-		(ID# se Only,	<i>'</i>)
	(- ミ ヤ	- `				E	7	<u>, </u>				Ç	(07)	7				Ç	/ 0 C	- ブ				(<u>5</u>)			Reference)	Field ID/	
				Waterial			Location	Costion	-	Material			Location			Material			Location		<u>-</u>	Material		_	Location			Material		Material / Location		lamp in Celcius = 2
<u> </u>	<u>े</u> रिक्				_	- 1	<u>(</u>						<u>G</u>				L	· (3					2	3				% of	Asbes	tos	
	3C N 6W x				Ļ		77	•			L		500	<u>.</u>					2 2 2 2				L		3 272				Colo	•		Starao Scopa
	0 B/C N (ow x)				╀		7				L		2						<u>ح</u>	<u>. </u>			L		2				-	gene	ity	o Sc
					╀		•	? }					_ (<u>-</u>			L		a contraction						2				Textu) Pie
				유	Į	}	`		I≱	Ω.	Þ	≥			Þ	₽	ě	I≥	_		ı≥	Ω	Þ	I≥	_	\ ত	I≥		Friab ⋜ ⋗	le		
Anthophylite Actinolite	O SC N W W Crocidolite Tremolite Anthophylite			nysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	ctinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals			
	o of Now x																										Asbe	stos	%	Τ		
																													Morpi	nology	<i>'</i>	Optic
					_	L		L																					Extino	tion		tical
							L																						Sign	of Elor	ngation	al Properties
				-																									Birefr	ingen	e	ertie
																													Pleoc	hroisn	1	S
		_																											=			R
	\bot							Ш								┛													<u> </u>			
	4			_						_	·					_						_						_	Fiberg	lass		Non
	#	_			1		4	-	_	_				_		4	_		_	_					-	Minera	i Woo	ol	-Asb			
0		_	<u></u>		-	Ε.	-	<u> </u>	<u> </u>	4	7		4	0	<u>`</u>		7	_	_	0			#	·	_	Cellulo	se		esto			
<u> </u>							+			+			\dashv	 :		_			4			4			ŀ	lair			s Per			
	+	· ·		+			\dashv			+			+			4			\dashv			4			4			+	Synthe	etic		centa
200	+			+	75	\$	\dashv			+	195	7	+			+	7		-			-	~	<i>5</i>	4				Other	-		Non-Asbestos Percentage (%)
1				V)					S	}			<u> </u>		70		\perp				70	•	_			1	ion-Fi	brous		%	

Torbell Hall

Page of 16

1					T						7						7						_						1			_
		7	11	1					7	3					7	2		·		2	/					7	0			Lab ID# b Use Only)	
	•	7	7	1			••	<u></u>		,		`	/	//0	7					///				-	7	<i>'</i> /	7			Field ID/ (Client Reference)		
(Location			Material			Location			Material		<i>'</i>	Location			Material			Location			Material	X 1 3 7 1 (0x)	ĴΞ.	Location Work	17 Di vita Drown	/YII /Rown tray	Waterial		Material / Location	- Iı	Temp in Celcius = '2/
	0					(<u></u>					(>					C	<u>5</u>					(5				% of As	bestos		
	<u> </u>				L	-	7						\mathcal{L}				L	_	1				L	_	1				Color		Oter	0 10
<u> </u>	5	_					<u>5</u>						<u>_</u>	_			<u></u>	_	2	·					3		_		Homoge	eneity	Stereo Scope	,
	5	<u> </u>					6						5	<u> </u>			L		2						<u>Ş</u>				Texture	· ·	ope	3
7171	<u>(</u>	<u>ح</u>	_	_	Ĺ	1.	7	_	.	10			· ·	<u> </u>		-	Ĺ	-	2	_	1.		Ĺ	T	3				Friable			
Anthophylite Actinolite	Tremolite	Cracidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	^nthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals			
																													Asbest	os %		
																													Morphol	ogy	ဝ	,
																													Extinction	n	Optical	
																													Sign of E	longation	Prop	'
		1																											Birefring	ence	al Properties	:
																Ī													Pleochro	ism	Ś	
																								7					=	 		1
																													H	···	콛	
																╛													Fiberglas	s	No.	1
	\perp			_									1			\perp			\perp										Mineral V	Vool	1-Ask	
	1			4									1			_												_	Cellulose		esto	
	1			4		_	\downarrow			4	_		\downarrow			4			_	,					\perp				Hair	<u> </u>	s Pe	
_	+			+			4	_		4			\downarrow			\downarrow			\downarrow			_			\perp			ļ	Synthetic	-	rcent	
c	+			+		>	+			4	_		\downarrow			4	_	_	\downarrow			1			4				Other		Non-Asbestos Percentage (%)	
(00					20	5					3	}					0	\ 3				1	100	5	1				Non-Fibr	ous	[3]	ľ

Steren Som

Page of (6)

	<u> </u>			7		
79	78	77	76	75	Lab ID# (Lab Use Only)	
8C	88	R	43	75	Field ID/ (Client Reference)	
Material \ \ Location	Material (Location {	Material Black Mastic Location (2) Mar (2)	Material Location	Material (/ Location (Material / Location	lemp in Celcius = 21
G	0	0	ĺ	0	% of Asbestos	
0 240	2/6	212	+	R	Color	Ster
2	<u>\$</u>	ک	7	Z	Homogeneity	Stereo Scone
(Gr	Con v	\$	200	ar	Texture 2	ó S D
		<u> </u>	ू जानाजाना <i>न</i>	~	Friable	
Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Asbestos Minerals	
					Asbestos %	_
					Morphology	ָרֻ כ
					Extinction	1122
					Sign of Elongation	7
					Sign of Elongation	
				F	Pleochroism	
						\int
				F	iberglass No.	:
	S #				flineral Wool	:
Q #	S #	70 77		C	Cellulose S	.
					lair Pe	' i
					ynthetic $\stackrel{\circ}{=}$	
95	26	20	100		Mon-Asbestos Mineral Wool Cellulose lair Cynthetic Other Con-Fibrous	
LV	- 1	7	U	OIN	on-Fibrous 💍	1

Take Hull

Page 10 of 16

				ξ1	1					8	3				8	2	? 			_			87	T			S	7	<u></u> ろ	(L	Lab ID# ab Use Or	ıly)		_
			_	2)				US	12))				(ナシラ <u>マ</u> ラ					20	`				07	3	<i>}</i>			Field ID/ (Client Reference)			
	Di x 1 8 10 1/2 1/2 1/2	Cocation Cocation		INI MONICON	Waterial	Matorial			Location			Material		Location			Material			Location			Material			Location	·		Merchal		Material / Location		Temp in Ceiclas = 4	Town in Calaina - 7
		0						_(してなっ					,	<u>></u>				<u> </u>						<u> </u>	>				 	sbestos			_
L		0 ((1) // ()) 7			╽			7 2			1		7	77.0			L	<u> </u>	シアな				L	<u></u>	and and				Color			Stereo Scope	,
L		2	-			Ļ			<u>ک</u>	_		\downarrow						١.		<u>ک</u>	-			L		<u>خ</u>				Homog			o Sc	ı
ŀ			<u>}`</u> ₹			1			<u>5</u>	<u> </u>		╀		•	<u>کے</u>			L		$\frac{\zeta}{\zeta_j}$				L		<u>Ş</u>				Textur			ope	
Ŀ	হা হ			- T>	ा ।	 -	न≽	· I -		_	<u>>⊺</u> c	, 5	· >	T⊣	_	- T>	To	Þ	>	C T⊟	_ ।त	T⊳	ा ०			\sim	<u>-</u>	Τ⊳	न्त	Friable			_	_
	Anthophylite Actinolite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remone	Tramplifo	Crockdolite	Amosila	Actinoite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals				
																														Asbes	stos %			_
																														Morph	ology		Op Op	
																														Extinct	ion	\sqcap	Optical Properties	
L			L									L																		Sign of	Elongation	on .	Prop	İ
L																														Birefrin	gence		erties	
				_								L																		Pleoch	roism		, , , , , , , , , , , , , , , , , , ,	
L	_	_	_				L		\downarrow	1	L		<u></u>																	=			꼰	
L			L		_				_			L																		<u> -</u>			_	
L			_	<u> </u>					ļ.			L											_							Fibergla	ass	_	Non-	ĺ
L					_	_	<u> </u>		+				_	_		_					_									Mineral	Wool	_	Asbe	
L					_		U		<u> </u>	F		<u> </u>	V		_	7	-	(<u> </u>			=			<u>ν</u>		#	_		Cellulos	se		Sots	l
F									\vdash			_		\dashv			\dashv			_						4				Hair		-	Perc	I
\vdash		\dashv							\vdash			_		-			\dashv			-			-			4			=	Synthet	tic	-	énta	ŀ
\vdash	Š					-	Š		-	_		=	Ö	\dashv			\dashv	7	<u>a</u>	_			-	//	<u>~</u>	\dashv				Other			Non-Asbestos Percentage (%)	
_	U						Ŋ						Λ		_		_1	O		!					7					Non-Fib	rous	- 15	<u>్</u>	j

tereo Scope

Page | of | O

		т —	-				т					-						_						1	1 - 1		
8	9			2	PS	-				<	5)	1				J	2	L		ર્	<u> </u>	حنح		(Li	Lab ID# ab Use Onl	<u>()</u>	
9	>			7	70				7	9				(90	,				Ī		2			Field ID/ (Client Reference)		
Location Willing IX 1 Thed	Material 000 C		~ /	Location	<i>(</i>)	Material			Location		Material		=	Location		~	Material			Location	_	-	Material		Material / Location	lı.	Temp in Celcius = 2(
0			,	0				(<u>۔</u>			T	(3						>				% of A	sbestos		
BC				O RO	,			,	2000					S 23 S	i				-	S				Color			2
0 B2CN 6M				2	١				<u> </u>					_					-					Homog	jeneity	Steleo Scope	אָר אָר
8				8	-				Ş					8)					8				Texture	1	_ <u> </u>	5
	NO.	ы	ъ т	<u> </u>	<u>}_</u> πਙ	10	ъ	ъ Т-	ر مات			Ļ	ıъ	<u> </u>	_			-	<u></u>	<u>5</u>		<u> </u>		Friable			
Crocidolite Tremolite Anthophylite Actinolite	Chrysotile	Actinolite	Anthophylite	Tremolite	Amosite	Chrysotile	Actinolite	Anthophylite	remelite	Anosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	remolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals			
	V																							Asbes	stos %		
	3																							Morpho	ology	ဋ)
	É																							Extinct	ion	Optical Properties	-
	4																							Sign of	Elongation	1 6]
	<u>,</u>																							Birefrin	gence	erties	:
	٤																							Pleochi	roism		
	1955	1		_					\perp		L						_			\perp				=		- 조	,
	1550					_		1	\perp					_										<u> </u>	·		
	-					4			\downarrow								4			_			_	Fibergla	ass	Non	:
	\dashv			+		\dashv			╀			L		_			4			1			┪	Mineral		Asbe	
	_			-		\dashv	•		╀					-			4			\dashv				Cellulos	se	stos	
	\dashv			+		\dashv			-					\dashv		_	+			\dashv		-	┪	Hair		Perc	
	\dashv			+		+			╁		-			+			+			+			\dashv	Synthet	ic	enta	
S	\dashv	100		+		\dagger	00		+			100	 ວ້	+			+		•	+			1	Other Non-Fib	roue	Non-Asbestos Percentage (%)	
		ï	<u>, </u>	1				7	1										,						1043	<u> </u>	1

Tarbell Hall

Page 12 of 18

ſ				G	م ان	T				9.	2	T				9	- -	T				9	-/	Ţ			_	<u> </u>	·		Lab ID#		
								•	/ ((-		7	<u></u>						<u>/</u>		•	9	フーナ)		b Use Only Field ID/ Reference))	
	TAKE ON WINDOW	Location	ocation .	Crove	Material		<i>.</i>	Location			Material .		<u>~</u>	Location			Material		7	Location		11	Material			Location			Material		Material / Location	remp in ceicins = _21	Temp in Colcius = ? (
		<u> </u>	,																											% of As	bestos		1
		0 m 42 m	<u>.</u>			L						L																		Color		Stereo Scope	!
		<u> </u>	<u> </u>			Ļ																								Homoge	neity] SC	,
L		- 5	<u>}</u>			L																		L						Texture		ğ	İ
Ļ	- ন চ	~< T=	_ ਜਨ	15	10	Ļ	Тъ	Т	10	15		Ļ	T	سا	16	Γ.	I G	Ļ	<u></u>	T	_	T	_	Ĺ	1 =		_	T	1 =	Friable		<u> </u> _	╛
Acuiolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals			ľ
L	L	L					L																							Asbest	os %		1
																														Morphol	ogy	Opti	
		_		L																						į				Extinctio	n	tical	
L	L																													Sign of E	longation	cal Properties	l
																														Birefring	ence	ertie	l
																	٦													Pleochro	ism	S	ı
L			Ш																						٦					=			1
																														<u> </u>		꼰	١
L		-	_								_																			Fiberglas	s	Nor	1
L					_						4									\bot										Mineral V	Vool	1-Ast	985
L					4						4			\rfloor	···					1										Cellulose		esto	ľ
L			_		_			_			1			_			4			4			_			_[Hair		Non-Asbestos Percentage (%)	
L		4			4			_			4			\downarrow			1		_	4			_							Synthetic		rcent	
-	_	_			-		_	-			4			4	_		4			4			_	_		_				Other		age	
L	Ö							╛						\perp															l	Non-Fibro	ous	%)	
								DNA						AVA						DVA	•					DNA							

May Ham

Page 13 of 6

	9	70	ì				-	78	y				-	[]	7					U	/			4	2	5		Lab ID# (Lab Use On!	1)	
2	シ〜	- /-			(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				7	<u>Q</u>	ブハ					=								<u> </u>		Field ID/ (Client Reference)		
Location			Material	2		Location			Material	1, +4, 1/(00)		Location	D CO CLUXPER	いった。ことに			<u></u>	Location			Material			Location	(1	•	Material	Material / Location	remp in Ociona	Temp in Celcius = 21
0					1	0 2 2 7						<u>5</u>						21110					2	3				% of Asbestos	٫	(A
7,9	<u>` </u>		_			<u> </u>	<u>`</u>		-		-	<u> </u>	•			_						L	<u> </u>	<u> </u>				Color		Stereo Scope
5	0 6x x 60				•••	<u> </u>	_ হ			L		<u>,</u> 5	<u> </u>			_		<u> </u>	<u> </u>				-	<u>ک</u> چ				Homogeneity	- 8	Sco
1	Amosite Crocidolite Tremolite Anthophylite				_	<u>Z</u>	/ <			┞	_	<u>S</u>	<u>\</u>					_	<u>></u>			-	_	<u> </u>				Texture Friable	_ T	3
집절급	Location 0 6% N W			Act	₽	- [7	ठ्ठ	Αm	읈	Act	An	급	င္ပ	À	일	Act	à	I de	<u>်</u>	A	ડ	Act	Ant	Tre	당 S	Am	윤		1_	
Tremolite Anthophylite Actinolite	Location 0 6% N Cocidolite Annollie Anthophylite			Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals		
	Location 0 67 N CAN Crocidollite Annosite Tremolite Anthophylite																								-			Asbestos %		
	Location O 67 N Amosite Crocidolite Tremoite Anthophylite																											Morphology	Optic	Ç
	Location 0 67 N W																											Extinction	lical lical	#
																												Sign of Elongation	i riopeines	פרים
																												Birefringence	i ci	0 I i i
																												Pleochroism		,
																												=		<u> </u>
																												H		_
			_	_							_		_															Fiberglass		2 2 3
3		-/		2	کر		7	7		7			+	-1												. <u>-</u> .		Mineral Wool	- Associ	۸.
			4			\dashv																		_				Cellulose	8018	2
			4						_			_			_									-				Hair	Parc	0
			\dashv			_									_						_			\dashv			\dashv	Synthetic	Noil-Aspestos Percentage (%)	<u> </u>
			+	0	2	_			\dashv	//	<u> </u>	_			_	_	00	_			_	_	~	-			_	Other	ge (7	7, 10/
ς.				C	9					_	3						0						8					Non-Fibrous	ိ	2

Torbed Hall

Page (7 of)6

a	C2	a	0)	69	Lab ID# (Lab Use Only)	
139	196	2	CA	Q)	Field ID/ (Client Reference)	
Jain Compuned Location Walls	Material \ \ Location \	Material (\ Location	Material \(\) Location \(\)	Material () Location	Material / Location	Temp in Celcius = 🏒
0 .	0	0	G	0	% of Asbestos	(0
W W	64	2 × 20 × 20 × 20 × 20 × 20 × 20 × 20 ×	2 EN	643	Color	Stereo Scope
2	7/5	2	ک	2	Homogeneity	o Sco
\$	7/18	3/2	7/8	7/8		ppe
				माना ना ता व	Friable	
Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocldolite Tremolite Anthophylite Actinolite	Asbestos Minerals	
					Asbestos %	
					Morphology	Op
					Extinction	tical
					Sign of Elongation	Optical Properties
					Birefringence	ertie
					Pleochroism	8
					=	77
					H	R
					Fiberglass	Nor
	H &	7 R	Z 88	T CP	Mineral Wool	า-Asb
					Cellulose)esto
					Hair	s Pe
					Synthetic	Non-Asbestos Percentage (%)
					Other	age (
ίσο	S	15	15	े	Non-Fibrous	3

when their

	Material (Location							C	F	<u></u>				C	<u>ノ</u>	7	T				٢	6				0	Š	d a	Lab ID# (Lab Use Only))	
		رِ	7	`				-		į V						- 7					して	ンジノ				7)		Field ID/ (Client Reference)	
	Location 0 WW (-,	Location		_	Material		=	Location		_	Waterial		~~	Location	· : <u>-</u>		Material		2	Location			Material	Material / Location	remp iii celcius – 2)
		3						0						_					,	0					C	2				% of Asbestos	
	(L		(-			L		7	- -			L		2						<u> </u>				Color	Stereo Scope
<u> </u>	Material () Location ()					L			<u> </u>					· {	<u> </u>					<u> </u>	_			L		<u>₹</u>				Homogeneity	0 %
		n mw wwy							<u> </u>			L		_	Σ			_		7	<u>-</u>					<u>Ş</u>			··	Texture	le le
> >	— ⊟						⊳	_ ⊟	८ ाठ	Ī≽	ाठ		I>	<u> </u>	<u>_</u>	T≽	To	Þ	- ⊾	<u> </u>	<u>্</u>	ı>	0	D	 	<u> </u>	ਨਿ	ĪΣ	īa	Friable	
Anthophylite Actinolite	D www way					Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals		
	Material 0 WW WY																													Asbestos %	
	Material Location 0 WW WW																													Morphology	စ္စ
	Kw my							L	L								L												Extinction	Optical Properties	
		<u> </u>	L	1								L															!			Sign of Elongation	Prop
	<u> </u>																													Birefringence	erties
			L	1																										Pleochroism	
		_																											=	22	
	<u> </u>		L		4																					4				<u> </u>	
					_						_						_													Fiberglass	Non
											_			_						\dashv						_				Mineral Wool	-Asb
	_				4				·								_									_			ļ	Cellulose	estos
		_			4			_			4						_			4			4			\downarrow				Hair	s Per
		lacksquare			+			_			4			4			4			4			4			\bot			-1	Synthetic	Non-Asbestos Percentage (%)
~		_			+	,	_				4		>				4		<u></u>	\dashv			4	_	<u>-</u>	4			_	Other	age (
8						Ò	Š) 00						0				\perp	700	3				_	Non-Fibrous	%)

Page 16 18

] . <u>-</u>			Lab ID#	
14	13	12	[//	10	(Lab Use Only)	
Nh(thi	TX TX	134	39	Field ID/ (Client Reference)	
Material / Location)	Material Sure Location That Tooks	Material \\ Location (Material ((Location ()	Material (\ Location	Material / Location	Temp in Celcius = 21
0	0	0	0	0	% of Asbestos	
MC	0 ML	M	W	۶	Color	Ster
, S	N	٤,	W	Ž	Homogeneity	Stereo Scope
OMC N any	av	(M)	(AV)	(in	Texture	cope
			Y	1	Friable	
Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite	Asbastos Minerals	
					Asbestos %	
					Morphology	o _l o
					Extinction	tical
					Sign of Elongation	Optical Properties
					Birefringence	ertie
					Pleochroism	°
					=	
						꼰
				- F	iberglass	Non
				A	/lineral Wool	-Asbe
					Celiuiose	esto
					lair	Perc
					ynthetic	Non-Asbestos Percentage (%)
8		8			Other	apř
00/	00	ठ	100	000	lon-Fibrous	<u> </u>

Tarout Hell

Page of (8)

																								/	18		76	- -\	5	Lab ID# (Lab Use Only)	
																								<i>F</i>	\\ \ \		/ -)		Field ID/ (Client Reference)			
									Material			Location			Material			Location			Material			Location			Material	Material / Location	Temp in Celcius =			
																								(0				% of Asbestos			
																									2000	:			Color	Stere		
																										Z	<u>. </u>			Homogeneity	Stereo Scope	1
																										E	<u>`</u>			Texture	öpe	1
				_																		T		L	_	≺	<u></u>			Friable		
Actinolite	Anthophylite	Tremolite								Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals			
П																														Asbestos %		
																														Morphology	၂၀	
																														Extinction	Tical	
						Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite Chrysotile																								Sign of Elongatio	Prop	
П																														Birefringence	Optical Properties	
																														Pleochroism	7	
								8																						=	_ 22	
																														H		
									<u> </u>																					Fiberglass	Non	
									_					_																Mineral Wool	-Asb	1
							Amosite Crocidolite Tremolite Anthophylite Actinolite																							Cellulose	Non-Asbestos Percentage (%)	
						_	Amosite Crocidolite Tremolite Anthophylite Actinolite																							Hair	s Per	
																							_			_				Synthetic	cent	
									_														_							Other	age (
<u> </u>																									\mathcal{S}					Non-Fibrous	స్త్రి	

Score Tabal Hall

Page 18 of 18

EMSL Order: 131605080 Customer ID: CDWC26

Customer PO: Project ID:

Phone: (508) 875-2657

CDW Consultants Fax:

40 Speen Street **Received Date:** 10/18/2016 9:30 AM

Suite 301 Analysis Date: 10/25/2016 Framingham, MA 01701 Collected Date: 10/03/2016

Project: Fernald #62

Attention: Susan Cahalan

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

0	December 1	A		sbestos	Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
IA	Exterior Doors - Gray Door Caulk	Brown Non-Fibrous		100% Non-fibrous (Other)	None Detected
31605080-0001	Boor Gaunt	Homogeneous			
		-	HA: 1		
1B	Exterior Doors - Gray	Brown		100% Non-fibrous (Other)	None Detected
131605080-0002	Door Caulk	Non-Fibrous Homogeneous			
131003000-0002		Homogeneous	HA: 1		
1C	Exterior Doors - Gray	Brown		100% Non-fibrous (Other)	None Detected
	Door Caulk	Non-Fibrous		,	
131605080-0003		Homogeneous	110.4		
	Exterior Windows - Dr	Brown	HA: 1	1000/ Non fibrage (Other)	None Detected
2A	Brown Caulk	Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605080-0004		Homogeneous			
			HA: 2		
2B	Exterior Windows - Dr	Brown		100% Non-fibrous (Other)	None Detected
131605080-0005	Brown Caulk	Non-Fibrous			
3100000-0005		Homogeneous	HA: 2		
2C	Exterior Windows - Dr	Brown		100% Non-fibrous (Other)	None Detected
	Brown Caulk	Non-Fibrous		. 56 /6 . 1611 1121 646 (641.61)	20.00.00
131605080-0006		Homogeneous			
			HA: 2		
BA	Ductwork HVAC -	Red Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605080-0007	Seam Sealant, Red	Homogeneous			
			HA: 3		
3B	Ductwork HVAC -	Red		100% Non-fibrous (Other)	None Detected
	Seam Sealant, Red	Non-Fibrous			
131605080-0008		Homogeneous	HA: 3		
3C	Ductwork HVAC -	Red	IIA. V	100% Non-fibrous (Other)	None Detected
50	Seam Sealant, Red	Non-Fibrous		100% Noti-fibrous (Other)	Notic Detected
131605080-0009		Homogeneous			
			HA: 3		
4A	Interior Windows -	Gray		98% Non-fibrous (Other)	2% Chrysotile
131605080-0010	Glaze	Non-Fibrous Homogeneous			
		Tiomogeneous	HA: 4		
‡В	Interior Windows -				Positive Stop (Not Analyzed
	Glaze				, , , , , , , , , , , , , , , , , , , ,
131605080-0011			HA: 4		
10	Interior Mindous		HA: 4		Danishua Otan (Nlat Arrahama)
4C	Interior Windows - Glaze				Positive Stop (Not Analyzed
131605080-0012	Sideo				
			HA: 4		

EMSL Order: 131605080 **Customer ID:** CDWC26

Customer PO: Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-A	sbestos	<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
5A	Interior Doors - Black Glaze	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605080-0013		Homogeneous	HA: 5		
5B	Interior Doors - Black Glaze	Black Non-Fibrous	<u> </u>	100% Non-fibrous (Other)	None Detected
131605080-0014	Giazo	Homogeneous	HA: 5		
6A	First Floor - 1'x1' Gray Floor Tile	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605080-0015		Homogeneous	HA: 6		
6B	First Floor - 1'x1' Gray Floor Tile	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605080-0016	. 1001 1.110	Homogeneous	HA: 6		
6C	First Floor - 1'x1' Gray Floor Tile	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605080-0017		Homogeneous	HA: 6		
6D	First Floor - 1'x1' Gray Floor Tile	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605080-0018		Homogeneous	HA: 6		
6E	First Floor - 1'x1' Gray Floor Tile	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605080-0019		Homogeneous	HA: 6		
7A	Under 1'x1' Gray Floor Tile - Black	Black Non-Fibrous		90% Non-fibrous (Other)	10% Chrysotile
131605080-0020	Mastic	Homogeneous	HA: 7		
7B	Under 1'x1' Gray Floor Tile - Black				Positive Stop (Not Analyzed)
131605080-0021	Mastic		HA: 7		
7C	Under 1'x1' Gray Floor Tile - Black				Positive Stop (Not Analyzed)
131605080-0022	Mastic		HA: 7		
7D	Under 1'x1' Gray Floor Tile - Black				Positive Stop (Not Analyzed)
131605080-0023	Mastic		HA: 7		
7E	Under 1'x1' Gray Floor Tile - Black				Positive Stop (Not Analyzed)
131605080-0024	Mastic		HA: 7		
8A	Walls & Ceiling - Skim Coat, White	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605080-0025	Skilli Coat, Wille	Homogeneous	HA: 8		
8B	Walls & Ceiling - Skim Coat, White	White Non-Fibrous		100% Non-fibrous (Other)	None Detected
131605080-0026	Skilli Coat, Wille	Homogeneous	HA: 8		

EMSL Order: 131605080 **Customer ID:** CDWC26

Customer PO: Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample Description Appearance % Fibrous % Non-Fibrous % Type	<u>tos</u>			
Skim Coat, White	% Type			
#A: 8 #BD Walls & Celling - Skim Coat, White Non-Fibrous Homogeneous HA: 8 #BE Walls & Ceiling - Skim Coat, White Non-Fibrous Homogeneous HA: 8 #BE Walls & Ceiling - Skim Coat, White Non-Fibrous Homogeneous HA: 8 #BE Walls & Ceiling - Skim Coat, White Non-Fibrous Homogeneous HA: 8 #BE Walls & Ceiling - Skim Coat, White Non-Fibrous Homogeneous HA: 8 #BE Walls & Ceiling - Skim Coat, White Non-Fibrous Homogeneous HA: 8 #BE Walls & Ceiling - Skim Coat, White Non-Fibrous (Other) None Details (Companies) None Detai	ected			
8D Walls & Celling - Skim Coat, White Non-Fibrous Homogeneous				
Homogeneous	ected			
Skim Coat, White				
HA: 8	ected			
Tar Paper Fibrous Homogeneous HA: 9 9B Under Slate Roof - Tar Paper Fibrous Homogeneous HA: 9 9C Under Slate Roof - Tar Paper Fibrous Homogeneous HA: 9 9C Under Slate Roof - Tar Paper Fibrous Homogeneous HA: 9 9C Fibrous HA: 9 10% Synthetic Homogeneous HA: 9 10% Synthetic Homogeneous HA: 9 10% Synthetic Homogeneous HA: 9 10% Synthetic Homogeneous HA: 9 10% Synthetic Homogeneous HA: 9 10% Synthetic Homogeneous HA: 9 10% Synthetic Homogeneous HA: 9 10% Synthetic Homogeneous HA: 9 10% Synthetic Homogeneous HA: 9 10% Synthetic Homogeneous HA: 9 10% Synthetic Homogeneous HA: 9 10% Synthetic Homogeneous HA: 9 10% Synthetic Homogeneous HA: 9 10% Synthetic Homogeneous HA: 9 10% Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HOW Synthetic HA: 9 10% Synthetic HOW Synthetic H				
9B Under Slate Roof - Tar Paper Fibrous 10% Synthetic Homogeneous HA: 9 9C Under Slate Roof - Tar Paper Fibrous 10% Synthetic Homogeneous HA: 9 131605080-0032 HA: 9 10A Top Flat Roof Layer - Black Fibrous Homogeneous Ha: 10 131605080-0033 HA: 10 10B Top Flat Roof Layer - Black Fibrous Homogeneous Ha: 10 10B Top Flat Roof Layer - Black Fibrous Homogeneous Ha: 10 10C Ellulose 60% Non-fibrous (Other) None Determine Top Flat Roof Layer - Black Homogeneous Ha: 10 10B Top Flat Roof Layer - Black Fibrous Homogeneous Ha: 10 10B Top Flat Roof Layer - Black Fibrous Homogeneous Ha: 10	ected			
Tar Paper Fibrous Homogeneous HA: 9 9C Under Slate Roof - Tar Paper Fibrous Homogeneous HA: 9 100 Under Slate Roof - Tar Paper Fibrous Homogeneous HA: 9 100 Under Slate Roof - Tar Paper Fibrous Homogeneous HA: 9 100 Cellulose Fibrous Homogeneous HA: 9 100 Cellulose HA: 9 100 Cellulose Fibrous HA: 10 100 Top Flat Roof Layer - Black Tar Fibrous Homogeneous HA: 10 100 Cellulose Fibrous HOmogeneous HA: 10 100 Cellulose Fibrous HOmogeneous HA: 10				
9C Under Slate Roof - Tar Paper Fibrous 10% Synthetic HA: 9 131605080-0032 HA: 9 10A Top Flat Roof Layer - Black Fibrous Homogeneous Hom	ected			
Tar Paper Fibrous Homogeneous HA: 9 10A Top Flat Roof Layer - Black Fibrous Homogeneous HA: 10 10B Top Flat Roof Layer - Black Tar Fibrous Homogeneous HA: 10 10B Fibrous Homogeneous HA: 10 10B Fibrous Homogeneous HA: 10 10B Fibrous HOW Cellulose Fibrous HOW Cellulose Fibrous HOW Cellulose Fibrous HOW Cellulose Fibrous Fibrous				
10A Top Flat Roof Layer - Black 40% Cellulose 60% Non-fibrous (Other) None Determination of the state of the	ected			
Black Tar Fibrous Homogeneous HA: 10 Top Flat Roof Layer - Black Fibrous HA: 10 None Determine the control of the control				
HA: 10 Top Flat Roof Layer - Black 40% Cellulose 60% Non-fibrous (Other) None Determine Black Tar Fibrous	ected			
Black Tar Fibrous				
131605080-0034 Homogeneous	ected			
HA: 10				
10C Top Flat Roof Layer - Black 40% Cellulose 60% Non-fibrous (Other) None Dete	ected			
131605080-0035 Homogeneous HA: 10				
Top of Roof Deck on Black 90% Non-fibrous (Other) 10% Chryst Concrete - Roof Tar Non-Fibrous	sotile			
131605080-0036 Homogeneous HA: 11				
Top of Roof Deck on Positive Stop (No Concrete - Roof Tar	ot Analyzed)			
131605080-0037 HA: 11				
11C Top of Roof Deck on Concrete - Roof Tar	ot Analyzed)			
131605080-0038 HA: 11				
12A Foundation - Coating, Brown 100% Non-fibrous (Other) None Determined Brown-Black Non-Fibrous	ected			
131605080-0039 Homogeneous HA: 12				
12B Foundation - Coating, Brown 100% Non-fibrous (Other) None Determined Brown-Black Non-Fibrous	ected			
131605080-0040 Homogeneous HA: 12				

EMSL Order: 131605080

Customer ID: CDWC26

Customer PO:

Project ID:

Analyst(s)	
Kevin Pine (32)	

Steve Grise, Laboratory Manager or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3, VT AL998919, Maine Bulk Asbestos BA039

CDW Consultants

40 Speen Street

Suite 301

Attention: Susan Cahalan

EMSL Order: 131605074 Customer ID: CDWC26

Customer PO: Project ID:

Phone: (508) 875-2657

Fax:

Received Date: 10/18/2016 9:30 AM

Analysis Date: 10/25/2016

Framingham, MA 01701 Collected Date: 09/23/2016

Project: Fernald Greenhouse

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			<u>oestos</u>	<u>Asbestos</u>				
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type			
1A	Exterior Windows - White Glaze	Gray Non-Fibrous		100% Non-fibrous (Other)	<1% Chrysotile			
131605074-0001		Homogeneous	HA: 1					
1B	Exterior Windows - White Glaze	Gray Non-Fibrous		100% Non-fibrous (Other)	<1% Chrysotile			
131605074-0002		Homogeneous	HA: 1					
1C	Exterior Windows - White Glaze	Gray Non-Fibrous		100% Non-fibrous (Other)	<1% Chrysotile			
131605074-0003		Homogeneous	HA: 1					
2A	Roof - Wooden Structure - Shingle	Black Fibrous	10% Glass	90% Non-fibrous (Other)	None Detected			
131605074-0004		Homogeneous	HA: 2					
2B	Roof - Wooden Structure - Shingle	Black Fibrous	10% Glass	90% Non-fibrous (Other)	None Detected			
131605074-0005		Homogeneous	HA: 2					
2C	Roof - Wooden Structure - Shingle	Black Fibrous	10% Glass	90% Non-fibrous (Other)	None Detected			
131605074-0006		Homogeneous	HA: 2					
3A	Roof Greenhouse - Roof Tar	Black Non-Fibrous		95% Non-fibrous (Other)	5% Chrysotile			
131605074-0007		Homogeneous	HA: 3					
3B	Roof Greenhouse - Roof Tar				Positive Stop (Not Analyzed)			
131605074-0008			HA: 3					

Analyst(s)	
Michael Mink (7)	

Steve Grise, Laboratory Manager or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3, VT AL998919, Maine Bulk Asbestos BA039

Asbestos Identification Laboratory

165 New Boston St., Ste 227 Woburn, MA 01801 781-932-9600

Web: www.asbestosidentificationlab.com Email: mikemanning@asbestosidentificationlab.com **Batch:** 17116

October 26, 2016

Susan Cahalan CDW Consultants, Inc. 40 Speen St. Suite 301 Framingham, MA 01701 **Project Number:**

Work Received:

Project Name: Waltham Fernald

2016-10-24

Date Sampled: 2016-10-05

Work Analyzed: 2016-10-26

Analysis Method: BULK PLM ANALYSIS EPA/600/R-93/116

Dear Susan Cahalan,

Asbestos Identification Laboratory has completed the analysis of the samples from your office for the above referenced project .

The information and analysis contained in this report have been generated using the EPA /600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials. Materials or products that contain more than 1% of any kind or combination of asbestos are considered an asbestos containing building material as determined by the EPA. This Polarized Light Microscope (PLM) technique may be performed either by visual estimation or point counting. Point counting provides a determination of the area percentage of asbestos in a sample. If the asbestos is estimated to be less than 10% by visual estimation of friable material, the determination may be repeated using the point counting technique. The results of the point counting supersede visual PLM results. Results in this report only relate to the items tested. This report may not be used by the customer to claim product endorsement by NVLAP or any other U.S. Government Agency.

Laboratory results represent the analysis of samples as submitted by the customer. Information regarding sample location, description, area, volume, etc., was provided by the customer. Asbestos Identification Laboratory is not responsible for sample collection activities or analytical method limitations. Unless notified in writing to return samples, Asbestos Identification Laboratory discards customer samples after 30 days. Samples containing subsamples or layers will be analyzed separately when applicable. Reports are kept at Asbestos Identification Laboratory for three years. This report shall not be reproduced, except in full, without the written consent of Asbestos Identification Laboratory.

• NVLAP Lab Code: 200919-0

Mechael Thamy

- Massachusetts Certification License: AA000208
- State of Connecticut, Department of Public Health Approved Environmental Laboratory Registration Number: PH-0142
- State of Maine, Department of Environmental Protection Asbestos Analytical Laboratory License Number: LB-0078(Bulk) LA-0087(Air)
- State of Rhode Island and Providence Plantations. Department of Health Certification: AAL-121
- · State of Vermont, Department of Health Environmental Health License AL934461

Thank you Susan Cahalan for your business.

Michael Manning Owner/Director Susan Cahalan CDW Consultants, Inc. 40 Speen St. Suite 301

Project Number:

Project Name: Waltham Fernald

Framingham, MA 01701

 Date Sampled:
 2016-10-05

 Work Received:
 2016-10-24

 Work Analyzed:
 2016-10-26

Analysis Method: BULK PLM ANALYSIS EPA/600/R-93/116

FieldID	Material	Location	Color	Non-Asbestos %	Asbestos %
LabID					
Roof-1A-60	Roof Shingle	Roof	black	Fiberglass 30	None Detected
	\neg			Non-Fibrous 70)
189412 Roof-1B-60	Doof Chinale	Roof	black	Fiberglass 20	None Detected
K00I-1D-00	Roof Shingle	KOOT	ыаск	Fiberglass 20 Non-Fibrous 80	
189413					´l
Roof-2A-60	Paper	Under Roof Shingle	black	1	None Detected
	\dashv			Non-Fibrous 20)
189414 Roof-2B-60		U. Lan Deaf Chinala	l. I. s.l.	71	- h Datactod
R001-2B-6U	Paper —	Under Roof Shingle	black	Cellulose 75 Non-Fibrous 25	5 None Detected
189415			_	INOII-E IDIOGO 23	`
Roof-1A-20	Roof Shingle	Roof Building 20	black	Cellulose 35	5 None Detected
	_	-		Non-Fibrous 65	5
189416			<u> </u>		
Roof-1B-20	Roof Shingle	Roof Building 20	black		5 None Detected
189417				Non-Fibrous 65)
Roof-1A-50	Roof Tar	On Metal Deck Building 50	black	Cellulose 20	None Detected
——				Non-Fibrous 80	-
189418			<u> </u>		
Roof-1B-50	Roof Tar	On Metal Deck Building 50	black		5 None Detected
189419				Non-Fibrous 75	٥
Roof-1C-50	Roof Tar	On Metal Deck Building 50	black	Cellulose 15	5 None Detected
		On Motor 2001 2 and	Diagn	Non-Fibrous 85	
189420					
2A-50	Flashing	Foundation Building 50	black	Non-Fibrous 100	None Detected
100401					
189421 2B-50	Flashing	Foundation Building 50	black	Non-Fibrous 100	None Detected
<u> </u>	—	Fouridation building 50	Diack	MOH-LIDIORS TO	Morre Deceded
189422					
Roof-1A-56	Black Felt	Under Slate Roof Building	black		None Detected
	\neg	56		Non-Fibrous 40)
189423	District Fall	U. Lan Olata Boof Building	l last.		
Roof-1B-56	Black Felt	Under Slate Roof Building 56	black	Cellulose 55 Non-Fibrous 45	5 None Detected
189424		00		NOII-E IDIOGO I	'
Roof-1C-56	Black Felt	Under Slate Roof Building	black	Cellulose 70	None Detected
——	-	56		Non-Fibrous 30	
189425					

FieldID	Material	Location	Color	Non-Asbestos %	Asbestos %				
LabID									
Roof-1A-52	Roof Tar	On Concrete Deck Building 52	black	Cellulose 1 Non-Fibrous 8	5 None Detected				
189426		52		NOII-FIDIOUS 0	5				
Roof-1B-52	Roof Tar	On Concrete Deck Building 52	black	Cellulose Non-Fibrous 9	5 None Detected 5				
189427			<u> </u>						
Roof-1C-52	Roof Tar	On Concrete Deck Building 52	black	Non-Fibrous 10	0 None Detected				
189428			<u> </u>						
1A-27	Black Mastic	Behind Exterior Brick Building 27	black	Non-Fibrous 10	0 None Detected				
189429 1B-27	Diad. Mastic	Dabind Cytorian Drink	l _{slad} ,	77 Tilberong 10	0 None Detected				
189430	Black Mastic	Behind Exterior Brick Building 27	black	Non-Fibrous 10	0 None Detected				
Roof-1A-15	Black Felt	Under Slate Roof Building	black	Cellulose 7	0 None Detected				
	— Diack i Git	#15	Diack	Non-Fibrous 3					
189431	Dist. Est	Lister Olete Beet B. Hiller	1.11	0.11.1	5 Name Data at a 3				
Roof-1B-15	Black Felt	Under Slate Roof Building #15	black	Cellulose 7 Non-Fibrous 2	5 None Detected 5				
189432	Dist. Est	Lister Olete Beet B. Hiller	1.11		0 M D-+				
Roof-1C-15	Black Felt	Under Slate Roof Building #15	black	Cellulose 7 Non-Fibrous 3	0 None Detected 0				
189433 Roof-1A-27	Tar Paper	Roof #27	black	Non-Fibrous 10	0 None Detected				
189434	— rai rapei	K001 #21	DIACK	Non-Fibrous 10	o None Detected				
Roof-1B-27	Tar Paper	Roof #27	black	Cellulose 1	0 None Detected				
189435		1001 1121	Didon	Non-Fibrous 9					
Roof-1A-61	Gypsum Deck	Building 61 Roof	gray	Cellulose	5 None Detected				
		January 61 11661	اواس	Non-Fibrous 9					
189436									
Roof-1B-61	Gypsum Deck	Building 61 Roof	gray	Cellulose Non-Fibrous 9	5 None Detected 5				
189437	O D l	D. Illian Od David	 	0.11.1	2 Maria Data ata d				
Roof-1C-61	Gypsum Deck	Building 61 Roof	gray	Cellulose Non-Fibrous 9	None Detected 7				
189438 Roof-2A-61	Diggis Doof Dance	Lindor Cloto Lindor #C4	blook	G-11-1	8 Detected				
	Black Roof Paper	Under Slate Under #61	black		O Chrysotile 2				
189439	Dia de Da ef Danser	Linday Clata Linday #C4	<u> </u>		Not bealtined				
Roof-2B-61	Black Roof Paper	Under Slate Under #61			Not Analyzed				
189440 Roof-2C-61	Plack Poof Poper	Under State Under #64	 	+	Not Applying				
	Black Roof Paper	Under Slate Under #61			Not Analyzed				
189441									

Wednesday 26 End of Report Page 2 of 2

Mechael Thanny Analyzed by: **Batch:** 17116

			Q.	C CALB	M Rock			€	(00) × (00)	3 > 00	10	1	8	9	4	// Roal / El	2 10 % in		Lab ID# (Lab Use Only) (Client Reference))	# OI Samples Neceived.	Received by/date:	Relinquish by/date:	Contact: AMELICA	506 512 ACS	'a aia	Project Site & #:\\\/\/\	Address 10 Sypon	client: ODW) COUNTAINTS
C	Shirte-	I Motel Aoca	Location	take	Material			Location			Material	of cir		Location		トルシューアレック	Material		Material / Location		80.	MARIO	10101	J. Deliver	1	7	I twon to naid	of sme 301	Trustle
			0 0												╄	of Asbestos	co.	ľ	2011/2	= .e	7 1	G		1	D Zar	•			
	37.					- 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5								2				╀	olor	Sterec	L			\$	~		ב מ		i I
	رچ ا				3/1/2						- 600						╀	lomogeneity	Stereo Scope		ВАТСН#	Date Sampled:	nww.a	(781)932-9600	Vob	165 New Suite 227			
	- 1/2 - 2/17					1		7	/ 5					<u>5</u>	۷ ک			╀	exture	pe		¥	šamp	sbest	932-	֓֞֝֞֝֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ew 227	Asbestos	
ŀ	A	I≱I	<u>;</u>	<u>্</u>	<u> </u>	<u> </u>	≥	੍ਰ ਜ਼	্ ত্রা	≱	Ω	Α	≥	_ [⊒	_ ত্র	2	ĪΩ		riable		1		led:	toside	960	M	Bos	est	Ω
	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Minerals	Asbestos		<u> </u> -	J	1018110	www.asbestosidentificationlab.com	0	Woburn, MA 01801	165 New Boston St.	os Idei	CHAIN OF EPA/600
Ī																		A	sbestos %		t			າlab.c				ntifi	
																		M	lorphology	Opti	(2		äm				Identification	IN OF CUSTC
						Ŀ												E	xtinction	tical I		771		1	JA T	11 - 4	6	n Lab	PAC
																		s	ign of Elongation	Prop		Rev 12/15		W.GX				לו	
		\prod																В	irefringence	ical Properties	2/15	715		1	E. T.		07	•	
ľ					1													Р	leochroism	V ,		*			7		**************************************		
																		Ē		₂	Date.	Anay	Notif	Stop	$ \angle $				Turn
																		ŀ	-	=		Anayzed By: 2	Notify Method: Mail/E-Mail/Verba	Stop on 1st Positive?	Two Day Sty 10 P	Next Day	Same Day	Less 3 Hrs	Page Turnaround Time
						L	109		7	4.		'	65		4	7		Fi	iberglass	Non	10		nod	st Pos	ay Ary) <u>a</u>	Day	3 Hrs	Page nd Tin
			\downarrow			_					_				L			М	lineral Wool	-Asb	100	The list	Maji Vigi	sitiv <i>e</i>	() () () () () ()	3			me c
	C	<u> </u>	-	P							_							C	ellulose	estos	11/4		¥. Ma	<i>K</i> /	ð	<i>"</i>	. —	1/	Sam
1			4			-					-							t	air	; Per			j Ž	es No	لِا		Ls	ΙÄ	nple
			4			╀					4				L.		Synthetic		Non-Asbestos Percentage (%)		M	1	•	Point Count	Wipe	Soil	Bulk	of	
1		~ 1	4			-	7 7				-	_	7		_		Other		ige (°)	l	{	•		ount				B B	
	,	\mathcal{E}_{1}	- 1	80 7 Non-Fibrous		on-Fibrous	ತ	I '	\ \ \																				

	19		18		17		16		15	Lab ID# (Lab Use Only))		
3	TO A	, S C	Rag-JA-	-	91-10h	ĺ	A/A	60	farias-	Field ID/ (Client Reference)			
Codifor	Material / /	on Nedal ACK	Material Rock Tow	Location		for byilding go	Rout Shire	Cocation	Meterial	Material / Location	Temp in Celcius = 2/		
0 75	,	0)	0		0		0		% of Asbestos			
7	2// >	77,	9.,	7	2/	BiC		316	·	Color	Stereo Scope		
<u> </u>	ر م		<u>100</u>	_	<u> </u>	_ `	<u> </u>	5		Homogeneity	o Sc		
7	18	2	1105	7	18	T	1/5	1/2	18	Texture			
≱ा≥ा≘	् गठा≽ाठ	<u> </u>	्र ाठा≥ाठा	, ⊑ा≼ा≼	ाठा≽ाठ	>I≥I∃	— गठा>ाठः	\ \rightarrow	<u>.</u> 	Friable			
Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite	Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite	Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite	Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite	Tremolite Anthophylite Actinolite	Chrysotile Amosite Crocidolite	Asbestos	ı		
										Asbestos %			
										Morphology	ဝွ		
										Extinction	tical		
										Sign of Elongation	Prop		
										Birefringence	Optical Properties		
										Pleochroism	5		
											<u> </u>		
										H			
<u></u>										Fiberglass	Ng P		
2			_	8	4	(), i		_ 1	<u>[</u>]	Mineral Wool	Asb		
25	#	8	#	Ŋ	#	35	F	75	1 -	Cellulose	estos		
		Si I		<u>.</u>						lair	Perc		
		:								Synthetic	Non-Asbestos Percentage (%)		
7		80		59		61		2		Other	ge (%		
22		ਠੱ	<u>:</u>	S		\mathcal{O}		22		lon-Fibrous	ಲ		

temaso

Page Tof

		ייה	,	T				_	つ	Ţ				~	<u> </u>	T					ブ	, T) _A	-	1		Lab	ID#		
			1					Ł	<u> シ</u>					L	2					4	1	4				0			(L	ab Us		y)	
	7		K 92/16/				Se	3	20/20/10/10				文字しい							9/- </td <td></td> <td></td> <td></td> <td>)(</td> <td>9</td> <td>クフをシ</td> <td>0 / 0</td> <td></td> <td></td> <td>Reference)</td> <td>Field ID/</td> <td></td> <td></td>)(9	クフをシ	0 / 0			Reference)	Field ID/		
	Location		waterial .	Black Kelt Location Under State Locat Ray (dury State Material					Partorio			Coation	<i>(</i> , <i>(</i> , <i>(</i> , <i>(</i> , <i>(</i> , <i>(</i> , <i>(</i> , <i>(</i> ,	Material	Material NA	Auro Collinson	- Cocalloll		Masure	The state of the s	Material		Location			Match	Mataria		Material / Location			lemp in Celcius = 2	
C) 3				081				Ĺ	_	0						G	_					0				% of Asbestos						
7	7/2			Ļ	27.6%				L		<u>ام</u>	<u> </u>			L		75	ر د د					2	}			Color					Ster	
	<u> </u>			L	317					L			<u> </u>					-	<u>,</u>					5	•			Homogeneity					Stereo Scope
1	11,	્ટે		317					<u> </u>			<u></u>			L		- 5					_	1	15	<u>`</u>		Texture					ö e	
) - ⊄ <	<u>८</u>	- T⊅	Ιο		2						<u></u>		$\frac{1}{2}$		T A						Ļ	<u>ज्ञाचात्राचा</u>					Friable						
Tremolite Anthophylite Actinolite	Crocidolite	Amosite	Chrysotile	Chrysotile Amosite Crocidolite Tremolite Anthophylite Actinolite			Actinolite	Anthophylite	Tremolite	Cracidolite	Amosite	Chrysotile	ctinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Minerals	Asbestos							
		_								L	_		L															As	bes	tos '	%	T	
																												Мо	rpho	logy		٥	١
							Ц																					Ext	incti	on		Tical	1
																												Sig	n of	Elong	ation	1 2	2
			_		_																							Bir	efring	jence)	Optical Properties	
			_					_		_		_	_		_													Ple	ochr	oism			
			4	_	4	_		_		1	4	_	-	_	4		\perp		_					_				=				│ ┤ <u>콛</u>	
	Ц		\dashv			4			4			-			4	.		_	\perp		4			1				<u> </u>					
			+			\dashv	-		-			\dashv			4			\dashv		_	4			4			4	Fibe	ergla	ss		Non	
55	7		+	0		+	7	_	+			-		<u>. </u>	+			\downarrow			1	_		-			╅			Vool		Asbe	
1			+	2	3	+			+	_		+			+			+			┨	V	Ò	+	*		十		ulos	<u> </u>		sots	
			\dagger		_	+			╁	-		+			╁			+			+			+			╅	lair				Perc	
			\dagger			+			\dagger			+			+			+	_		+			+			1		thetic	-		Non-Asbestos Percentage (%)	-
48	_		+	70	-	+			\dagger	7	<u> </u>	+		-	+) ()	<u>-</u>	+			+	V	3	+			+	othe				ge (%	
				V							<u></u>					_						V)	\perp		_	ľ	on-	Fibr	ous		9	

一次是 一下水水

tenald

page S of

(Lab Use Only Color Homogeneity Reference) Material Location Material Location Material Location Material Location Material Color Homogeneity Texture	Temp in Celcius = 2/ Stereo Scope
The state of the s	= 21
Homogeneity	Stereo Scope
Homogeneity	Stereo Scope
Homogeneity E E Texture	o Scope
L > C C A Texture	pe
	1
Friable Annual Tree To an Ann	Ц
Asbestos Minerals Chrysotile Annosite Crocidolite Tremolite Actinolite Chrysotile Anthophylite Actinolite Chrysotile Annosite Chrysotile Annosite Chrysotile Annosite Chrysotile Annosite Crocidolite Tremolite Chrysotile Anthophylite Actinolite Crocidolite Tremolite Crocidolite Tremolite Anthophylite Actinolite Crocidolite Crocidolite Tremolite Anthophylite Anthophylite Anthophylite Crocidolite Tremolite Annosite Crocidolite Tremolite Annosite Chrysotile Annosite Crocidolite Tremolite Annosite Chrysotile Annosite Chrysotile Annosite Crocidolite Tremolite Annosite Crocidolite Tremolite Annosite Chrysotile Annosite Chrysotile Annosite Chrysotile Annosite Chrysotile	
Asbestos %	
Morphology	Optic
Extinction	ועם
Sign of Elongation	Properties
Birefringence	erties
Pleochroism	
┠ ╎╎╎╎╏┩┪╎┥╎╎╏╎╎╎╏	₂
<u> </u>	
Fiberglass	Non-Asheston
Mineral Wool Or # 7 # Cellulose	Asha
Hair	<u> </u>
Hair Synthetic Other	2
Other	
g g Non-Fibrous	

	Г		_	~ >	,	-		Г			_				_		—	_										-1						۰,						
			`. 	<u>5</u>	<u> </u>	1				-	8	3	<u></u>					3	3	2	!				<u> 2</u>	1	1			Ĵ	3	0	1		(L Lab)	.ab II Use	O# Onl	ly)	
		10.		ا		スロダーボート			Ũ	<u> </u>	C	<u>ء</u>	787					J	Ī	文ライラア	_			ī	$\overline{\wedge}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	のインギー				(C)	れび図				(conce)		Field ID/		
		十八年 まと	Location		I all 10 m	the Many	Material -			Ö		_		Material	<u>ئ</u> ـ	_	Location		<i>=</i> =		Material	2# 42 Con most	Sar Jan	Location		13/4CX-BEI	ること ナ	Material	1.		Cation	5		Material			Material / I postion			Temp in Celcius = 2
-		1	© Œ	<u> </u>	_		1		_	Ž Ž	2			1			<u>C</u>	<u>.</u>			1		C	>						<	>			9/	of a	Asb	estos	<u> </u>		
			くと近ら	_			1			$\frac{2}{5}$	<u> </u>			1	_		7	5					7	2						0/2/20	2			c	olor	•				Stor
-						_	1			-	<u>ر</u>			1				<u> </u>	=		1			2	_		_			7				Н	lomo	gen	eity		adope	2
-			5		-		1		_	Ţ	<u>, \</u>	?	-	┇		- (1	1	È	_		_	7	1	15	_				3	<u>></u>			<u> </u>	extu	re			ador	7
	<u> </u>	<u>-</u>	-T	<u></u>	>	16		<u> </u>	5		 To	175	To	1			ر حد		1.	T	Ļ	. T =		<u>ک</u>	_	-	, -			(<u>.</u>				riabl	е				į
Conforme	Anthophylite	Arthur III	- Conclude	Crocidolite	Amosite	Chrysotile	Carrolle	Actinolita	Anthonhylite	remolite	Crocidolite	Amosite	Chrysotile	Schrönie	Antipolity	nthonhylita	Tremolite	Crocidolite	Amosite	Chrysotile	Actilionie	Andiopriyite	Anthonis dis	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Minerals	Asbestos					
_	\downarrow	\perp	\downarrow	_			L	_			L	L	L	L		1					L								Г					A	sbe	sto	s %		T	7
				1																														M	orph	olog	ЭУ		و	
L	_	_	_	1	_	_	L		1					L	L																			Εx	tinc	tion		ï	tical	
			ļ.	\downarrow	-		L	1	1							1																		Si	gn o	f Elo	ngat	tion	Pro	١
	L		L	\downarrow	_		L		1																	ļ								Bii	refrii	nger	nce		Optical Properties	
_	Ļ		_	1	1	_		$oxed{\perp}$	1		_			L			1	1		_												-		Ple	och	rois	m		ľ	l
-		_	-	1	4			-	1	4	_		_	L	_	L	\downarrow	4		_				\perp	1	1								=					2	1
\vdash		_	_		_	4		L		4							\downarrow							Ļ						\downarrow				<u> </u>						ŀ
\vdash			_			-				+			_				\downarrow							_			1						_	Fib	ergl	ass			Nor	
\vdash		-				+	_		_	1		_	-				Ļ			4		_		L			1			4		_	_	Mir	ıeral	Wo	ol		-Asb	age i
\vdash		_	_		_	+	Ž	<u>></u>		+	#	2	-		V		1	#	·	4	2	ا <u>ک</u>		=	+	<u>`</u>	4			4			_	Cel	lulos	se			esto	<u> </u>
\vdash		\dashv				+				╀			\dashv				╀			+	_						1			\downarrow			4	lai	r			_	s Per	<u>0</u>
-						╁				+			+	_		_	-			4		_					1	_		1				Зуг	thet	ic		_	cent	
7	<u> </u>	\dashv		_		╁	Ž	\ \)		+			+	,	7		L			+	-	رى	_	_			$m{\downarrow}$	_		\downarrow			╌	Oth					Non-Asbestos Percentage (%)	_
	 /)			_		Ţ	С)		1_	_		_	(Λ					1	_	<u>ري</u>						00				_	ľ	lor	-Fib	rous	3		%	1

tanal d

Page S of

			_	······	1						-					-	_							_	-				-	-				_
		١	3	9			,	3	8					,	3					(₹	1	7		3	25	 }			(L		b ID# 'se Oni	(y)	
	<u> </u>	<u>S</u>	9	一大学	,			(0)	· ·	12/18X				9	7 - 7	くのダイスト					=	1 0 mm	١.	5	β	1 Land	1 July /	7			Reference)	Field ID/ (Client		
# 61	Mar State war		てるやちろう	Material Sact	,	<u></u>	Location			Waterial			Location		7	Waterial		なら、タントラントなど	Location		Callor De	Waterial AC	Material		Location		<u> </u>	Material	Motoria		Material / Location			Temp in Celcius = 2
_	27						0						C				L		007	;					5				%	of A	sbes	stos		
-	7	<u></u>			Ļ		$\frac{1}{2}$	<u>?</u>			╀			<u>></u>			L		7	<u> </u>			L		THE	<u>`</u>		_	C	ојог				Stereo Scope
\vdash		ر <u>چ</u> ح			┞		,	<u>ح</u>	•		┞			<u>></u>			L		<u> </u>	<u> </u>					<u> </u>	· 			╀		gene	ity	;	၀ လင့
	7	<u>\ </u>	~				_	<u>{</u>	·		╀	_		5			-			<u>></u>			-		2	.\ 			╀	xtur			_ ;	ope
<u>}</u>	<u>-</u> 	Ω	≥	Ω	A	≥	Ī	_ তা	T≥	Ω	Į	I≥	T=	<u>`</u> ाठ		ि	 >]≽	_ ⊟	्र ात	I≽	Ιο		I≽) ⊟		T>	ī _o	₽-	iable)			
Actinolite	Tremolite Anthophylite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	fremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Minerals	Asbestos				
	_			2									_					L		L									A۶	sbes	stos	%		
				ξ																									Мо	rpho	ology	,		ב ב
				0																									Ex	tinct	ion		_ <u> </u>	112
			_	X		_																							Sig	ın of	Elor	igatio		2
				2																									Bir	efrin	gend	e	al Properties	1
	-			2		_									_		_												Ple	ochi	oisn	1		
\mathbb{H}	-			1,65%	\downarrow	_					_	_						_				_							=					,
			<u></u>	1557			_			_			.			\downarrow									_		[_	\vdash					
-	_			4			_			-		_	\dashv			\downarrow		·	_			_			_				Fib	ergia	iss	,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Non	:
1-6		_		+	\overline{c}	_	 -	_		4			\dashv	_		4			4			_			_			1	Min	eral	Woo		Asb	: :
Ta Pa	5	<u></u>		+	$\overline{}$		-	#	-	1	V	<u>`</u>	+			4		<u>V</u>	-	#		4	_	ં	1	<u>+</u>	_	_	Cel	lulos	e		estos	.
-	-			+			+			+			-			+			+			4			4			十	Hai				Per	·
-	\dashv			+			+			+			+			+			+			-			+			十		thet	ic		Non-Asbestos Percentage (%)	\downarrow
50	j 			+	~	2	+		-	+	//2	<u>0</u>	+		_	+	١	V B	+			+			+			+	Oth				ige (
<u> </u>	[_	<u> </u>	1					V	Ļ		_			_	, į				上	/2	7				۱	lon	-Fib	rous		<u>%</u>	j'

Amald.

Page of

	-						_						-					/{	20	70	1	7)				4	7	Š	Lab ID# (Lab Use Only)	
																			((0)	4	となった、	0 /	2	()(. (100 PO PO PO PO PO PO PO PO PO PO PO PO PO	2		Field ID/ (Client Reference)	
		Location			Material			Location			Material		-	Location			Material			Location	2		Material			Location	S		Material	Material / Location	Temp in Celcius = C
						┢						-							<u> </u>	 >			-		C	·				% of Asbestos	
																-				250					7	2				Color	Stere
		_												•						ż					•	کے				Homogeneity	Stereo Scope
-		_																	_	V,	<u> </u>	///				11	3	•		Texture	ope
										-							-			7	_					<u>ک</u>				Friable	_
Actinolite	Anthonhylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Cracidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Actinolite	Anthophylite	Tremolite	Crocidolite	Amosite	Chrysotile	Asbestos Minerals	
	+			-		T		T									<u> </u>													Asbestos %	
																														Morphology	op Op
				-							Γ																			Extinction	tical
							 			┌																				Sign of Elongation	Prop
																														Birefringence	Optical Properties
						l					Ī	Γ																		Pleochroism	
	1			Γ	Γ																									=	 <u>2</u>
																														-	L
					•																									Fiberglass	Non
																			1						<u>`</u>		_			Mineral Wool	-Asb
							_								_			Ľ	4		\mathcal{H}	`		2	į,		=	1		Cellulose	estos
												_							L											Hair	SPer
						L			_			L			_				L								_			Synthetic	Non-Asbestos Percentage (%)
																			100					_			_			Other	age (
								,	<u> </u>			L						Ц	Ω 20					00	_					Non-Fibrous	<u> </u> 2
																					<u>`</u>				7	Z R					

Page of

Asbestos Bulk Building Material Chain of Custody EMSL Order Number (Lab Use Only):

131605076

EMSL Analytical, Inc. 7 Constitution Way, Suite 107

Woburn, MA 01801 PHONE: (781) 933-8411 FAX: (781) 933-8412

Company	. CDW	Consultants		If		Same Different
		Street; Suite 301				en authorization from third party
City: Fram	ningham		State/Province: MA	Zip/Postal Cod		Country: US
Report To	(Name):	Susan Cahalan		Telephone #: 5		
		cahalan@cdwcc		Fax #:		Purchase Order:
Project Na	me/Num	ber: Fernald		Please Provide		Email Mail
U.S. State	Samples	s Taken: MA				able Residential/Tax Exempt
3 Hour	П	6 Hour	Turnaround Time (ease Check 96 Hour	☐ 1 Week ☐ 2 Week
*For TEM A	ir 3 hr throu	ugh 6 hr, please call a	head to schedule. There is a	premium charge for 3 Ho	our TEM AHERA or EP	A Level II TAT. You will be asked to sign
ana		M - Bulk (reportir		rdance with EMSL's Teri	ms and Conditions loca TEM —	ated in the Analytical Price Guide.
PLM EF		-93/116 (<1%)		☐ TEM EPA NOB	B - EPA 600/R-93/1	
☐ PLM EF	A NOB (<1%)		☐ NY ELAP Meth		- Committee of the Comm
		(<0.25%) 🔲 100		☐ Chatfield Proto	col (semi-quantitati	ve)
Point Coun	t w/Gravi	metric 400 (<0	.25%) 🗌 1000 (<0.1%)	☐ TEM % by Mas	s - EPA 600/R-93/	116 Section 2.5.5.2
☐ NIOSH				☐ TEM Qualitative	e via Filtration Prep	Technique
		od 198.1 (friable in		☐ TEM Qualitative	e via Drop Mount P	
		od 198.6 NOB (nor	n-friable-NY)		Othe	<u>er</u>
☐ OSHA						
-/					0	cal he
Check I	or Posit	ive Stop - Clear	y Identify Homogenous	Group Date San	npled:	SAICO
Samplers i	Name:	isw (a)	10-	Samplers Sig	gnature	
Sample #	HA#		Sample Location		M	aterial Description
1A	1	Root			Din	10
is	1	11			000	7
ic	1	11			11	
JA	2	choop,	nder Shurg	u	Black	Paper
26	2	1	1		(1	
26)	2	11			11	
ZA	3	Cetenia	r unden	X	6100	e, white
38	3	(1				, =
3C	3	(1				
		1				
Client Sam	ple # (s):		1.	/	Total # of	Samples:
Relinquish	ed (Clien	it): 1600	Dat	te: /0/16/	16	Time:
Received (I			Dat	te:		THE PEINEL
Comments	/Special	Instructions:		FX 7774	75438427	OCI 18 2016
			Page 1 of	pages		By 119:30

Asbestos Bulk Building Material Chain of Custody EMSL Order Number (Lab Use Only):

EMSL Analytical, Inc. 7 Constitution Way, Suite 107

Woburn, MA 01801

PHONE: (781) 933-8411 FAX: (781) 933-8412

LABORATORY-PRODUCTS-TRAINING	131	6050	7 5	FAX: (781) 933-8412
Company : CDW Consultants				Same Different
Street: 40 Speen Street; Suite	301	Third		ten authorization from third party
City: Framingham	State/Province: MA		Code: 01701	Country: US
Report To (Name): Susan Caha		-	#: 5088752657	Gountry, Go
Email Address: scahalan@cd		Fax #:		Purchase Order:
Project Name/Number: Ferno			vide Results: Fax	
U.S. State Samples Taken: MA				cable Residential/Tax Exemp
3 Hour ☐ 6 Hour	Turnaround Time (1			I A Week I D O Week
*For TEM Air 3 hr through 6 hr, please	call ahead to schedule. *There is a p	premium charge for	3 Hour TEM AHERA or EP	A Level II TAT. You will be asked to sign
an authorization form for this se	ervice. Analysis completed in according limit	rdance with EMSL's		
PLM EPA 600/R-93/116 (<1%		□ TEM EDA	TEM - NOB - EPA 600/R-93/	
PLM EPA NOB (<1%)	,		Method 198.4 (TEM)	110 3600011 2.5.5.1
Point Count ☐ 400 (<0.25%) ☐	1000 (<0.1%)		rotocol (semi-quantitat	ive)
Point Count w/Gravimetric 400	(<0.25%) 1000 (<0.1%)	☐ TEM % by	Mass - EPA 600/R-93	/116 Section 2.5.5.2
☐ NIOSH 9002 (<1%)		☐ TEM Qualit	tative via Filtration Prep	Technique
NY ELAP Method 198.1 (friab		☐ TEM Qualit	tative via Drop Mount F	
NY ELAP Method 198.6 NOB OSHA ID-191 Modified	(non-friable-NY)		Oth	er
Standard Addition Method				
Check For Positive Stop - Cl			Sampled:	18
Samplers Name: Ma	'Cahal	Sampler	s Signature.	
Sample # HA #	Sample Location		M	laterial Description
14 1 der	A		things	,
1B 1 11			11	
1C 1 11			11	
DA D Rex	A		Blad fa	pr under shit of
28 2 11				0
D D- 11				
3A 3 Cxter	ir undar	S	ullite	graze
38 3	11		11	0
3C 3	((11	-
Client Sample # (s):	200 .		Total # o	f Samples:
Relinquished (Client):	Dat	e: / 6/	16/16	Time:
Received (Lab):	Dat	e:	0.00	ME: BEIWEI
Comments/Special Instructions:			7475438427	OCT 18 2016
	Page 1 of	pages		By 12 9:30

1

Asbestos Bulk Building Material Chain of Custody EMSL Order Number (Lab Use Only):

131605068

EMSL Analytical, Inc. 7 Constitution Way, Suite 107

Woburn, MA 01801

PHONE: (781) 933-8411 FAX: (781) 933-8412

Company	.:CDW	Consultants			1			e Different ctions in Comments**
Street: 40	Speen	Street; Suite 301			Third Pan	ty Billing requ	uires written a	uthorization from third party
City: Fran	ningham		State/Province: MA	Zij	/Postal Cod			ountry: US
Report To	(Name)	Susan Cahalan		Te	lephone #: 5	08875265		
Email Add	dress: S	cahalan@cdwco	nsultants.com	Fa	x #:		Pu	rchase Order:
		nber: Femalo	1#19	Ple	ease Provide	e Results:		Email Mail
U.S. State	Sample	s Taken: MA						Residential/Tax Exempt
☐ 3 Hour	1	6 Hour	Turnaround Time (24 Hour		ptions* – Ple		k SHour II	1 Week 2 Week
*For TEM A	ir 3 hr thro	ugh 6 hr, please call al	head to schedule. *There is a	premium	charge for 3 Ho	our TEM AHE	RA or EPA Lev	rel II TAT. You will be asked to sign
an a			Analysis completed in acco	rdance w	rith EMSL's Ter	ms and Cond		
DIME		<u>M - Bulk (reportin</u> -93/116 (<1%)	g limit)		TALEDA NOE	- FDA 60	TEM - Bull	Section 2.5.5.1
PLM EF				1000	Y ELAP Meth			Section 2.5.5.1
The second second second second	Married State of Contract of	(<0.25%) 1000	(<0.1%)		natfield Proto			
The second second second second			25%) 🔲 1000 (<0.1%)	-				Section 2.5.5.2
☐ NIOSH					EM Qualitativ			
		d 198.1 (friable in	NY)		EM Qualitativ			
		d 198.6 NOB (non			an Quantum	o ria biop i	Other	. cominque
☐ OSHA		the state of the s						
☐ Standa	rd Additio	n Method						
Check I	For Posit	tive Stop – Clearly	/ Identify Homogenous	Group	Date San	mpled:	/	
		and O.	10			11	n/M	
Samplers I	Name:	Wan (aho	alc	18	Samplers Sig	gnature:		
Sample #	HA#		Sample Location				Materi	al Description
IA	1	and floor	2			Lino		flowney_
18	1	11					10	0
10	1	11				11	,	
2A	2	Ceivingo				Fext	red &	Hastr
23	2	11				,	11	
R	2	11				(r	
(IC	2	14				1	(
2E	2	11				1	(
3A	3	1'x1' Gr	ay floor -	nle		Fra	ers ma	un
38	3	1	u				11	
Client Sam	ple # (s):	1/1	•			То	otal # of San	nples:
Relinquish	ed (Clien	Diffelly	Dat	e: /t	15/16			Time:
Received (I	Lab):		Dat	e:	/			THE PEINED
		Instructions:						IN THE REPORT OF THE PERSON SHAPE
				FX	777479	34288	16	DCT 18 2016
			Page 1 of	pages				By 119:30

fernald 19

Asbestos Bulk Building Material Chain of Custody

EMSL Order Number (Lab Use Only):

131605068

EMSL Analytical, Inc.
7 Constitution Way, Suite 107


Woburn, MA 01801

PHONE: (781) 933-8411 FAX: (781) 933-8412

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Sample #	HA#	Sample Location	Material Description
30	3	(1	(1
HA	A	Black Mason & gray for The	Black massic
48	A	10	11
ijc	9	(((t
SA	5	Exterior Walls	fucco
5B	5	1.0	(
50	5	[([1
(OA	6	Shingre - Rest	Lost Shingle
60	4	11	11
6C	6	1(()
74	7	foot inde Shingle.	Black tapaper
78	7	(1	n ,
70	7	(/	10

Page of pages

Asbestos Bulk Building Material Chain of Custody EMSL Order Number (Lab Use Only):

131605078

EMSL Analytical, Inc. 7 Constitution Way, Suite 107

Woburn, MA 01801

PHONE: (781) 933-8411 FAX: (781) 933-8412

10 to 10 to 1	CDW	Consultants	1010	0 0 0		EMSL-E	Bill to: 🖸	Same Dif	ferent	
		Consultants			If B	Bill to is Di	ifferent note in	nstructions in Cor	nments**	
		Street; Suite 301	1					en authorizatio		d party
City: Fran			State/Province: MA		stal Code			Country: U	5	
		Susan Cahalan			none #: 50	88/52	657			
Email Add	dress: S	cahalan@cdwco	female 30	Fax #:				Purchase (
U.S. State	Sample	s Taken: MA	emald ov		Provide I			able Res		Tay Evemnt
0.0. 0.0.	Gumpic	Turcii. Wit	Turnaround Time (able _ ites	idential/	Tax Exempt
3 Hour		6 Hour	24 Hour 48 Hou	ır 🔲	72 Hour	X	96 Hour	☐ 1 Weel		2 Week
*For TEM A	ir 3 hr throu authorizatio	ugh 6 hr, please call a n form for this service.	head to schedule.*There is a p Analysis completed in acco	premium char irdance with E	ge for 3 Hou MSL's Term:	r TEM Ai s and Co	HERA or EP Inditions loca	A Level II TAT. Ited in the Analy	You will be tical Price	asked to sign Guide.
11		M - Bulk (reportin					TEM -			
		-93/116 (<1%)		☐ TEM E	EPA NOB -	- EPA 6	600/R-93/1	116 Section 2	.5.5.1	
PLM EF					AP Metho					
		(<0.25%) 🔲 1000			eld Protoco					
			.25%) 🗌 1000 (<0.1%)					116 Section	2.5.5.2	
☐ NIOSH			• • • •					Technique		
		d 198.1 (friable in d 198.6 NOB (non		LIEMO	Jualitative	via Dro	p Mount P Oth	rep Techniqu	ie	
OSHA		Contract of the contract of th	-IIIaulo-INT)				Oth	01		
☐ Standa										
Check	For Posit	tive Stop – Clearl	y Identify Homogenous	Group	Date Samp	pled:	19/3	29/16		
Samplers	Name	Usw Calva	/	Sam	plers Sign	naturac				
Samplers	I ame.	agai caro		Oan	ipiers digi	Janute.				
Sample #	HA#		Sample Location			- 4	М	aterial Desci	iption	
1A	1	Ceiuno			(lut	e Tex-	Tured	May	the
13	1	(10					1)	, 0		
10	1	10					1	/		
10	1	(1				1,			
IE	1	(1				(/			
2A	0	Second	floge			Liha	oleun	Moor	ency	
28	1	1x					11		0	
20	1	t,					(/			
3	3	FIRT PR	och			1'x1	1 Blue	foor	77'	e
30	3	1	1 (te		
Client Sam	ple # (s)	-			,	,	Total # of	f Samples:		
Relinquish	ed (Clier	nt):	Da	te: /0	116/	14		Time	:	
Received (Dat	te:				Time		MATERIAL PROPERTY AND THE RESERVE AND THE RESE
Comments	/Special	Instructions:		FX	77747	75H3	8427	DE	GE	VE
			Page 1 of	pages						2010 . []

EMSL ANALYTICAL, INC.

femold 20

Asbestos Bulk Building Material Chain of Custody

EMSL Order Number (Lab Use Only):

131605078

EMSL Analytical, Inc.
7 Constitution Way, Suite 107

Woburn, MA 01801 PHONE: (781) 933-8411

FAX: (781) 933-8412

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Sample #	HA#	Sample Location	Material Description
3C	0		
4A	4	Under 1x1 hoorie	1 T four
Us	4	1/	1/
yc	y	1/	11
SA	5	Under exterior wood Clapsowds	Brun Japan
50	5	(1	()
50	5	(1	11
	1 3 6 6		
*Comment	s/Specia	al Instructions:	
		Page of pages	
			OCT 18 2016

Asbestos Bulk Building Material Chain of Custody

EMSL Order Number (Lab Use Only): 1 3 1 6 0 5 0 7 9

EMSL Analytical, Inc. 7 Constitution Way, Suite 107

Woburn, MA 01801

PHONE: (781) 933-8411 FAX: (781) 933-8412

Compan	y: CDW	Consultants			EMSL-Bill to: S If Bill to is Different note in	
		Street; Suite 301		Third Pa		en authorization from third party
City: Fra	mingham	1	State/Province: MA	Zip/Postal Co		Country: US
Report T	o (Name)	Susan Cahalan			5088752657	
Email Ad	dress: S	cahalan@cdwcoi	nsultants.com	Fax #:		Purchase Order:
		nber:Waltham.	fernald 30	Please Provid		Email Mail
U.S. State	e Sample	s Taken: MA	Turnaround Time (1			able Residential/Tax Exempt
3 Hou	Air 3 hr thro	ugh 6 hr, please call at	24 Hour 48 Hou	r 72 Hou	r 96 Hour	1 Week 2 Week A Level II TAT. You will be asked to sign
an		M - Bulk (reporting		rdance with EMSL's To	erms and Conditions loca TEM - I	ted in the Analytical Price Guide.
PLME		-93/116 (<1%)		☐ TEM EPA NO	DB - EPA 600/R-93/1	
PLME					thod 198.4 (TEM)	
Charles and Control of the Control		(<0.25%) 🔲 1000		☐ Chatfield Prof	tocol (semi-quantitativ	ve)
			25%) 🗌 1000 (<0.1%)		ass - EPA 600/R-93/	
	1 9002 (<	1%) od 198.1 (friable in l	NNA		ive via Filtration Prep	A CHARLEST CONTROL OF THE CONTROL OF
		od 198.6 NOB (non-		☐ TEM Qualitati	ive via Drop Mount Pr Othe	
_	ID-191 M	The second secon			500	
☐ Standa	ard Addition	on Method				
Check	For Posi	tive Stop - Clearly	Identify Homogenous	Group Date Sa	ampled: 1941/9	
0		0 10	hale -		2.10	
Samplers	Name:	Visan Car	ace -	Samplers S	ignature:	
Sample #	HA#		Sample Location		Ma	aterial Description
11	1	Halls + +	Cooms		1/X1/6/2	my floor Tile
is	1	11			10	U
C		11			(1	
ID	1	VI			11	
E	1	11			(1	
IF	1	11			11	
16	(11			11	
2A	2	under 1	x1'gray hoa	The	Brou	n lindeum
20	2		1		11	
20	2	1	(1	
Client Sam	ple # (s):				Total # of	Samples:
Relinquish	ed (Clien	t: fine	Date	10/16	16	Time:
Received (/	Date	e: /		DEGETVEN
Comments	s/Special	Instructions:		Fx 7774"	75438427	OCT 18 2016
			Page 1 of 2	pages		ву 119:30

Asbestos Bulk Building Material Chain of Custody

EMSL Order Number (Lab Use Only):

131605079

EMSL Analytical, Inc. 7 Constitution Way, Suite 107

Woburn, MA 01801 PHONE: (781) 933-8411 FAX: (781) 933-8412

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

ample#	HA#	Sample Location	Material Description
20	2	11	11
RE	2	(((1
QF	2	11	(/
26	2	(1	1/
3A	3	Ceiling	TexTired Plaston
30	3	11 8	11
3C	3	11	11
30	3	11	(6
3E	3	1	((
3F	3	11	((
30	3		//
4/1	4	Walks	Theerrod.
48	4	11	11
40	4	16	It -
40	4	4	11
4E	4	γ	10
45	4	1/	17
46	4	(1	11
5A	5	Rock	Shingle
5B	5	11	11
SC	5	11	11
6A	6	feet	Felt under shingle
OB	60	11	11
se	60	1 (11

Page of 2 pages

Asbestos Bulk Building Material Chain of Custody EMSL Order Number (Lab Use Only):

131605070

Woburn, MA 01801

EMSL Analytical, Inc.

PHONE: (781) 933-8411 FAX: (781) 933-8412

7 Constitution Way, Suite 107

Company : CDW Consultants			EMSL-Bill to: ☑ Same ☐ Different If Bill to is Different note instructions in Comments**					
		Street; Suite 301		Third Party Billing requires written authorization from third party				
City: Fran	mingham	1	State/Province: MA	Zip/Postal Cod			intry: US	
Report To	o (Name)	Susan Cahalan		Telephone #: 5088752657				
Email Ad	dress: S	cahalan@cdwco	nsultants.com	Fax #:		Pur	chase Order:	
Project N	ame/Nun	nber: Walthan &	male 42	Please Provide		ax V	Email Mail	
U.S. State	Sample	s Taken: MA	T			axable	Residential/Tax Exempt	
3 Hour			Turnaround Time (7 24 Hour	r 72 Hour	96 Hour		1 Week 2 Week	
*For TEM A	ir 3 hr throi	ugh 6 hr, please call at	nead to schedule. There is a t	premium charge for 3 Ho	our TEM AHERA or E	PA I AVA	I II TAT You will be asked to sign	
an c	an authorization form for this service. Analysis completed in acc PLM - Bulk (reporting limit)			rdance with EMSL's Ter	The second secon	– Bulk	the Analytical Price Guide.	
	PLM EPA 600/R-93/116 (<1%)			☐ TEM EPA NOE			ection 2.5.5.1	
☐ PLM EPA NOB (<1%) Point Count ☐ 400 (<0.25%) ☐ 1000 (<0.1%)			☐ NY ELAP Meth					
				☐ Chatfield Proto				
			25%) 🗌 1000 (<0.1%)	TEM % by Mas				
☐ NIOSH		d 198.1 (friable in I	NY)	☐ TEM Qualitativ	e via Filtration Pre e via Drop Mount			
Annual Control of the		d 198.6 NOB (non-		- TEM GOUNDAY		her	scrinique	
☐ OSHA				П				
Standa	rd Additio	on Method			21	1.		
Check	For Posit	tive Stop - Clearly	Identify Homogenous	Group Date San	npled: [39]	116	7	
Samplers	Name:	Wear Colle		Samplers Sig	gnature an	4		
Sample #			0-11					
1 A	HA#	-Fela:	Sample Location		111.1	Materia	I Description	
117	1	Extend	r windows	<u> </u>	unte	90	a C.	
16	1	(1			11	_		
10	1))			1			
ID		N.			U			
IE	1	11			(1			
DA	2	Lerge &	eans		919"	gran	fartle	
2B	2	0				11		
20	2	11			11			
ZA	3	Large Le	ears under 9'	"x 9" gray	Made	Ma	STE.	
3B	3		11		11	/		
Client Sam	ple # (s):			, ,	Total # o	of Sam	oles:	
Relinquishe	ed (Clien	t):///	Date	e:/0/16/16			Time:	
Received (L			Date	e:			ME: GEOVEN	
Comments/	Special I	nstructions:					3	
			2.	SK 777475	3438427		OCT 18 2016	
			Page 1 of	pages			By le 9:30	

Send ta

Asbestos Bulk Building Material Chain of Custody

EMSL Order Number (Lab Use Only):

131605070

EMSL Analytical, Inc. 7 Constitution Way, Suite 107

Woburn, MA 01801 PHONE: (781) 933-8411 FAX: (781) 933-8412

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

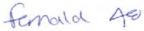
Sample #	HA#	Sample Location	Material Description
3c	3	(1	11
HA	A	Main Area central	1'X1' Tay flow Tice
46	A	17	((
4C	A	1 (1/
A	5	undy 1'x1' tan how The	Black Maine
5B	5	10	11
T	5	- (1/
DA	6	Contral Area	2x4 Fospended Certilog TI
6B	6	(1)	,
a	0	Ц	
7A	7	under State Poot	Black felt
78	7	11	10
70	7	11	11
A	8	Look - Plat fortion	few TAIR
B	8	31	1/
2	8	(1	11
v			
Comment	s/Specia	I Instructions:	

Page ____ of ___ pages

Asbestos Bulk Building Material Chain of Custody

EMSL Order Number (Lab Use Only):

131605077


EMSL Analytical, Inc. 7 Constitution Way, Suite 107

Woburn, MA 01801 PHONE: (781) 933-8411 FAX: (781) 933-8412

Company: CDW Consultants				EMSL-Bill to: ☑ Same ☐ Different If Bill to is Different note instructions in Comments**			
		Street; Suite 301		Third			horization from third party
City: Fram			State/Province: MA	_	Code: 01701		intry: US
		Susan Cahalan		Telephone #: 5088752657			
		cahalan@cdwco		Fax #: Purchase Order:			
Project Na	me/Num	ber:			ovide Results:	Fax 🗸	
U.S. State	Samples	Taken: MA			es: Commerci	ial/Taxable	Residential/Tax Exempt
an a	uthorizatio	igh 6 hr, please call a n form for this service M - Bulk (reportin	 Analysis completed in accor 	remium charge for 3 Hour TEM AHERA or EPA Level II TAT. You will be asked to sign dance with EMSL's Terms and Conditions located in the Analytical Price Guide. TEM - Bulk			
PLM EPA 600/R-93/116 (<1%)				NOB - EPA 600/		ection 2.5.5.1	
☐ PLM EPA NOB (<1%)				Method 198.4 (TE			
Point Count ☐ 400 (<0.25%) ☐ 1000 (<0.1%) Point Count w/Gravimetric ☐ 400 (<0.25%) ☐ 1000 (<0.1%)			the state of the s	Protocol (semi-qua		Danties O.F.F.O.	
				Mass – EPA 600 litative via Filtratio			
Description of the control of the	☐ NIOSH 9002 (<1%) ☐ NY ELAP Method 198.1 (friable in NY)				litative via Drop M		
		d 198.6 NOB (nor			scools and the second	Other	
	ID-191 M						
Standa	rd Additio	on Method				-	
Check	For Posi	tive Stop – Clear	ly Identify Homogenous	Group Date	Sampled: 9	Jeffe	
Samplers	Name:	isca Qu	hollon	Sample	rs Signature;	walk	2
Sample #	HA#		Sample Location			Materia	al Description
1A	1	Cerlina	N .		Bun-	fiberbo	and
is	1	1	1			11	
10	1	(1				4	
ID	1	((4	
IE	1	(1			((1	
2A	2	Top Roof (Cove over-foo	m	Black	Terpa	pr
28	2	,	1			11	
20	2	١	. (11	
BA	3	Bottuner	ext Core OVE	Concrete de	ech	jt =	
33	3		11			(/	
Client Sam	ple # (s)		1.		Tot	tal # of Sam	nples:
Relinquish	ed (Cile	nt):	Da	te: 10/1	9/16		Time:
Received (Labi:		Da	te:			DEMRE IN ED
		Instructions:	Da				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				FX TI	74 7543842	7	OCT 18 2016
Page 1 of Pages						l _P	w 119:30

2

EMSL ANALYTICAL, INC.

Asbestos Bulk Building Material Chain of Custody

EMSL Order Number (Lab Use Only):

131605077

EMSL Analytical, Inc. 7 Constitution Way, Suite 107

Woburn, MA 01801 PHONE: (781) 933-8411 FAX: (781) 933-8412

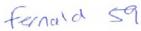
Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Sample #	HA#	Sample Location	Material Description
30	3	11	Ц
	100		
Common	s/Special Instructi	one:	
Comment	oropeolar motructi	ons.	

Asbestos Bulk Building Material Chain of Custody EMSL Order Number (Lab Use Only):

131605071

EMSL Analytical, Inc. 7 Constitution Way, Suite 107


Woburn, MA 01801

PHONE: (781) 933-8411 FAX: (781) 933-8412

Company	Company : CDW Consultants			EMSL-Bill to: ☑ Same ☐ Different If Bill to is Different note instructions in Comments**			
		Street; Suite 301				uthorization from third party	
City: Fran			State/Province: MA		Zip/Postal Code: 01701 Country: US		
		: Susan Cahalan		Telephone #: 5		ound y.	
		cahalan@cdwco		Fax #:			
		nber: femald ±		Please Provide		rchase Order: / Email Mail	
		s Taken: MA	-51			e Residential/Tax Exempt	
*For TEM A an a	□ 3 Hour □ 6 Hour □ 24 Hour □ 48 Hou *For TEM Air 3 hr through 6 hr, please call ahead to schedule.*There is a an authorization form for this service. Analysis completed in acco PLM - Bulk (reporting limit) PLM EPA 600/R-93/116 (<1%) □ PLM EPA NOB (<1%)				TAT) Options* – Please Check r 72 Hour 96 Hour 1 Week 2 Week remial charge for 3 Hour TEM AHERA or EPA Level II TAT. You will be asked to sign redance with EMSL's Terms and Conditions located in the Analytical Price Guide. TEM – Bulk TEM EPA NOB – EPA 600/R-93/116 Section 2.5.5.1		
				- Commence of the Commence of		Section 2.5.5.1	
			1/-0.10/\	NY ELAP Meth			
Point Count ☐ 400 (<0.25%) ☐ 1000 (<0.1%) Point Count w/Gravimetric ☐ 400 (<0.25%) ☐ 1000 (<0.1%)				ocol (semi-quantitative) ss – EPA 600/R-93/116	Section 2.5.5.2		
			.2370) [1000 (<0.1%)		e via Filtration Prep Te		
☐ NIOSH		1%) od 198.1 (friable in	NY)	The state of the s	e via Drop Mount Prep re via Drop Mount Prep		
		od 198.6 NOB (non			Other	recinique	
□ OSHA		Proceedings of the second seco		-	3,1101		
		on Method					
Check	For Posi	tive Stop – Clearly	y Identify Homogenous	Group Date Sar	mpled:980/19)		
Samplers	Name:	risan aho	ula	Samplers Si	gnature: And		
Sample #	HA#		Sample Location		Mater	ial Description	
IA	1	ON Florgia	o pipe in B	asenunT	End cop Si	ealast	
13	(11	*		te		
10	1	1.			11		
ZA	2	ON HVA	c Mechanical	Loan	Gray Seam	1 Sealant	
28	2		(1		11		
3A	3	Mechanica	1 Loan		Flex Come	TV	
38	3	(1			N.E.		
AA	4	Exterior	Doores		Gray Lin	tel Coulk	
AB	4	- 11			4		
AC	A	(1			4		
Client Sam	ple # (s)	. //			Total # of Sa	mples:	
Relinquish	/	Maa	Dat	te:/0/15/16		Time:	
Received (Lab):	/	Dat	te:		ME:CEIVE	
		Instructions:	Dai		5428816	OCT 18 2016	
			Page 1 of	pages		By 11 9:30	

3

EMSL ANALYTICAL, INC.

Asbestos Bulk Building Material Chain of Custody

EMSL Order Number (Lab Use Only):

131605071

EMSL Analytical, Inc.
7 Constitution Way, Suite 107

Woburn, MA 01801

PHONE: (781) 933-8411

FAX: (781) 933-8412

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

ample#	HA#	Sample Location	Material Description
SA	5	Exterior Doors	Gray brown caulk
5B	5	l t	1,
50	5	11	1(
GA	6	Walls + Ceiung	Skim Cocot
CB	4	11	9
6C	le	1(1(
60	6	W.	((
6E	4	11	(1
of	4	1.0	1(
06	6	11	11
7/1	7	Sheered wallt civing	Sharpoch
18	7	(1	1(
70	7	((V)
70	1	11	11
7E	7	(1	Y
7F	7	16	11
76	7	(/	16
8A	8	Exterior undans	Glare
86	8	M	1
8C	8	11	(I
9A		Esteria Windows	Brown Caule
915	9	1	()
90	7		
10H	10	Clings al Instructions:	Ceilig Tile ska'
Johnnen	a/opecia	ar mon denome.	V
		2	ne ce i ve
		Page 2 of pages	OCT 18 2016

EMEL

EMSL ANALYTICAL, INC.

femald 59

Asbestos Bulk Building Material Chain of Custody

EMSL Order Number (Lab Use Only):

131605071

EMSL Analytical, Inc. 7 Constitution Way, Suite 107

Woburn, MA 01801 PHONE: (781) 933-8411

FAX: (781) 933-8412

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Sample #	HA#	Sample Location	Material Description
106	10	()	4
100	(0	11	4
100	10	(1	(/
IDE	10	()	1/
K			
			4 2558651800
*Comment	s/Special Instructi	ons:	
		Page of pages	DEGETVE

Asbestos Bulk Building Material Chain of Custody

EMSL Order Number (Lab Use Only):

131605080

EMSL Analytical, Inc.
7 Constitution Way, Suite 107

Woburn, MA 01801

PHONE: (781) 933-8411 FAX: (781) 933-8412

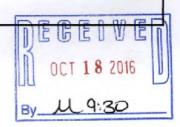
U 9:30

		1310	0 3 0 8 0		(781) 933-8412
Company . CD	W Consultants		le le		Same Different
	en Street; Suite 30	1			
City: Framingh		State/Province: MA	Zip/Postal Cod		en authorization from third party Country: US
	me): Susan Cahala		Telephone #: 5		Country: 00
				000732037	
	: scahalan@cdwc		Fax #:		Purchase Order:
	Number: fer na	d #100	Please Provide		(
O.S. State Sam	pies raken. With	Turnaround Time (1			Table Tresidential Tax Exempt
		24 Hour 48 Hou ahead to schedule. *There is a p	r 72 Hour	96 Hour ur PEM AHERA or EP	☐ 1 Week ☐ 2 Week A Level II TAT. You will be asked to sign ated in the Analytical Price Guide.
	PLM - Bulk (reporti		Canac War Ewice & Fair	TEM -	
PLM EPA 60	0/R-93/116 (<1%)		☐ TEM EPA NOB	- EPA 600/R-93/1	116 Section 2.5.5.1
PLM EPA NO	DB (<1%)		☐ NY ELAP Meth	od 198.4 (TEM)	
Point Count	400 (<0.25%) 🔲 100	00 (<0.1%)	☐ Chatfield Proto	col (semi-quantitati	ve)
Point Count w/G	ravimetric 🗌 400 (<	0.25%) 🗌 1000 (<0.1%)	☐ TEM % by Mas	s - EPA 600/R-93/	116 Section 2.5.5.2
☐ NIOSH 9002	? (<1%)		☐ TEM Qualitative	via Filtration Prep	Technique
	ethod 198.1 (friable in	n NY)	☐ TEM Qualitative	via Drop Mount P	Prep Technique
☐ NY ELAP Me	ethod 198,6 NOB (no	n-friable-NY)		Othe	er
OSHA ID-19			П		
☐ Standard Add	dition Method				
Check For P	ositive Stop – Clear	ly Identify Homogenous	Group Date San	npled: // /6	12/14
Samplers Name	Lyan Call	d	Samplers Sig	nature:	
Sample # HA	#	Sample Location		M	aterial Description
1A 1	Exten	W Doors			Door Coule
13 1	11			01,	000 00012
10 1) !			1/	
2A 2	Txtmy	undars		Dr	Brown Caulke
26 2	11				(1
202	11				(1)
3A 3	Duct	work HVA		Sam	Sedland Led
30 9		1)			1/
30 3		10			i,
41 4	tr	tera una	davs	aus Alare	
Client Sample #	(s):			Total # of	Samples:
Relinquished (C	lient):	Date	e: 10/15/16		Time:
Received (Lab):	(//-	Date	e:		Time:
	cial Instructions:	Jak	-		Control of the Contro
To Bridge State 1					MEGEOVE
			FX 17747	3428816	
		Page 1 of	pages		OCT 18 2016

Asbestos Bulk Building Material Chain of Custody

EMSL Order Number (Lab Use Only):

131605080


EMSL Analytical, Inc.
7 Constitution Way, Suite 107

Woburn, MA 01801 PHONE: (781) 933-8411 FAX: (781) 933-8412

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Sample #	HA#	Sample Location	Material Description
48	4	Fotenia wordaws	Glaze
40	4	//	11
574	5	Interior Doors	Black glaze
58	5	/1	1,
LOA	6	FIBT Floge	1'x 1' gray from Tile
6B	6	11	" 00
600	4	V)	11
(eD)	6	'(lt.
105	4	(1	(1
TH	7	Under IXI gray from the	Stack Mostic
76	7	17	11
7c	7	tt	11
70	7	11	1/
TE	7	11	//
8A	8	Wall teering	Sum Coat, white
23	8	11	11
8C	8	\(\text{i}\)	1
8D 8E	8	l,	11
8E	8	11	U
9A	9	ind slate Rest	to paper
93	9	11	
90	9	1/	1/
10A	10	TOP HOT Loof lays	Blak Teb
100	10	' //	1/
*Commen	ts/Speci	al Instructions:	

Page of ____ pages

Asbestos Bulk Building Material Chain of Custody

EMSL Order Number (Lab Use Only):

131605080

EMSL Analytical, Inc. 7 Constitution Way, Suite 107

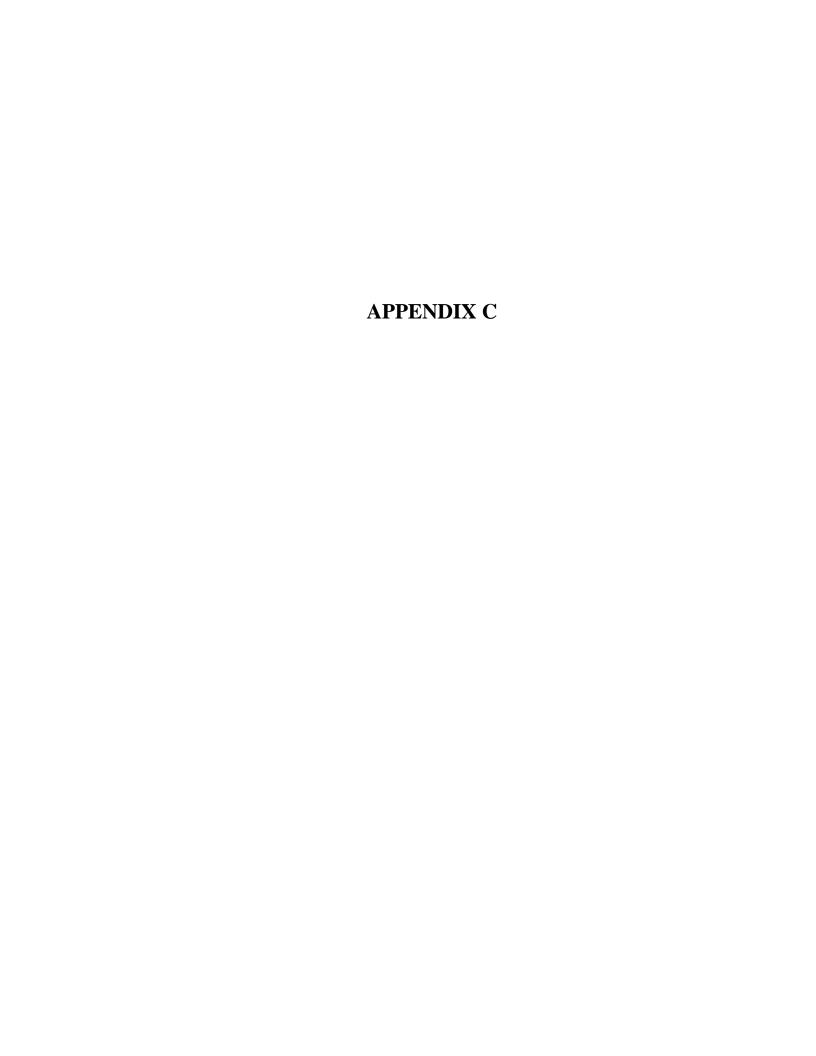
Woburn, MA 01801

PHONE: (781) 933-8411 FAX: (781) 933-8412

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Sample #	HA#	Sample Location	Material Description
IDC	10	11	11
IIA	11	TOP A Lext ded in Concrete	Kast Taxe
118	11	1 11	11
110	11	11	1/
DA	12	foundation	Coaring, Brown-Blace
126	D	<u> </u>	11
*Commen	ts/Speci	al Instructions:	

Page of ____ pages


Asbestos Bulk Building Material Chain of Custody EMSL Order Number (Lab Use Only):

131605074

EMSL Analytical, Inc. 7 Constitution Way, Suite 107

Woburn, MA 01801 PHONE: (781) 933-8411 FAX: (781) 933-8412

	Company : CDW Consultants				EMSL-Bill to: ☑ Same ☐ Different If Bill to is Different note instructions in Comments**		
Street: 40	Speen	Street; Suite 301		Third Party	Billing requires v	written authorization from third party	
City: Fran	ningham		State/Province: MA	Zip/Postal Code	e: 01701	Country: US	
Report To	(Name):	Susan Cahalan		Telephone #: 5088752657			
		cahalan@cdwco	nsultants.com	Fax #:			
		ber:fernald	Greenhouse	Please Provide	Results:	Fax V Email Mail	
		Taken: MA				Taxable Residential/Tax Exempt	
3 Hour	ir 3 hr throi	igh 6 hr, please call ai	Turnaround Time (1 24 Hour	r 72 Hour	96 Hou	EPA Level II TAT. You will be asked to sign	
ana		M - Bulk (reportin		rdance with EMSL'S Term		located in the Analytical Price Guide. 1 - Bulk	
PLM EF		-93/116 (<1%)	a minst	□ TEM EPA NOB		93/116 Section 2.5.5.1	
☐ PLM EF		The second secon		☐ NY ELAP Metho			
	The state of the s	(<0.25%) 🔲 1000	(<0.1%)	☐ Chatfield Protoc			
		The second secon	25%) 🔲 1000 (<0.1%)	the state of the s		93/116 Section 2.5.5.2	
☐ NIOSH	9002 (<	1%)		☐ TEM Qualitative	via Filtration P	rep Technique	
		d 198.1 (friable in	NY)	☐ TEM Qualitative	via Drop Mour	nt Prep Technique	
☐ NY ELA	AP Metho	d 198.6 NOB (non	-friable-NY)		<u>C</u>	Other	
☐ OSHA							
☐ Standa	rd Additio	n Method					
Check For Positive Stop – Clearly Identify Homogenous Grou				Group Date Sam	npled:	9/23/14	
Samplers	Name:	Juscen (ahala	Samplers Signature:			
Sample #	HA#		Sample Location			Material Description	
IA	(exteria	undavs	5	ulute	glare	
iB	1	ıt.			1(
10	1	()			11		
ZA	2	Leaf	-wooden	STructure	. A	ingle	
26	2	- (1)		
20	2	1(\1			
BA	3	Roof (Sconhouse	- Lect Tor			
38	3	()			()		
Client Sam	ple # (s)	10	•		Total #	# of Samples:	
Relinquish	Relinquished (Client) Date: 10/16/16 Time:						
Received (1			1 // (DEREIVEN	
		Instructions:	Da	ie.		HIJI LA IN IN IN IN IN IN IN IN IN IN IN IN IN	
Comments	- opecial	mon donons.		ex 7774754	3 8427	OCT 18-2016	
	Page 1 of pages By JU 9:30						

200 Route 130 North, Cinnaminson, NJ 08077 (856) 303-2500 / (856) 786-5974

http://www.EMSL.com cinnaminsonleadlab@emsl.com EMSL Order: CustomerID: CustomerPO:

ProjectID:

201611357

CDWC26

Attn: Susan Cahalan **CDW Consultants 40 Speen Street** Suite 301

Framingham, MA 01701

Project: Waltham Fernald

(508) 875-2657 Phone:

Fax:

Received: 10/18/16 10:15 AM

Collected:

Test Report: Lead in Paint Chips by Flame AAS (SW 846 3050B/7000B)*

Client Sample De	es cription Lab ID Collected Analyzed	Lead Concentration
_P-1-15	201611357-0001 10/21/2016	11 % wt
	Site: White Paint Window Frame	
P-2-15	201611357-0002 10/21/2016	26 % wt
	Site: White Paint Concrete Wall	
P-3-15	201611357-0003 10/21/2016	<0.010 % wt
	Site: White Paint on Brick	
P-4-15	201611357-0004 10/21/2016	<0.010 % wt
	Site: Gray Paint on Concrete Wall	
LP-1-50	201611357-0005 10/21/2016	3.4 % wt
	Site: Red Paint Steel Columns	
P-2-50	201611357-0006 10/22/2016	0.24 % wt
	Site: Blue Paint on Steel Columns	
LP-3-50	201611357-0007 10/21/2016	1.1 % wt
	Site: White Paint on Brick	
P-4-50	201611357-0008 10/22/2016	<0.010 % wt
	Site: White Paint on Wall	
P-1-19	201611357-0009 10/21/2016	37 % wt
	Site: Grey Paint Concrete Baswement	
.P-2-19	201611357-0010 10/21/2016	2.0 % wt
	Site: White Paint Wood Window Frame	
.P-3-19	201611357-0011 10/21/2016	<0.010 % wt
	Site: White Textured Ceiling	
.P-1-55	201611357-0012 10/21/2016	25 % wt
	Site: Blue Paint on Brick	
.P-2-55	201611357-0013 10/21/2016	<0.010 % wt
	Site: White Paint on Field Stones	
.P-3-55	201611357-0014 10/20/2016	31 % wt
	Site: White Paint on Interior Brick	
_P-1-61	201611357-0015 10/21/2016	0.040 % wt
	Site: White Paint on Ceiling Beams	

Phillip Worby, Lead Laboratory Manager or other approved signatory

*Analysis following Lead in Paint by EMSL SOP/Determination of Environmental Lead by FLAA. Reporting limit is 0.010 % wt based on the minimum sample weight per our SOP. Unless noted, results in this report are not blank corrected. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities. Samples received in good condition unless otherwise noted. "<" (less than) result signifies that the analyte was not detected at or above the reporting limit. Measurement of uncertainty is available upon requirements unless specifically indicated otherwise. Definitions of modifications are available upon request.

Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NELAP Certifications: NJ 03036, NY 10872, PA 68-00367, AIHA-LAP, LLC ELLAP 100194, A2LA 2845.01

200 Route 130 North, Cinnaminson, NJ 08077 (856) 303-2500 / (856) 786-5974

http://www.EMSL.com cinnaminsonleadlab@emsl.com EMSL Order: CustomerID: CustomerPO: 201611357

CDWC26

ProjectID:

Attn: Susan Cahalan **CDW Consultants** 40 Speen Street Suite 301

Framingham, MA 01701

Project: Waltham Fernald

(508) 875-2657 Phone:

Fax:

Received: 10/18/16 10:15 AM

Collected:

Test Report: Lead in Paint Chips by Flame AAS (SW 846 3050B/7000B)*

Client Sample De	escription Lab ID Collecte	l Analyzed	Lead Concentration
-P-2-61	201611357-0016	10/22/2016	<0.010 % wt
	Site: Brown Paint on Rac	ator	
P-3-61	201611357-0017	10/21/2016	<0.010 % wt
	Site: Red Paint Metal Sta	ir Rail	
.P-4-61	201611357-0018	10/21/2016	11 % wt
	Site: Yellow Paint on Cor	crete Wall	
.P-5-61	201611357-0019	10/21/2016	9.3 % wt
	Site: White Paint Wall		
.P-1-53	201611357-0020	10/21/2016	1.4 % wt
	Site: Silver Paint on Iron	Beams	
.P-1-53	201611357-0021	10/21/2016	1.2 % wt
	Site: Black Door Paint		
.P-1-57	201611357-0022	10/22/2016	30 % wt
	Site: Ext. Window Paint of	n Wood	
P-2-57	201611357-0023	10/20/2016	14 % wt
	Site: White Paint Baseme	ent Wall	
P-3-57	201611357-0024	10/21/2016	24 % wt
	Site: Blue Paint on Baser	nent Walls	
P-4-57	201611357-0025	10/21/2016	0.43 % wt
	Site: White Paint on Wall	s 1st Floor	
P-1-59	201611357-0026	10/21/2016	<0.010 % wt
	Site: White Wall Paint		
P-2-59	201611357-0027	10/21/2016	0.082 % wt
	Site: Brown Paint Door F	rames	
P-3-59	201611357-0028	10/21/2016	<0.010 % wt
	Site: Yellow Wall Paint		
P-1-60	201611357-0029	10/20/2016	<0.010 % wt
	Site: Tan Door Paint		
LP-2-60	201611357-0030	10/21/2016	<0.010 % wt
	Site: Radiator Paint		

Phillip Worby, Lead Laboratory Manager or other approved signatory

*Analysis following Lead in Paint by EMSL SOP/Determination of Environmental Lead by FLAA. Reporting limit is 0.010 % wt based on the minimum sample weight per our SOP. Unless noted, results in this report are not blank corrected. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities. Samples received in good condition unless otherwise noted. "<" (less than) result signifies that the analyte was not detected at or above the reporting limit. Measurement of uncertainty is available upon request. The QC data associated with the sample results included in this report meet the recovery and precision requirements unless specifically indicated otherwise. Definitions of modifications are available upon request.

Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NELAP Certifications: NJ 03036, NY 10872, PA 68-00367, AIHA-LAP, LLC ELLAP 100194, A2LA 2845.01

200 Route 130 North, Cinnaminson, NJ 08077 (856) 303-2500 / (856) 786-5974

http://www.EMSL.com cinnaminsonleadlab@emsl.com EMSL Order: CustomerID: 201611357

CDWC26

CustomerPO: ProjectID:

Attn: Susan Cahalan **CDW Consultants 40 Speen Street** Suite 301

Framingham, MA 01701

Project: Waltham Fernald

(508) 875-2657 Phone:

Fax:

Received: 10/18/16 10:15 AM

Collected:

Test Report: Lead in Paint Chips by Flame AAS (SW 846 3050B/7000B)*

Client Sample De	escription Lab ID Collected Analyzed	Lead Concentration
_P-3-60	201611357-0031 10/22/2016	<0.010 % wt
LI 0 00	Site: White Wall Paint	-0.010 /0 Wt
LP-4-60	201611357-0032 10/21/2016	0.010 % wt
	Site: Blue Wall Paint	0.010 /0 III
 LP-1-58	201611357-0033 10/21/2016	<0.010 % wt
	Site: Brown Radiator Paint	0.0.10 %
 LP-2-58	201611357-0034 10/22/2016	<0.010 % wt
	Site: Yellow Wall Paint	
LP-3-58	201611357-0035 10/22/2016	0.55 % wt
0 00	Site: Brown Paint Metal Stair Rail	0.00 %
P-1-62	201611357-0036 10/21/2016	<0.010 % wt
	Site: Blue Wall Paint	
LP-2-62	201611357-0037 10/21/2016	<0.010 % wt
	Site: Brown Paint on Radiator	
 LP-3-62	201611357-0038 10/21/2016	<0.010 % wt
	Site: White Wall Paint	
P-4-62	201611357-0039 10/21/2016	<0.010 % wt
	Site: White Hall aint	
P-5-62	201611357-0040 10/21/2016	<0.010 % wt
	Site: Tan Door Frame Paint	
P-1-20	201611357-0041 10/21/2016	<0.010 % wt
	Site: Pink Wall Paint	
P-2-20	201611357-0042 10/21/2016	<0.010 % wt
	Site: White Wall Paint	
P-3-20	201611357-0043 10/21/2016	16 % wt
	Site: White Window Frame Paint	
P-4-20	201611357-0044 10/22/2016	18 % wt
	Site: Brown Exterior Shingle	
LP-1-48	201611357-0045 10/21/2016	<0.010 % wt
	Site: White on Concrete	

Phillip Worby, Lead Laboratory Manager or other approved signatory

*Analysis following Lead in Paint by EMSL SOP/Determination of Environmental Lead by FLAA. Reporting limit is 0.010 % wt based on the minimum sample weight per our SOP. Unless noted, results in this report are not blank corrected. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities. Samples received in good condition unless otherwise noted. "<" (less than) result signifies that the analyte was not detected at or above the reporting limit. Measurement of uncertainty is available upon request. The QC data associated with the sample results included in this report meet the recovery and precision requirements unless specifically indicated otherwise. Definitions of modifications are available upon request.

Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NELAP Certifications: NJ 03036, NY 10872, PA 68-00367, AIHA-LAP, LLC ELLAP 100194, A2LA 2845.01

200 Route 130 North, Cinnaminson, NJ 08077 (856) 303-2500 / (856) 786-5974

http://www.EMSL.com cinnaminsonleadlab@emsl.com EMSL Order: CustomerID:

201611357 CDWC26

CustomerPO: ProjectID:

Attn: Susan Cahalan **CDW Consultants 40 Speen Street** Suite 301

Framingham, MA 01701

Project: Waltham Fernald

(508) 875-2657 Phone:

Fax:

Received: 10/18/16 10:15 AM

Collected:

Test Report: Lead in Paint Chips by Flame AAS (SW 846 3050B/7000B)*

Client Sample De	escription Lab ID Collecte	d Analyzed	Lead Concentration
LP-2-48	201611357-0046	10/21/2016	0.039 % wt
	Site: Blue Paint on Brick		
LP-3-48	201611357-0047	10/21/2016	0.66 % wt
	Site: Gray Paint on Meta	Pole	
LP-1-49	201611357-0048	10/22/2016	2.4 % wt
	Site: Green Paint Garag	e Door	
LP-1-32	201611357-0049	10/20/2016	0.010 % wt
	Site: White Paint on Cor	crete	
LP-2-32	201611357-0050	10/20/2016	0.021 % wt
	Site: Pink on Concrete		
LP-1-17	201611357-0051	10/22/2016	36 % wt
	Site: Window Frame Pai	nt	
LP-1-30	201611357-0052	10/22/2016	0.20 % wt
	Site: Blue Wall Paint		
LP-2-30	201611357-0053	10/20/2016	0.011 % wt
	Site: Tan Paint on Stair	Rails	
LP-3-30	201611357-0054	10/22/2016	<0.010 % wt
	Site: White Wall Paint		
LP-1-42	201611357-0055	10/20/2016	0.44 % wt
	Site: Green on Concrete		
LP-2-42	201611357-0056	10/20/2016	48 % wt
	Site: Tan Paint on Wall		

Phillip Worby, Lead Laboratory Manager or other approved signatory

*Analysis following Lead in Paint by EMSL SOP/Determination of Environmental Lead by FLAA. Reporting limit is 0.010 % wt based on the minimum sample weight per our SOP. Unless noted, results in this report are not blank corrected. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities. Samples received in good condition unless otherwise noted. "<" (less than) result signifies that the analyte was not detected at or above the reporting limit. Measurement of uncertainty is available upon requirements unless specifically indicated otherwise. Definitions of modifications are available upon request.

Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NELAP Certifications: NJ 03036, NY 10872, PA 68-00367, AIHA-LAP, LLC ELLAP 100194, A2LA 2845.01

Lead (Pb) Chain of Custody EMSL Order ID (Lab Use Only):

201411357

EMSL Analytical, Inc. 200 Route 130 North

Cinnaminson, NJ 08077

PHONE: 1-800-220-3675 FAX: (856) 786-5974

Company : CDW Consultants	S						nt / Same	
Street: 40 Speen Street: Suite 301			If Bill to is Different note instructions in Comments**					
City: Framingham	Third Party Billing requires written authorization from third party Zip/Postal Code: 01701 Country: US							
Report To (Name): Susan Ca		Province: MA		#: 50887526				
Email Address: scahalan@c		Itants com	Fax #:	#. 0000.0 <u>2</u>		Dur	chase Order:	
Project Name/Number:				vide Results:	FAX			Mail
U.S. State Samples Taken: M		ariaro						
U.S. State Samples Taken: M		urnaround Time (TA		s: Comme		ole L Re	sidential/Tax	Exempt
☐ 3 Hour ☐ 6 Hour	_	Hour 48 Hour		-	96 Hour	□1W	look	2 Week
		ed in accordance with EMS					COR.	2 WOOK
Matrix		Method		Instrum		Reporting Limit		Check
Chips ⋈ % by wt. ☐ mg/cm²	☐ ppm	SW846-70008	В	Flame Atomic	Absorption	0.01%		X
Air		NIOSH 7082		Flame Atomic	Absorption	4 μ	g/filter	
		NIOSH 7105		Graphite Furn	nace AA	0.03	μg/filter	
		NIOSH 7300 mod	dified	ICP-AES/IC			ug/filter	
Wipe* AST	и П	SW846-70008	В	Flame Atomic	Absorption	10 µ	ıg/wipe	
non AST	и <u> </u>	SW846-6010B c	or C	ICP-AE	S	1.0	ug/wipe	
*if no box is checked, non-ASTi Wipe is assume		SW846-7000B/7	010	Graphite Fur	nace AA	0.075	µg/wipe	
TCLP		SW846-1311/7000B/S		Flame Atomic			g/L (ppm)	
		SW846-1131/SW846-6		ICP-AE			g/L (ppm)	
Soil		SW846-7000B SW846-7010		Flame Atomic Absorption		40 mg/kg (ppm)		
				Graphite Furnace AA ICP-AES		0.3 mg/kg (ppm)		
		SW846-6010B or C SM3111B/SW846-7000B		Flame Atomic Absorption		2 mg/kg (ppm) 0.4 mg/L (ppm)		-H
Wastewater Unpreserved		EPA 200.9		Graphite Furnace AA		0.003 mg/L (ppm)		
Preserved with HNO₃ pH < 2	2 🗆	EPA 200.7		ICP-AES		0.020 mg/L (ppm)		
Drinking Water Unpreserved	d 🗆	EPA 200.9		Graphite Furnace AA		0.003 mg/L (ppm)		
Preserved with HNO ₃ pH < 2	2 🗆	EPA 200.8		ICP-MS		0.001 mg/L (ppm)		
TSP/SPM Filter		40 CFR Part 5		ICP-AE		12 µg/filter		
		40 CFR Part 50		Graphite Furnace AA		3.6 µg/filter		
Other:	. / 5. /				~	//		
Name of Sampler: Mora			Signatu	re of Samp		nels		
Sample #	Locati			Volume/A	rea		Date/Time S	
HP-1-15 White fair	T Wine	da have		_	-		9/23/16	→10/3(1)
1		ncrete wall		_				
LP-3-15 White Pain				_				
UP-4-15 Gray Paint on Concr				_				
		zel Columnis		-				
Client Sample #'s	7	,	То	tal # of Sa	mples:			
Relinquished (Client); Date:			19/6/1	(b.	Time:			
	170	Date:	16	10/1:0		NICE	oder	
Received (Lab):				18/10	Time:	UBIF	edex	-
Comments:								
				-				

Page 1 of

Wathan fernald

LEAD (Pb) CHAIN OF CUSTODY EMSL ORDER ID (Lab Use Only):

201411357

EMSL Analytical, Inc. 200 Route 130 North

Cinnaminson, NJ 08077

PHONE: 1-800-220-3675 FAX: (856) 786-5974

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

	Sample #		Location	Volume/Area	Date/Time Sampled
6	21-2-50	Blue Re	untan steel Columns	_	
7	LP3-50	White.	fair an Brick	_	
8	4-4-50		Paint on Wall	-	
9	H-119	Gray &	Paint Concrete basever	-	
10			Part wood under fame		
			Extural Ceiling	_	
-	LP-1-55	Blue	Paint on brick	_	
			Paint on Keldstone	_	
14	LP-3-55	White la	int an interior brick	~	
			wint as ceiving beams	-	
			laint on adiator	-	
			INT Metal Stair pail	-	
			Paint on concrete wall	~	
100			faint wall	-	
70	LP-1-53	Silver	fair on Iran Deams	-	
-			Door faint	_	
			undow Partition wood	_	
23	4-2-57	uksto	Pant Bagement Wall	-	
T	Comments/Sp	ecial Instru	ctions:		

Page of pages

Walthon Fernald

LEAD (Pb) CHAIN OF CUSTODY EMSL ORDER ID (Lab Use Only):

201611357

EMSL Analytical, Inc. 200 Route 130 North

Cinnaminson, NJ 08077 PHONE: 1-800-220-3675

FAX: (856) 786-5974

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Sample #	Location	Volume/Area	Date/Time Sampled
244-3-57	Blue faint on baginers wall	_	
25 LA-4-57	White Paint an Walls 15 hoor		
	White Wall faint	_	
214-2-59	Brown fain Door frames	. –	
2848-3-59			
V	Tan dar farm	-	
1/1	Radiator fami		
/	unite wall paint		
/	Blue wall faint	_	
33 LP-1-58	2		
25/18-2-38	Yellow wall faint		
CU-3-58	Brown Parm Metal Stail	_	
	Blue wall faint	_	
7 12-2-12	2 0 0 13		
	white wall farm	_	
	white Hall PainT	_	
10 4-5-62	Tan door finne faint	_	
11 4-120	Fink wall paint	_	D
Comments/Sp	pecial Instructions:		1

Page 3 of 4 pages

Walthon fernald

LEAD (Pb) CHAIN OF CUSTODY EMSL ORDER ID (Lab Use Only):

201611357

EMSL Analytical, Inc. 200 Route 130 North

Cinnaminson, NJ 08077

PHONE: 1-800-220-3675 FAX: (856) 786-5974

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Sample #	Loc	cation	Volume/Area	Date/Time Sampled
H2-20	whitewall	Paint		
U-3-20	white winder	whome Paint	_	
. 0		or Shingle	_	
LP-48	unte on conc		_	
42-49	Blue paint	an brick	_	
LP3-48	1	on Metal Rule		
LP-1-49	Green fain	T gangedow	-	
	unte faire a		_	
	Bink on Concr		-	
	unday frame 6		-	
LP-1-30	Blue wall f	^	_	
4-230	Tan Paint on	Stair rails	_	
	white wall la	eilt		
	Green on Con			
	tan Paint			
0	alal Instructions			
Comments/Sp	ecial Instructions:			

Page _____ of ____ pages

APPENDIX D

Thursday, October 27, 2016

Ms. Susan Cahalan CDW Consultants, Inc 40 Speen Street Suite 301 Framingham, MA 01701

Project ID: FERNALD WALTHAM

Sample ID#s: BV56923 - BV56938, BV56940 - BV56960, BV56962 - BV56978

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530

RI Lab Registration #63

VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56923

Project ID: FERNALD WALTHAM
Client ID: PCB-1-50 DOOR CAULK

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	
PCB (Soxhlet SW3540C)								
PCB-1016	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1221	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1232	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1242	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1248	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1254	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1260	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1262	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1268	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	70		%	2	10/20/16	AW	40 - 140 %	
% TCMX	55		%	2	10/20/16	AW	40 - 140 %	

Page 1 of 108 Ver 1

Project ID: FERNALD WALTHAM
Client ID: PCB-1-50 DOOR CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56923

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 2 of 108 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56924

Project ID: FERNALD WALTHAM

Client ID: PCB-2A-50 EXT WINDOW CAULK

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1221	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1232	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1242	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1248	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1254	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1260	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1262	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1268	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	86		%	2	10/24/16	AW	40 - 140 %
% TCMX	68		%	2	10/24/16	AW	40 - 140 %

Page 3 of 108 Ver 1

Project ID: FERNALD WALTHAM

Client ID: PCB-2A-50 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Phoenix I.D.: BV56924

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

For PCBs, due to matrix interference from non target compounds in the sample an elevated RL was reported. Multiple cleanup steps were performed but were unsuccessful. The extract was cleaned up with a combination of sulfuric acid, potassium permanganate, copper powder and additional florisil.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 4 of 108 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56925

Project ID: FERNALD WALTHAM

Client ID: PCB-2B-50 EXT WINDOW CAULK

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1221	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1232	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1242	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1248	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1254	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1260	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1262	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1268	ND	1.4	mg/Kg	2	10/24/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	80		%	2	10/24/16	AW	40 - 140 %
% TCMX	62		%	2	10/24/16	AW	40 - 140 %

Page 5 of 108 Ver 1

Project ID: FERNALD WALTHAM

Client ID: PCB-2B-50 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56925

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

For PCBs, due to matrix interference from non target compounds in the sample an elevated RL was reported. Multiple cleanup steps were performed but were unsuccessful. The extract was cleaned up with a combination of sulfuric acid, potassium permanganate, copper powder and additional florisil.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 6 of 108 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc

40 Speen Street Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56926

Project ID: FERNALD WALTHAM

Client ID: PCB-2C-50 EXT WINDOW CAULK

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	1	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1221	ND	1	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1232	ND	1	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1242	ND	1	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1248	ND	1	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1254	ND	1	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1260	ND	1	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1262	ND	1	mg/Kg	2	10/24/16	AW	SW8082A
PCB-1268	ND	1	mg/Kg	2	10/24/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	48		%	2	10/24/16	AW	40 - 140 %
% TCMX	40		%	2	10/24/16	AW	40 - 140 %

Page 7 of 108 Ver 1

Project ID: FERNALD WALTHAM

Client ID: PCB-2C-50 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56926

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

For PCBs, in order to reach the desired RL, multiple cleanup steps were performed. The extract was cleaned up with a combination of sulfuric acid, potassium permanganate, copper powder and additional florisil.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 8 of 108 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56927

Project ID: FERNALD WALTHAM

Client ID: PCB-3-50 EXT JOINT FLOOR

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540	0C)						
PCB-1016	ND	19	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1221	ND	19	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1232	ND	19	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1242	ND	19	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1248	ND	19	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1254	ND	19	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1260	ND	19	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1262	ND	19	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1268	ND	19	mg/Kg	50	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	Diluted Out		%	50	10/20/16	AW	40 - 140 %
% TCMX	Diluted Out		%	50	10/20/16	AW	40 - 140 %

Page 9 of 108 Ver 1

Project ID: FERNALD WALTHAM Phoenix I.D.: BV56927

Client ID: PCB-3-50 EXT JOINT FLOOR

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

Due to the presence of what appears to be Chlordane in the sample which co-elutes with the PCBs, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56928

Project ID: FERNALD WALTHAM

Client ID: PCB-1A-15 EXTERIOR WINDOW CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	
PCB (Soxhlet SW3540	0C)							
PCB-1016	ND	0.56	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1221	ND	0.56	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1232	ND	0.56	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1242	ND	0.56	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1248	ND	0.56	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1254	ND	0.56	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1260	ND	0.56	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1262	ND	0.56	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1268	ND	0.56	mg/Kg	2	10/21/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	50		%	2	10/21/16	AW	40 - 140 %	
% TCMX	38		%	2	10/21/16	AW	40 - 140 %	3

Project ID: FERNALD WALTHAM Phoenix I.D.: BV56928

Client ID: PCB-1A-15 EXTERIOR WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

3 = This parameter exceeds laboratory specified limits.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56929

Project ID: FERNALD WALTHAM

Client ID: PCB-1B-15 EXTERIOR WINDOW CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	
PCB (Soxhlet SW3540	<u>)C)</u>							
PCB-1016	ND	3.3	mg/Kg	10	10/20/16	AW	SW8082A	
PCB-1221	ND	3.3	mg/Kg	10	10/20/16	AW	SW8082A	
PCB-1232	ND	3.3	mg/Kg	10	10/20/16	AW	SW8082A	
PCB-1242	ND	3.3	mg/Kg	10	10/20/16	AW	SW8082A	
PCB-1248	ND	3.3	mg/Kg	10	10/20/16	AW	SW8082A	
PCB-1254	ND	3.3	mg/Kg	10	10/20/16	AW	SW8082A	
PCB-1260	ND	3.3	mg/Kg	10	10/20/16	AW	SW8082A	
PCB-1262	ND	3.3	mg/Kg	10	10/20/16	AW	SW8082A	
PCB-1268	ND	3.3	mg/Kg	10	10/20/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	47		%	10	10/20/16	AW	40 - 140 %	
% TCMX	41		%	10	10/20/16	AW	40 - 140 %	

Project ID: FERNALD WALTHAM Phoenix I.D.: BV56929

Client ID: PCB-1B-15 EXTERIOR WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

Due to the presence of what appears to be Chlordane in the sample which co-elutes with the PCBs, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56930

Project ID: FERNALD WALTHAM

Client ID: PCB-1C-15 EXTERIOR WINDOW CAULK

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Caulk Extraction for PCB	Completed				10/21/16	Q/I	SW3540C	
PCB (Soxhlet SW3540	<u>)C)</u>							
PCB-1016	ND	0.63	mg/Kg	2	10/26/16	AW	SW8082A	
PCB-1221	ND	0.63	mg/Kg	2	10/26/16	AW	SW8082A	
PCB-1232	ND	0.63	mg/Kg	2	10/26/16	AW	SW8082A	
PCB-1242	ND	0.63	mg/Kg	2	10/26/16	AW	SW8082A	
PCB-1248	ND	0.63	mg/Kg	2	10/26/16	AW	SW8082A	
PCB-1254	ND	0.63	mg/Kg	2	10/26/16	AW	SW8082A	
PCB-1260	ND	0.63	mg/Kg	2	10/26/16	AW	SW8082A	
PCB-1262	ND	0.63	mg/Kg	2	10/26/16	AW	SW8082A	
PCB-1268	ND	0.63	mg/Kg	2	10/26/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	62		%	2	10/26/16	AW	40 - 140 %	
% TCMX	58		%	2	10/26/16	AW	40 - 140 %	

Ver 1

Project ID: FERNALD WALTHAM Phoenix I.D.: BV56930

Client ID: PCB-1C-15 EXTERIOR WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

For PCBs, in order to reach the desired RL, multiple cleanup steps were performed. The extract was cleaned up with a combination of sulfuric acid, potassium permanganate, copper powder and additional florisil.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56931

Project ID: FERNALD WALTHAM

Client ID: PCB-2A-15 EXTERIOR WINDOW GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	
PCB (Soxhlet SW354)	0C)							
PCB-1016	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1221	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1232	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1242	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1248	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1254	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1260	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1262	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1268	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	35		%	2	10/20/16	AW	40 - 140 %	3
% TCMX	30		%	2	10/20/16	AW	40 - 140 %	3

Project ID: FERNALD WALTHAM Phoenix I.D.: BV56931

Client ID: PCB-2A-15 EXTERIOR WINDOW GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

3 = This parameter exceeds laboratory specified limits.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 18 of 108 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56932

Project ID: FERNALD WALTHAM

Client ID: PCB-2B-15 EXTERIOR WINDOW GLAZE

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	
PCB (Soxhlet SW3540)C)							
PCB-1016	ND	0.42	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1221	ND	0.42	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1232	ND	0.42	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1242	ND	0.42	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1248	ND	0.42	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1254	ND	0.42	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1260	ND	0.42	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1262	ND	0.42	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1268	ND	0.42	mg/Kg	2	10/20/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	41		%	2	10/20/16	AW	40 - 140 %	
% TCMX	34		%	2	10/20/16	AW	40 - 140 %	3

Ver 1

Project ID: FERNALD WALTHAM Phoenix I.D.: BV56932

Client ID: PCB-2B-15 EXTERIOR WINDOW GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

3 = This parameter exceeds laboratory specified limits.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56933

Project ID: FERNALD WALTHAM

Client ID: PCB-2C-15 EXTERIOR WINDOW GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	
PCB (Soxhlet SW3540	<u>)C)</u>							
PCB-1016	ND	0.39	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1221	ND	0.39	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1232	ND	0.39	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1242	ND	0.39	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1248	ND	0.39	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1254	ND	0.39	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1260	ND	0.39	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1262	ND	0.39	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1268	ND	0.39	mg/Kg	2	10/20/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	66		%	2	10/20/16	AW	40 - 140 %	
% TCMX	51		%	2	10/20/16	AW	40 - 140 %	

Project ID: FERNALD WALTHAM Phoenix I.D.: BV56933

Client ID: PCB-2C-15 EXTERIOR WINDOW GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56934

Project ID: FERNALD WALTHAM
Client ID: PCB-3A-15 GREEN PAINT

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C	<u>:)</u>						
PCB-1016	ND	2.2	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1221	ND	2.2	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1232	ND	2.2	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1242	ND	2.2	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1248	ND	2.2	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1254	ND	2.2	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1260	ND	2.2	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1262	ND	2.2	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1268	ND	2.2	mg/Kg	10	10/21/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	104		%	10	10/21/16	AW	40 - 140 %
% TCMX	74		%	10	10/21/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM
Client ID: PCB-3A-15 GREEN PAINT

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

Due to the presence of what appears to be Chlordane in the sample which co-elutes with the PCBs, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: BV56934

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56935

Ver 1

Project ID: FERNALD WALTHAM
Client ID: PCB-3B-15 GREEN PAINT

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	10	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1221	ND	10	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1232	ND	10	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1242	ND	10	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1248	ND	10	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1254	ND	10	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1260	ND	10	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1262	ND	10	mg/Kg	50	10/20/16	AW	SW8082A
PCB-1268	ND	10	mg/Kg	50	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	Diluted Out		%	50	10/20/16	AW	40 - 140 %
% TCMX	Diluted Out		%	50	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM
Client ID: PCB-3B-15 GREEN PAINT

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

Due to the presence of what appears to be Chlordane in the sample which co-elutes with the PCBs, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: BV56935

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56936

Project ID: FERNALD WALTHAM
Client ID: PCB-3C-15 GREEN PAINT

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C)						
PCB-1016	ND	2.6	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1221	ND	2.6	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1232	ND	2.6	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1242	ND	2.6	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1248	ND	2.6	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1254	ND	2.6	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1260	ND	2.6	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1262	ND	2.6	mg/Kg	10	10/21/16	AW	SW8082A
PCB-1268	ND	2.6	mg/Kg	10	10/21/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	107		%	10	10/21/16	AW	40 - 140 %
% TCMX	83		%	10	10/21/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM
Client ID: PCB-3C-15 GREEN PAINT

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

Due to the presence of what appears to be Chlordane in the sample which co-elutes with the PCBs, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: BV56936

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56937

Project ID: FERNALD WALTHAM
Client ID: PCB-1A-42 GREEN PAINT

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C	<u>:)</u>						
PCB-1016	ND	4.6	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1221	ND	4.6	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1232	ND	4.6	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1242	ND	4.6	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1248	ND	4.6	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1254	ND	4.6	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1260	ND	4.6	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1262	ND	4.6	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1268	ND	4.6	mg/Kg	10	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	94		%	10	10/20/16	AW	40 - 140 %
% TCMX	78		%	10	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM
Client ID: PCB-1A-42 GREEN PAINT

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

Due to the presence of what appears to be Chlordane in the sample which co-elutes with the PCBs, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: BV56937

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc

40 Speen Street Suite 301

Framingham, MA 01701

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56938

Project ID: FERNALD WALTHAM
Client ID: PCB-1B-42 GREEN PAINT

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C)						
PCB-1016	ND	3.4	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1221	ND	3.4	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1232	ND	3.4	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1242	ND	3.4	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1248	ND	3.4	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1254	ND	3.4	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1260	ND	3.4	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1262	ND	3.4	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1268	ND	3.4	mg/Kg	10	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	90		%	10	10/20/16	AW	40 - 140 %
% TCMX	77		%	10	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM
Client ID: PCB-1B-42 GREEN PAINT

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

Due to the presence of what appears to be Chlordane in the sample which co-elutes with the PCBs, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: BV56938

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56940

Project ID: FERNALD WALTHAM
Client ID: PCB-2A-42 WHITE PAINT

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C))						
PCB-1016	ND	0.94	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1221	ND	0.94	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1232	ND	0.94	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1242	ND	0.94	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1248	ND	0.94	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1254	ND	0.94	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1260	ND	0.94	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1262	ND	0.94	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1268	ND	0.94	mg/Kg	10	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	93		%	10	10/20/16	AW	40 - 140 %
% TCMX	74		%	10	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM
Client ID: PCB-2A-42 WHITE PAINT

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: BV56940

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56941

Project ID: FERNALD WALTHAM
Client ID: PCB-2B-42 WHITE PAINT

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C))						
PCB-1016	ND	0.95	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1221	ND	0.95	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1232	ND	0.95	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1242	ND	0.95	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1248	ND	0.95	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1254	ND	0.95	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1260	ND	0.95	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1262	ND	0.95	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1268	ND	0.95	mg/Kg	10	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	94		%	10	10/20/16	AW	40 - 140 %
% TCMX	78		%	10	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM
Client ID: PCB-2B-42 WHITE PAINT

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56941

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc

40 Speen Street Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56942

Project ID: FERNALD WALTHAM

Client ID: PCB-1-32 WINDOW GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	
PCB (Soxhlet SW35	540C)							
PCB-1016	ND	0.44	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1221	ND	0.44	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1232	ND	0.44	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1242	ND	0.44	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1248	ND	0.44	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1254	ND	0.44	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1260	ND	0.44	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1262	ND	0.44	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1268	ND	0.44	mg/Kg	2	10/20/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	90		%	2	10/20/16	AW	40 - 140 %	
% TCMX	78		%	2	10/20/16	AW	40 - 140 %	

Project ID: FERNALD WALTHAM
Client ID: PCB-1-32 WINDOW GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: BV56942

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56943

Project ID: FERNALD WALTHAM

Client ID: PCB-1-49 WINDOW GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C)						
PCB-1016	ND	0.38	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.38	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.38	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.38	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.38	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	ND	0.38	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.38	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.38	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.38	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	83		%	2	10/20/16	AW	40 - 140 %
% TCMX	54		%	2	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM
Client ID: PCB-1-49 WINDOW GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: BV56943

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

Dooult

P.O.#:

Daramatar

<u>Laboratory Data</u> SDG ID: GBV56923

Dilution

Phoenix ID: BV56944

Project ID: FERNALD WALTHAM

Client ID: PCB-1A-62 EXT DOOR CAULK

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	
PCB (Soxhlet SW3540	<u>(C)</u>							
PCB-1016	ND	0.73	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1221	ND	0.73	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1232	ND	0.73	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1242	ND	0.73	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1248	ND	0.73	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1254	ND	0.73	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1260	ND	0.73	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1262	ND	0.73	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1268	ND	0.73	mg/Kg	2	10/20/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	74		%	2	10/20/16	AW	40 - 140 %	
% TCMX	63		%	2	10/20/16	AW	40 - 140 %	

Linita

Client ID: PCB-1A-62 EXT DOOR CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

Dooult

P.O.#:

Daramatar

<u>Laboratory Data</u> SDG ID: GBV56923

Dilution

Phoenix ID: BV56945

Project ID: FERNALD WALTHAM

Client ID: PCB-1B-62 EXT DOOR CAULK

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	
PCB (Soxhlet SW3540	<u>)C)</u>							
PCB-1016	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1221	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1232	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1242	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1248	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1254	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1260	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1262	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1268	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	67		%	2	10/20/16	AW	40 - 140 %	
% TCMX	59		%	2	10/20/16	AW	40 - 140 %	

Linita

Client ID: PCB-1B-62 EXT DOOR CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

Dooult

P.O.#:

Daramatar

<u>Laboratory Data</u> SDG ID: GBV56923

Dilution

Phoenix ID: BV56946

Project ID: FERNALD WALTHAM

Client ID: PCB-1C-62 EXT DOOR CAULK

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	
PCB (Soxhlet SW3540)C)							
PCB-1016	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1221	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1232	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1242	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1248	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1254	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1260	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1262	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1268	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	63		%	2	10/20/16	AW	40 - 140 %	
% TCMX	56		%	2	10/20/16	AW	40 - 140 %	

Linita

Client ID: PCB-1C-62 EXT DOOR CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56947

Project ID: FERNALD WALTHAM

Client ID: PCB-2A-62 EXT WINDOW CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	1	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	1	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	1	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	1	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	1	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	ND	1	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	1	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	1	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	1	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	73		%	2	10/20/16	AW	40 - 140 %
% TCMX	59		%	2	10/20/16	AW	40 - 140 %

Client ID: PCB-2A-62 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56948

Project ID: FERNALD WALTHAM

Client ID: PCB-2B-62 EXT WINDOW CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540)	<u>C)</u>						
PCB-1016	ND	0.53	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.53	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.53	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.53	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.53	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	ND	0.53	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.53	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.53	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.53	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	74		%	2	10/20/16	AW	40 - 140 %
% TCMX	61		%	2	10/20/16	AW	40 - 140 %

Client ID: PCB-2B-62 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc

40 Speen Street Suite 301

Framingham, MA 01701

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56949

Project ID: FERNALD WALTHAM

Client ID: PCB-2C-62 EXT WINDOW CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540)	<u>C)</u>						
PCB-1016	ND	0.57	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.57	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.57	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.57	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.57	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	ND	0.57	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.57	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.57	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.57	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	79		%	2	10/20/16	AW	40 - 140 %
% TCMX	77		%	2	10/20/16	AW	40 - 140 %

Client ID: PCB-2C-62 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc

40 Speen Street Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56950

Project ID: FERNALD WALTHAM

Client ID: PCB-1A-58 EXT WINDOW GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540)	<u>C)</u>						
PCB-1016	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	70		%	2	10/20/16	AW	40 - 140 %
% TCMX	60		%	2	10/20/16	AW	40 - 140 %

Client ID: PCB-1A-58 EXT WINDOW GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc

40 Speen Street Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56951

Project ID: FERNALD WALTHAM

Client ID: PCB-1B-58 EXT WINDOW GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C	<u>)</u>						
PCB-1016	ND	0.4	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.4	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.4	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.4	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.4	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	ND	0.4	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.4	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.4	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.4	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	76		%	2	10/20/16	AW	40 - 140 %
% TCMX	63		%	2	10/20/16	AW	40 - 140 %

Client ID: PCB-1B-58 EXT WINDOW GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: BV56951

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc

40 Speen Street Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56952

Project ID: FERNALD WALTHAM

Client ID: PCB-1C-58 EXT WINDOW GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540	<u>(C)</u>						
PCB-1016	ND	0.46	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1221	ND	0.46	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1232	ND	0.46	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1242	ND	0.46	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1248	ND	0.46	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1254	ND	0.46	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1260	ND	0.46	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1262	ND	0.46	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1268	ND	0.46	mg/Kg	2	10/21/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	63		%	2	10/21/16	AW	40 - 140 %
% TCMX	47		%	2	10/21/16	AW	40 - 140 %

Client ID: PCB-1C-58 EXT WINDOW GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56952

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56953

Project ID: FERNALD WALTHAM

Client ID: PCB-1A-60 EXT WINDOW CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C)						
PCB-1016	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1221	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1232	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1242	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1248	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1254	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1260	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1262	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1268	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	66		%	2	10/21/16	AW	40 - 140 %
% TCMX	55		%	2	10/21/16	AW	40 - 140 %

Client ID: PCB-1A-60 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56953

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56954

Project ID: FERNALD WALTHAM

Client ID: PCB-1B-60 EXT WINDOW CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	71		%	2	10/20/16	AW	40 - 140 %
% TCMX	66		%	2	10/20/16	AW	40 - 140 %

Client ID: PCB-1B-60 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56954

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBV56923

Phoenix ID: BV56955

Project ID: FERNALD WALTHAM

Client ID: PCB-1C-60 EXT WINDOW CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C	<u>s)</u>						
PCB-1016	ND	0.67	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1221	ND	0.67	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1232	ND	0.67	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1242	ND	0.67	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1248	ND	0.67	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1254	ND	0.67	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1260	ND	0.67	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1262	ND	0.67	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1268	ND	0.67	mg/Kg	2	10/21/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	62		%	2	10/21/16	AW	40 - 140 %
% TCMX	51		%	2	10/21/16	AW	40 - 140 %

Client ID: PCB-1C-60 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56955

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

Dooult

P.O.#:

Daramatar

<u>Laboratory Data</u> SDG ID: GBV56923

Dilution

Phoenix ID: BV56956

Project ID: FERNALD WALTHAM

Client ID: PCB-2A-60 EXT DOOR CAULK

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	
PCB (Soxhlet SW3540	<u>(C)</u>							
PCB-1016	ND	0.99	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1221	ND	0.99	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1232	ND	0.99	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1242	ND	0.99	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1248	ND	0.99	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1254	ND	0.99	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1260	ND	0.99	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1262	ND	0.99	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1268	ND	0.99	mg/Kg	2	10/20/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	72		%	2	10/20/16	AW	40 - 140 %	
% TCMX	62		%	2	10/20/16	AW	40 - 140 %	

Linita

Client ID: PCB-2A-60 EXT DOOR CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56956

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc

40 Speen Street Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56957

Project ID: FERNALD WALTHAM

Client ID: PCB-2B-60 EXT DOOR CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	
PCB (Soxhlet SW3540	<u>)C)</u>							
PCB-1016	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1221	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1232	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1242	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1248	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1254	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1260	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1262	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A	
PCB-1268	ND	0.53	mg/Kg	2	10/21/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	68		%	2	10/21/16	AW	40 - 140 %	
% TCMX	57		%	2	10/21/16	AW	40 - 140 %	

Client ID: PCB-2B-60 EXT DOOR CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56957

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc

40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56958

Project ID: FERNALD WALTHAM

Client ID: PCB-2C-60 EXT DOOR CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540	<u>)C)</u>						
PCB-1016	ND	0.79	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1221	ND	0.79	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1232	ND	0.79	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1242	ND	0.79	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1248	ND	0.79	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1254	ND	0.79	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1260	ND	0.79	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1262	ND	0.79	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1268	ND	0.79	mg/Kg	2	10/21/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	62		%	2	10/21/16	AW	40 - 140 %
% TCMX	52		%	2	10/21/16	AW	40 - 140 %

Client ID: PCB-2C-60 EXT DOOR CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Project ID:

Laboratory Data

SDG ID: GBV56923
Phoenix ID: BV56959

Client ID: PCB-1A-59 EXT DOOR CAULK

FERNALD WALTHAM

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW35400	<u>:)</u>						
PCB-1016	ND	6.8	mg/Kg	20	10/24/16	AW	SW8082A
PCB-1221	ND	6.8	mg/Kg	20	10/24/16	AW	SW8082A
PCB-1232	ND	6.8	mg/Kg	20	10/24/16	AW	SW8082A
PCB-1242	ND	6.8	mg/Kg	20	10/24/16	AW	SW8082A
PCB-1248	ND	6.8	mg/Kg	20	10/24/16	AW	SW8082A
PCB-1254	ND	6.8	mg/Kg	20	10/24/16	AW	SW8082A
PCB-1260	ND	6.8	mg/Kg	20	10/24/16	AW	SW8082A
PCB-1262	ND	6.8	mg/Kg	20	10/24/16	AW	SW8082A
PCB-1268	ND	6.8	mg/Kg	20	10/24/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	78		%	20	10/24/16	AW	40 - 140 %
% TCMX	66		%	20	10/24/16	AW	40 - 140 %

Client ID: PCB-1A-59 EXT DOOR CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

For PCBs, due to matrix interference from non target compounds in the sample an elevated RL was reported. Multiple cleanup steps were performed but were unsuccessful. The extract was cleaned up with a combination of sulfuric acid, potassium permanganate, copper powder and additional florisil.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

Dooult

P.O.#:

Daramatar

<u>Laboratory Data</u> SDG ID: GBV56923

Dilution

Phoenix ID: BV56960

Ver 1

Project ID: FERNALD WALTHAM

Client ID: PCB-1B-59 EXT DOOR CAULK

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	_
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	_
PCB (Soxhlet SW3540	<u>(C)</u>							
PCB-1016	ND	7.6	mg/Kg	20	10/24/16	AW	SW8082A	
PCB-1221	ND	7.6	mg/Kg	20	10/24/16	AW	SW8082A	
PCB-1232	ND	7.6	mg/Kg	20	10/24/16	AW	SW8082A	
PCB-1242	ND	7.6	mg/Kg	20	10/24/16	AW	SW8082A	
PCB-1248	ND	7.6	mg/Kg	20	10/24/16	AW	SW8082A	
PCB-1254	ND	7.6	mg/Kg	20	10/24/16	AW	SW8082A	
PCB-1260	ND	7.6	mg/Kg	20	10/24/16	AW	SW8082A	
PCB-1262	ND	7.6	mg/Kg	20	10/24/16	AW	SW8082A	
PCB-1268	ND	7.6	mg/Kg	20	10/24/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	79		%	20	10/24/16	AW	40 - 140 %	
% TCMX	65		%	20	10/24/16	AW	40 - 140 %	

Linita

Client ID: PCB-1B-59 EXT DOOR CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

For PCBs, due to matrix interference from non target compounds in the sample an elevated RL was reported. Multiple cleanup steps were performed but were unsuccessful. The extract was cleaned up with a combination of sulfuric acid, potassium permanganate, copper powder and additional florisil.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: BV56960

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56962

Project ID: FERNALD WALTHAM

Client ID: PCB-1A-57 EXT WINDOW CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	0.74	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.74	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.74	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.74	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.74	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	2.4	0.74	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.74	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.74	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.74	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	79		%	2	10/20/16	AW	40 - 140 %
% TCMX	57		%	2	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM

Client ID: PCB-1A-57 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56962

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56963

Project ID: FERNALD WALTHAM

Client ID: PCB-1B-57 EXT WINDOW CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C	<u>:)</u>						
PCB-1016	ND	0.75	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.75	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.75	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.75	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.75	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	2.9	0.75	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.75	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.75	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.75	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	80		%	2	10/20/16	AW	40 - 140 %
% TCMX	59		%	2	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM

Client ID: PCB-1B-57 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56963

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

For PCBs, in order to reach the desired RL, multiple cleanup steps were performed. The extract was cleaned up with a combination of sulfuric acid, potassium permanganate, copper powder and additional florisil.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56964

Project ID: FERNALD WALTHAM

Client ID: PCB-1C-57 EXT WINDOW CAULK

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C	<u>s)</u>						
PCB-1016	ND	2	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1221	ND	2	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1232	ND	2	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1242	ND	2	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1248	ND	2	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1254	2.8	2	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1260	ND	2	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1262	ND	2	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1268	ND	2	mg/Kg	10	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	73		%	10	10/20/16	AW	40 - 140 %
% TCMX	50		%	10	10/20/16	AW	40 - 140 %

Ver 1

Project ID: FERNALD WALTHAM

Client ID: PCB-1C-57 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56964

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56965

Project ID: FERNALD WALTHAM

Client ID: PCB-2A-57 EXT WINDOW GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C	<u>:)</u>						
PCB-1016	ND	0.31	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.31	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.31	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.31	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.31	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	ND	0.31	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.31	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.31	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.31	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	72		%	2	10/20/16	AW	40 - 140 %
% TCMX	69		%	2	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM Phoenix I.D.: BV56965

Client ID: PCB-2A-57 EXT WINDOW GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56966

Project ID: FERNALD WALTHAM

Client ID: PCB-2B-57 EXT WINDOW GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	0.29	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.29	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.29	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.29	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.29	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	ND	0.29	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.29	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.29	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.29	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	72		%	2	10/20/16	AW	40 - 140 %
% TCMX	60		%	2	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM Phoenix I.D.: BV56966

Client ID: PCB-2B-57 EXT WINDOW GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56967

Project ID: FERNALD WALTHAM

Client ID: PCB-2C-57 EXT WINDOW GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C	<u>;)</u>						
PCB-1016	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.68	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	76		%	2	10/20/16	AW	40 - 140 %
% TCMX	56		%	2	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM Phoenix I.D.: BV56967

Client ID: PCB-2C-57 EXT WINDOW GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56968

Project ID: FERNALD WALTHAM

Client ID: PCB-1A-61 EXT WINDOW CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540	<u>(C)</u>						
PCB-1016	ND	0.93	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.93	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.93	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.93	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.93	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	ND	0.93	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.93	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.93	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.93	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	70		%	2	10/20/16	AW	40 - 140 %
% TCMX	58		%	2	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM

Client ID: PCB-1A-61 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56968

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56969

Project ID: FERNALD WALTHAM

Client ID: PCB-1B-61 EXT WINDOW CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C	<u>s)</u>						
PCB-1016	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.89	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	75		%	2	10/20/16	AW	40 - 140 %
% TCMX	62		%	2	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM

Client ID: PCB-1B-61 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56969

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56970

Project ID: FERNALD WALTHAM

Client ID: PCB-1C-61 EXT WINDOW CAULK

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	
PCB (Soxhlet SW3540	<u>)C)</u>							
PCB-1016	ND	0.88	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1221	ND	0.88	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1232	ND	0.88	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1242	ND	0.88	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1248	ND	0.88	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1254	ND	0.88	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1260	ND	0.88	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1262	ND	0.88	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1268	ND	0.88	mg/Kg	2	10/20/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	73		%	2	10/20/16	AW	40 - 140 %	
% TCMX	56		%	2	10/20/16	AW	40 - 140 %	

Project ID: FERNALD WALTHAM

Client ID: PCB-1C-61 EXT WINDOW CAULK

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56970

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56971

Project ID: FERNALD WALTHAM

Client ID: PCB-2A-61 EXT WINDOW GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C	
PCB (Soxhlet SW3540	<u>)C)</u>							
PCB-1016	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1221	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1232	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1242	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1248	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1254	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1260	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1262	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
PCB-1268	ND	0.33	mg/Kg	2	10/20/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	75		%	2	10/20/16	AW	40 - 140 %	
% TCMX	58		%	2	10/20/16	AW	40 - 140 %	

Project ID: FERNALD WALTHAM Phoenix I.D.: BV56971

Client ID: PCB-2A-61 EXT WINDOW GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56972

Project ID: FERNALD WALTHAM

Client ID: PCB-2B-61 EXT WINDOW GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C	<u>;)</u>						
PCB-1016	ND	0.32	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.32	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.32	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.32	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.32	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	ND	0.32	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.32	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.32	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.32	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	70		%	2	10/20/16	AW	40 - 140 %
% TCMX	53		%	2	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM

Client ID: PCB-2B-61 EXT WINDOW GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: BV56972

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56973

Project ID: FERNALD WALTHAM
Client ID: PCB-2C-61 EXT GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C)						
PCB-1016	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1221	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1232	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1242	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1248	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1254	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1260	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1262	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A
PCB-1268	ND	0.43	mg/Kg	2	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	75		%	2	10/20/16	AW	40 - 140 %
% TCMX	57		%	2	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM
Client ID: PCB-2C-61 EXT GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: BV56973

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56974

Project ID: FERNALD WALTHAM
Client ID: PCB-1A-55 GREEN PAINT

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C)						
PCB-1016	ND	22	mg/Kg	100	10/20/16	AW	SW8082A
PCB-1221	ND	22	mg/Kg	100	10/20/16	AW	SW8082A
PCB-1232	ND	22	mg/Kg	100	10/20/16	AW	SW8082A
PCB-1242	ND	22	mg/Kg	100	10/20/16	AW	SW8082A
PCB-1248	ND	22	mg/Kg	100	10/20/16	AW	SW8082A
PCB-1254	ND	22	mg/Kg	100	10/20/16	AW	SW8082A
PCB-1260	ND	22	mg/Kg	100	10/20/16	AW	SW8082A
PCB-1262	ND	22	mg/Kg	100	10/20/16	AW	SW8082A
PCB-1268	ND	22	mg/Kg	100	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	Diluted Out		%	100	10/20/16	AW	40 - 140 %
% TCMX	Diluted Out		%	100	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM
Client ID: PCB-1A-55 GREEN PAINT

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

Due to the presence of what appears to be Chlordane in the sample which co-elutes with the PCBs, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: BV56974

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56975

Project ID: FERNALD WALTHAM
Client ID: PCB-1B-55 GREEN PAINT

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540	<u>(C)</u>						
PCB-1016	ND	230	mg/Kg	1000	10/20/16	AW	SW8082A
PCB-1221	ND	230	mg/Kg	1000	10/20/16	AW	SW8082A
PCB-1232	ND	230	mg/Kg	1000	10/20/16	AW	SW8082A
PCB-1242	ND	230	mg/Kg	1000	10/20/16	AW	SW8082A
PCB-1248	ND	230	mg/Kg	1000	10/20/16	AW	SW8082A
PCB-1254	ND	230	mg/Kg	1000	10/20/16	AW	SW8082A
PCB-1260	ND	230	mg/Kg	1000	10/20/16	AW	SW8082A
PCB-1262	ND	230	mg/Kg	1000	10/20/16	AW	SW8082A
PCB-1268	ND	230	mg/Kg	1000	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	Diluted Out		%	1000	10/20/16	AW	40 - 140 %
% TCMX	Diluted Out		%	1000	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM
Client ID: PCB-1B-55 GREEN PAINT

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

For PCBs, due to matrix interference from non target compounds in the sample an elevated RL was reported. Multiple cleanup steps were performed but were unsuccessful. The extract was cleaned up with a combination of sulfuric acid, potassium permanganate, copper powder and additional florisil.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Phoenix I.D.: BV56975

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56976

Project ID: FERNALD WALTHAM

Client ID: PCB-2A-55 EXT OOR GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540	<u>(C)</u>						
PCB-1016	ND	2.9	mg/Kg	20	10/20/16	AW	SW8082A
PCB-1221	ND	2.9	mg/Kg	20	10/20/16	AW	SW8082A
PCB-1232	ND	2.9	mg/Kg	20	10/20/16	AW	SW8082A
PCB-1242	ND	2.9	mg/Kg	20	10/20/16	AW	SW8082A
PCB-1248	ND	2.9	mg/Kg	20	10/20/16	AW	SW8082A
PCB-1254	ND	2.9	mg/Kg	20	10/20/16	AW	SW8082A
PCB-1260	ND	2.9	mg/Kg	20	10/20/16	AW	SW8082A
PCB-1262	ND	2.9	mg/Kg	20	10/20/16	AW	SW8082A
PCB-1268	ND	2.9	mg/Kg	20	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	96		%	20	10/20/16	AW	40 - 140 %
% TCMX	90		%	20	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM Phoenix I.D.: BV56976

Client ID: PCB-2A-55 EXT OOR GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

PCB Comment:

Due to the presence of what appears to be Chlordane in the sample which co-elutes with the PCBs, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56977

Project ID: FERNALD WALTHAM

Client ID: PCB-2B-55 EXT DOOR GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C)						
PCB-1016	ND	0.38	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1221	ND	0.38	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1232	ND	0.38	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1242	ND	0.38	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1248	ND	0.38	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1254	ND	0.38	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1260	ND	0.38	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1262	ND	0.38	mg/Kg	2	10/21/16	AW	SW8082A
PCB-1268	ND	0.38	mg/Kg	2	10/21/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	70		%	2	10/21/16	AW	40 - 140 %
% TCMX	55		%	2	10/21/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM Phoenix I.D.: BV56977

Client ID: PCB-2B-55 EXT DOOR GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 27, 2016

FOR: Ms. Susan Cahalan

CDW Consultants, Inc 40 Speen Street

Suite 301

Framingham, MA 01701

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: 10/05/16

Location Code: CDW-PCB Received by: B 10/19/16 15:02

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBV56923

Phoenix ID: BV56978

Project ID: FERNALD WALTHAM

Client ID: PCB-2C-55 EXT DOOR GLAZE

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Caulk Extraction for PCB	Completed				10/19/16	Q/IR	SW3540C
PCB (Soxhlet SW3540C)						
PCB-1016	ND	0.92	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1221	ND	0.92	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1232	ND	0.92	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1242	ND	0.92	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1248	ND	0.92	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1254	ND	0.92	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1260	ND	0.92	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1262	ND	0.92	mg/Kg	10	10/20/16	AW	SW8082A
PCB-1268	ND	0.92	mg/Kg	10	10/20/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	105		%	10	10/20/16	AW	40 - 140 %
% TCMX	77		%	10	10/20/16	AW	40 - 140 %

Project ID: FERNALD WALTHAM Phoenix I.D.: BV56978

Client ID: PCB-2C-55 EXT DOOR GLAZE

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

October 27, 2016

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

PCB-1268

ND

0.17

October 27, 2016

QA/QC Data

SDG I.D.: GBV56923

40 - 140

30

% LCS **LCSD** LCS MS **MSD** MS Rec **RPD** Blank Bl **RPD RPD** % % % Limits Limits Parameter % QA/QC Batch 363657 (mg/Kg), QC Sample No: BV42382 10X (BV56930) Polychlorinated Biphenyls - Solid PCB-1016 74 89 18.4 92 94 2.2 40 - 140 30 0.17 PCB-1221 ND 0.17 40 - 140 30 PCB-1232 ND 0.17 40 - 140 30 ND 0.17 PCB-1242 40 - 140 30 ND 0.17 PCB-1248 40 - 140 30 ND PCB-1254 0.17 40 - 140 30 105 ND 0.17 83 92 10.3 120 PCB-1260 13.3 40 - 140 30 PCB-1262 ND 0.17 40 - 140 30 ND PCB-1268 0.17 40 - 140 30 % DCBP (Surrogate Rec) 100 % 85 96 12.2 92 94 2.2 40 - 140 30 83 % TCMX (Surrogate Rec) 63 % 72 14.2 88 90 2.2 40 - 140 30 QA/QC Batch 363457 (mg/Kg), QC Sample No: BV56923 10X (BV56923, BV56924, BV56925, BV56926, BV56927, BV56928, BV56929, BV56931, BV56932, BV56933, BV56934, BV56935, BV56936, BV56937, BV56938, BV56940, BV56941, BV56942, BV56943) Polychlorinated Biphenyls - Solid 74 PCB-1016 ND 0.17 95 24.9 40 - 140 30 PCB-1221 ND 0.17 40 - 140 30 ND PCB-1232 0.17 40 - 140 30 ND PCB-1242 0.17 40 - 140 30 PCB-1248 ND 0.17 40 - 140 30 PCB-1254 ND 0.17 40 - 140 30 ND PCB-1260 0.1793 101 8.2 40 - 140 30 ND PCB-1262 0.17 40 - 140 30 ND 0.17 40 - 140 30 PCB-1268 96 90 % 106 9.9 % DCBP (Surrogate Rec) 40 - 140 30 95 % TCMX (Surrogate Rec) 79 % 8.8 40 - 140 30 Comment: A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate. QA/QC Batch 363469 (mg/Kg), QC Sample No: BV56944 10X (BV56944, BV56945, BV56946, BV56947, BV56948, BV56949, BV56950, BV56951, BV56952, BV56953, BV56954, BV56955, BV56956, BV56957, BV56958, BV56959, BV56960, BV56962, BV56963, BV56964) Polychlorinated Biphenyls - Solid PCB-1016 ND 0.17 93 91 2.2 40 - 14030 PCB-1221 ND 0.17 40 - 140 30 ND PCB-1232 0.17 40 - 140 30 PCB-1242 ND 0.17 40 - 140 30 PCB-1248 ND 0.17 40 - 140 30 PCB-1254 ND 0.17 30 40 - 140 PCB-1260 ND 0.17 97 96 1.0 40 - 140 30 PCB-1262 ND 0.17 40 - 140 30

SDC LD .	CDV54022
3DG I.D.:	GBV56923

Parameter		BIk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
% DCBP (Surrogate Rec)	96	%		105	109	3.7				40 - 140	30
% TCMX (Surrogate Rec)	86	%		98	97	1.0				40 - 140	30
Comment:											
A LCS and LCS Duplicate were	e performed ir	stead of a m	atrix spike and matri	x spike du	uplicate.						

QA/QC Batch 363470 (mg/Kg), QC Sample No: BV58803 10X (BV56965, BV56966, BV56967, BV56968, BV56969, BV56970, BV56971, BV56972, BV56973, BV56974, BV56975, BV56976, BV56977, BV56978)

Polychlorinated Biphenyls - Solid

PCB-1016	ND	0.17	80	77	3.8	83	82	1.2	40 - 140	30	
PCB-1221	ND	0.17							40 - 140	30	
PCB-1232	ND	0.17							40 - 140	30	
PCB-1242	ND	0.17							40 - 140	30	
PCB-1248	ND	0.17							40 - 140	30	
PCB-1254	ND	0.17							40 - 140	30	
PCB-1260	ND	0.17	96	81	16.9	86	84	2.4	40 - 140	30	
PCB-1262	ND	0.17							40 - 140	30	
PCB-1268	ND	0.17							40 - 140	30	
% DCBP (Surrogate Rec)	109	%	107	95	11.9	104	104	0.0	40 - 140	30	
% TCMX (Surrogate Rec)	72	%	70	83	17.0	95	94	1.1	40 - 140	30	

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director October 27, 2016

Thursday, October 27, 2016

Sample Criteria Exceedances Report

GBV56923 - CDW-PCB

RLAnalysis SampNo Acode Phoenix Analyte Criteria Result RL Criteria Criteria Units

Criteria: None

State: MA

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 1 of 1

^{***} No Data to Display ***

CHAIN OF CUSTODY RECORD CHAIN OF CUSTODY RECORD CHAIN OF CUSTODY RECORD CHAIN OF CHAI	Coolent Pke No	Project P.O: This section MUST be completed with Bottle Quantities.	10 27 (10 03 (16 12 12 12 12 12 12 12 12 12 12 12 12 12	811 CO 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8					
CHAIN OF CUSTODY CHAIN OF CUSTODY Frai integrobenishs.com Fa Client Services (86) From the Project: Fex #: Report to: Phone #: Services Frax #: Identification Analysis Sampled Sam	Data Delivery:	Waltham whate	Que la la la la la la la la la la la la la	100 105 10 10 10 10 10 10 10 10 10 10 10 10 10				CI RCP Cert GW Protection SW Protection	GB Mobility C Residential DEC C Other
Inc. Sample Date Matrix Sample Date Matrix Sampled	CHAIN OF CUSTODY REC East Middle Tumpike, P.O. Box 370, Manche Email: <u>Info@phoenxiabs.com</u> Fax (860) Client Services (860) 645-8	444991	Analysis Request	T 1				1946 12×10 19-16 15:02	nilindoi 18
		Speed Stylenty Cantestol	Sampler's Dare: William Sample Information - Identification Signature Makink Code: DN=Drinking Water GW=Ground Water SW=Surface Water www=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid	Sample Sample Date Ation Matrix Sampled Calle Strain College Calle Strain College Called Call	cxe jourt	Land Sawe	11 11 11 11 11 11 11 11 11 11 11 11 11	Menico Du	ACT & CNUT

Q

	D.	~ }		Cooler: Yes No
	CHAIN OF CUSTODY RECORD		Temp	고 기 교
	587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@bhoenixlabs.com Fax (860) 645-0823		Data Delivery:	
mental Laboratories, Inc.	8	645-8726	Email:	
Customer:	Project:	10 0x	Project D.O.	
Address:	Report to:	-		
	Invoice to:		This	This section MUST be
	Phone #:			completed with
				Bottle Quantities.
Client Sample - Information - Identification	2			* * * * * * * * * * * * * * * * * * * *
Signature Date				1400, 20,
Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OH=Oil R=Bulk I = Ionid	reduces I		Service Servic	
			1000 / 85 Solette Solette	357/36
<u>a</u>			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	OG BIJOS THO STATE OF THE STATE
RG-36-15 Perm 50 10K/1p	X			計
9	\(\)			
370	X			
38 pc6-18-4	X			
8	X			
8629				
8-1-20000	×)		
2007 JC 1-49 CUBICA				
722-11-12				
29-41-117				
100/00/00	\			
34-10 24-10				
Neimigualier by Accepted by:	Time:	RI CI	IMA	Data Format
James Complete	101916 13:70	ш,		Excel
ALLEMACE & LLI	10.19-16 15:02		GW-2	☐ PDF ☐ GIS/Key
Comments. Special Requirements or Benulations.		☐ Other ☐ GA Mobility		Eouls
	Turnaround:	GB Mobility		☐ Uner Data Package
To have	2 Days*	Residential DEC	27.8.7 □ 8.3	Tier II Checklist Full Data Package*
	Standard Fle (3)	Other	☐ MWRA eSMART ☐ Other	Phoenix Std Report
	Other	State where samples were collected:		
	SURCHARISE APPLIES			* SURCHARGE APPLIES

P3 25

	5 5		This section MUST be completed with Bottle Quantities.		**************************************	_							Data Format	Excel	GIS/Key	Other Data Package Tier II Checklist	Full Data Package* Phoenix Std Report	* SURCHARGE APPLIES
	Data Delivery:		 -	Tole lie ii	Para Contraction of Paragraphics Contraction of the								MA	MCP Certification GW-1	GW-2 □ GW-3	S-1 S-2	S-3 MWRA eSMART Other	cted;
Q							-								GA Mobility	B GB Mobility Residential DEC	UC DEC	State where samples were collected:
CHAIN OF CUSTODY RECORD	587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: <u>info@bhoenixlabs.com</u> Fax (860) 645-0823 Client Services (860) 645-8726	Sca farse											:	S 10 Unrect exposure (Residential)	Other	25	1	
CHAIN OF CU	East Middle Turnpike, P.O. Box Email: <u>info@phoenixlabs.com</u> Client Services (8)	Project: Report to:	Invoice to: Phone #: Fax #:	Analysis Request		\ \ \ \	× ×	× 7		X X	\ <u>\</u> \		Ę	1014-16		Turnaround:	2 Days* () 3 Days* () () () () () () () () () (CURCHARGE APPLIES
	1285			ation / //////////////////////////////////	Date Time	1	/ (((,	1 1	1		1 Aun	0 -			
	JENIX TO VENTAL INC.	Su 1/3 1		Sampler's Signature Sample Information Identification Date: 18/11/1/8 Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water SHORM SAMPLE SOIR SE-Solid W=Wipe	Customer Sample Sample Identification Matrix	Macoulous	25 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	18-10-50 11		A-LOC EXTAGRAC	3-60 11	-IA-ST Barrowlk	Accepted by:	Wron ice	monte or Dogulations.	ments of regulations:	7	
2,10	PHOHINK ENTROPRISHES,	Customer: Address:		Sampler's Signature Signature Signature Signature Marking Water GW= RW=Raw Waster SE-Sedit	PHOENIX USE ONLY C SAMPLE #	49	5-81-90 (156-18-52)	CO CO		50956 26-24-00	50957 86-35-60	$\Box x$	Relinquished 66.	Ser of	Comments Special Remijrements on Don Little	S OF		

Coolent: 19K Ce	Temp °C	Data Delivery:	Project P.O:	This section MUST be completed with Bottle Quantities.		\$ 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							2.1	<u>5</u>	bility S-1 Data Interest C C S-2 C C C S-3 C C C C C C C C C	Other Other
(2 42)	CHAIN OF CUSTODY RECORD	587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Project:	Invoice to: Phone #: Fax #:	Analysis Request Request	Time	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	**					t Exposure	Other Other	1 Day* C B Mc C	7
		FTOUNT STATES INC.	Customer: According Address:		Sampler's Signature Sample reformation - Identification. Signature Date: (2) 1 Matrix Code: DW-Diblerig Water GW-Ground Water SW-Surface Water www=Waste Water RW=Raw Water SE-Sediment SL-Sludge S-Soil SD-Soil W=Wipe OIL-Oil B-Bulk L-Liquid	PHOENIX USE ONLY Customer Sample Sample Date SAMPLE # Identification Matrix Sampled	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50900 48-18-57 "	42-98-59	10 [0 TO] ON TO ON	10-10-61 11-2A-61	3462B-61 11	Accepted by:	Comments, Special Requirements or Regulations:	7 fe) rs	

Og.

			Co Coolant: IP	Cooler: Yes No
	CHAIN OF CUSTODY RECORD	RECORD	Temp	°C Pg of
Ravironmental Laboratories, Inc.	587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: <u>info@bhoenixlabs.com</u> Fax (860) 645-0823 Client Services (860) 645-8726	Manchester, CT 06040 × (860) 845-0823 645-8726	Data Delivery:	
Customer: All DC Address:	Project: Report to:	Part	Project P.O:	
	Invoice to:			This section MUST be completed with Bottle Quantities.
Sampler's CHEPKSample - Information - Identification Signature Matrix Code: Matrix C	Analysis Request Strain			Joseph Land Land
PHOENIX USE ONLY Customer Sample Sample Date Time SAMPLE # Identification Matrix Sampled Sampled Sampled Sampled				PROPERTY OF STATE OF
74 18-19-55 900-71 75 26-13-55 11				
47.6	× × ,			
50978 Ro-2x-55 (1) U	2			
Accepted by:	Date: Time: 1949/6 125:10	Direct Exposure (Residential) GW		Data Format Excel Pooling
Comments, Special Requirements or Regulations: Comments Comme	Turnaround: 1 Day: 2 Days: 3 Days:	GA Mobility GB Mobility GResidential DEC UC DEC Other	: S-1 : S-2 : MWRA eSMART	Other Data Package Ther II Checklist Full Data Package Phoenix Std Report Other
	Other SURCHARGE APPLIES	State where samples were collected:	lected: ///	* SURCHARGE APPLIES

APPENDIX K5

APPENDIX A

Traffic Counts

N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

Site Code : 216023 Start Date : 9/28/2016 Page No : 1

File Name: 04759B

Groups Printed- Cars & Peds - Trucks & Buses - Bikes by Direction

					s Printed	I- Cars &	Peds -	Trucks	& Buses	- Bikes b	y Direc	tion					
	Cha	pel Road	(Closed	l)	Wa	verley Oa	aks Roa	d	Tile In	ternation	al Drive	eway	Way	verley Oa	ks Roa	d	
		From N				From 1				From S	outh			From V	Vest		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
06:00 AM	0	0	0	1	0	45	0	0	0	0	0	0	0	43	0	0	89
06:15 AM	0	0	0	0	0	54	0	0	0	0	0	2	0	72	0	0	128
06:30 AM	0	0	0	1	0	78	0	0	0	0	0	0	0	74	0	0	153
06:45 AM	0	0	0	0	0	89	0	0	0	0	0	1	0	105	0	0	195
Total	0	0	0	2	0	266	0	0	0	0	0	3	0	294	0	0	565
	1																
07:00 AM	0	0	0	0	0	110	0	0	0	0	0	0	0	100	0	0	210
07:15 AM	0	0	0	1	0	125	0	0	0	0	0	0	0	98	0	0	224
07:30 AM	0	0	0	3	0	134	0	0	0	0	0	0	0	109	0	0	246
07:45 AM	0	0	0	4	0	143	0	0	0	0	0	0	0	143	0	0	290
Total	0	0	0	8	0	512	0	0	0	0	0	0	0	450	0	0	970
	1				ı												
08:00 AM	0	0	0	6	0	141	0	0	0	0	0	0	0	124	0	0	271
08:15 AM	0	0	0	4	0	141	0	0	0	0	0	2	0	132	0	0	279
08:30 AM	0	0	0	5	0	165	0	0	0	0	0	0	0	121	0	0	291
08:45 AM	0	0	0	4	0	179	0	0	0	0	0	0	0	142	0	0	325
Total	0	0	0	19	0	626	0	0	0	0	0	2	0	519	0	0	1166
	1				ı												
09:00 AM	0	0	0	0	0	159	0	0	0	0	0	0	0	120	0	0	279
09:15 AM	0	0	0	1	0	151	0	0	0	0	0	1	0	103	0	0	256
09:30 AM	0	0	0	1	0	136	0	0	0	0	0	0	2	100	0	0	239
09:45 AM	0	0	0	0	0	108	0	0	0	0	0	0	0	98	0	0	206
Total	0	0	0	2	0	554	0	0	0	0	0	1	2	421	0	0	980
	1 -				1 -			_ 1									1
Grand Total	0	0	0	31	0	1958	0	0	0	0	0	6	2	1684	0	0	3681
Apprch %	0	0	0	100	0	100	0	0	0	0	0	100	0.1	99.9	0	0	
Total %	0	0	0	0.8	0_	53.2	0_	0	0	0	0_	0.2	0.1	45.7	00	0	
Cars & Peds	0	0	0	31	0	1904	0	0	0	0	0	6	2	1637	0	0	3580
% Cars & Peds	0	0	0	100	0	97.2	0	0	0	0	0	100	100	97.2	0	0	97.3
Trucks & Buses	0	0	0	0	0	43	0	0	0	0	0	0	0	41	0	0	84
% Trucks & Buses	0	0	0	0	0	2.2	0	0	0	0	0	0	0	2.4	0	0	2.3
Bikes by Direction	0	0	0	0	0	11	0	0	0	0	0	0	0	6	0	0	17
% Bikes by Direction	0	0	0	0	0	0.6	0	0	0	0	0	0	0	0.4	0	0	0.5

	C	hapel	Road (Closed	l)	1	Waverl	ey Oal	ks Roa	d	Tile	Intern	ationa	l Drive	eway	7	Waverl	ley Oal	ks Roa	d	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 06	5:00 AN	M to 09	:45 AM -	- Peak 1	1 of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 08:15 A	M															
08:15 AM	0	0	0	4	4	0	141	0	0	141	0	0	0	2	2	0	132	0	0	132	279
08:30 AM	0	0	0	5	5	0	165	0	0	165	0	0	0	0	0	0	121	0	0	121	291
08:45 AM	0	0	0	4	4	0	179	0	0	179	0	0	0	0	0	0	142	0	0	142	325
09:00 AM	0	0	0	0	0	0	159	0	0	159	0	0	0	0	0	0	120	0	0	120	279
Total Volume	0	0	0	13	13	0	644	0	0	644	0	0	0	2	2	0	515	0	0	515	1174
% App. Total	0	0	0	100		0	100	0	0		0	0	0	100		0	100	0	0		
PHF	.000	.000	.000	.650	.650	.000	.899	.000	.000	.899	.000	.000	.000	.250	.250	.000	.907	.000	.000	.907	.903
Cars & Peds	0	0	0	13	13	0	633	0	0	633	0	0	0	2	2	0	495	0	0	495	1143
% Cars & Peds	0	0	0	100	100	0	98.3	0	0	98.3	0	0	0	100	100	0	96.1	0	0	96.1	97.4
Trucks & Buses	0	0	0	0	0	0	8	0	0	8	0	0	0	0	0	0	17	0	0	17	25
% Trucks & Buses	0	0	0	0	0	0	1.2	0	0	1.2	0	0	0	0	0	0	3.3	0	0	3.3	2.1
Bikes by Direction	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	3	0	0	3	6
% Bikes by Direction	0	0	0	0	0	0	0.5	0	0	0.5	0	0	0	0	0	0	0.6	0	0	0.6	0.5

N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759B Site Code : 216023

Start Date : 9/28/2016

Page No : 1

Groups Printed- Cars & Peds

				-				mieu- C	ars & r	eus							
	Cha	pel Road	(Closed	l)	Wa	verley O	aks Roa	ıd	Tile In	ternation	nal Drive	eway	Wa	verley O	aks Roa	ıd	
		From N	orth			From	East			From S	outh			From	West		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
06:00 AM	0	0	0	1	0	45	0	0	0	0	0	0	0	42	0	0	88
06:15 AM	0	0	0	0	0	51	0	0	0	0	0	2	0	71	0	0	124
06:30 AM	0	0	0	1	0	71	0	0	0	0	0	0	0	73	0	0	145
06:45 AM	0	0	0	0	0	81	0	0	0	0	0	1	0	103	0	0	185
Total	0	0	0	2	0	248	0	0	0	0	0	3	0	289	0	0	542
07:00 AM	0	0	0	0	0	107	0	0	0	0	0	0	0	98	0	0	205
07:15 AM	0	0	0	1	0	123	0	0	0	0	0	0	0	97	0	0	221
07:30 AM	0	0	0	3	0	129	0	0	0	0	0	0	0	107	0	0	239
07:45 AM	0	0	0	4	0	139	0	0	0	0	0	0	0	140	0	0	283
Total	0	0	0	8	0	498	0	0	0	0	0	0	0	442	0	0	948
08:00 AM	0	0	0	6	0	139	0	0	0	0	0	0	0	122	0	0	267
08:15 AM	0	0	0	4	0	139	0	0	0	0	0	2	0	129	0	0	274
08:30 AM	0	0	0	5	0	164	0	0	0	0	0	0	0	113	0	0	282
08:45 AM	0	0	0	4	0	177	0	0	0	0	0	0	0	140	0	0	321
Total	0	0	0	19	0	619	0	0	0	0	0	2	0	504	0	0	1144
09:00 AM	0	0	0	0	0	153	0	0	0	0	0	0	0	113	0	0	266
09:15 AM	0	0	0	1	0	148	0	0	0	0	0	1	0	99	0	0	249
09:30 AM	0	0	0	1	0	133	0	0	0	0	0	0	2	93	0	0	229
09:45 AM	0	0	0	0	0	105	0	0	0	0	0	0	0	97	0	0	202
Total	0	0	0	2	0	539	0	0	0	0	0	1	2	402	0	0	946
Grand Total	0	0	0	31	0	1904	0	0	0	0	0	6	2	1637	0	0	3580
Apprch %	0	0	0	100	0	100	0	0	0	0	0	100	0.1	99.9	0	0	
Total %	0	0	0	0.9	0	53.2	0	0	0	0	0	0.2	0.1	45.7	0	0	

	C	hapel]	Road (Closed	l)	1	Vaverl	ey Oal	ks Roa	d	Tile	Intern	ationa	l Drive	eway	1	Vaverl	ey Oal	ks Roa	d	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 06	5:00 Al	M to 09	:45 AM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 08:00 A	M															
08:00 AM	0	0	0	6	6	0	139	0	0	139	0	0	0	0	0	0	122	0	0	122	267
08:15 AM	0	0	0	4	4	0	139	0	0	139	0	0	0	2	2	0	129	0	0	129	274
08:30 AM	0	0	0	5	5	0	164	0	0	164	0	0	0	0	0	0	113	0	0	113	282
08:45 AM	0	0	0	4	4	0	177	0	0	177	0	0	0	0	0	0	140	0	0	140	321
Total Volume	0	0	0	19	19	0	619	0	0	619	0	0	0	2	2	0	504	0	0	504	1144
% App. Total	0	0	0	100		0	100	0	0		0	0	0	100		0	100	0	0		
PHF	.000	.000	.000	.792	.792	.000	.874	.000	.000	.874	.000	.000	.000	.250	.250	.000	.900	.000	.000	.900	.891

N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759B Site Code : 216023 Start Date : 9/28/2016

Page No : 1

Groups Printed- Trucks & Buses

								ted- Tru	icks & B	uses							
	Chaj	pel Road	(Closed	l)	Wa	verley O	aks Roa	d	Tile In	ternatior	nal Drive	eway	Way	verley O	aks Roa	d	
		From N	North			From	East			From S	outh			From	West		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
06:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
06:15 AM	0	0	0	0	0	3	0	0	0	0	0	0	0	1	0	0	4
06:30 AM	0	0	0	0	0	6	0	0	0	0	0	0	0	1	0	0	7
06:45 AM	0	0	0	0	0	8	0	0	0	0	0	0	0	1	0	0	9_
Total	0	0	0	0	0	17	0	0	0	0	0	0	0	4	0	0	21
07:00 AM	0	0	0	0	0	3	0	0	0	0	0	0	0	2	0	0	5
07:15 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2
07:30 AM	0	0	0	0	0	3	0	0	0	0	0	0	0	1	0	0	4
07:45 AM	0	0	0	0	0	2	0	0	0	0	0	0	0	3	0	0	5_
Total	0	0	0	0	0	9	0	0	0	0	0	0	0	7	0	0	16
					ı								ı				
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
08:15 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	2	0	0	3
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	7
08:45 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	2	0	0	3_
Total	0	0	0	0	0	2	0	0	0	0	0	0	0	12	0	0	14
	ı				ı								ı				
09:00 AM	0	0	0	0	0	6	0	0	0	0	0	0	0	6	0	0	12
09:15 AM	0	0	0	0	0	3	0	0	0	0	0	0	0	4	0	0	7
09:30 AM	0	0	0	0	0	3	0	0	0	0	0	0	0	7	0	0	10
09:45 AM	0	0	0	0	0	3	0	0	0	0	0	0	0	1	0	0	4
Total	0	0	0	0	0	15	0	0	0	0	0	0	0	18	0	0	33
	ı				ı								1				
Grand Total	0	0	0	0	0	43	0	0	0	0	0	0	0	41	0	0	84
Apprch %	0	0	0	0	0	100	0	0	0	0	0	0	0	100	0	0	
Total %	0	0	0	0	0	51.2	0	0	0	0	0	0	0	48.8	0	0	

	С	hapel	Road (Closed	l)	1	Waverl	ey Oal	ks Roa	d	Tile	Intern	ationa	l Drive	eway	7	Vaverl	ey Oal	ks Roa	d	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis I	From 06	5:00 AN	M to 09	:45 AM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins at	t 09:00 A	M															
09:00 AM	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	6	0	0	6	12
09:15 AM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	4	0	0	4	7
09:30 AM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	7	0	0	7	10
09:45 AM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	1	0	0	1	4
Total Volume	0	0	0	0	0	0	15	0	0	15	0	0	0	0	0	0	18	0	0	18	33
% App. Total	0	0	0	0		0	100	0	0		0	0	0	0		0	100	0	0		
PHF	.000	.000	.000	.000	.000	.000	.625	.000	.000	.625	.000	.000	.000	.000	.000	.000	.643	.000	.000	.643	.688

N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759B Site Code : 216023 Start Date : 9/28/2016

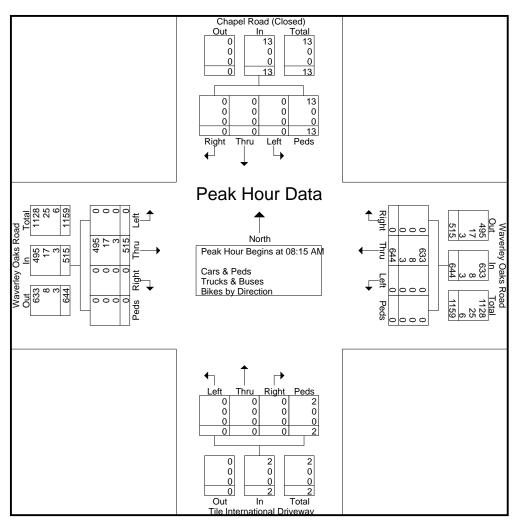
Page No : 1

Groups Printed- Bikes by Direction

	CI	.1 D1	(CI	1\	XX7				S DY DIF		-1 D-:		**7	I O	- 1 D		
	Cnap	el Road		1)	way	verley Oa		a	1 He In	ternation		eway	wa	verley O		a	
		From N				From I				From S				From V			
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
06:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06:30 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
06:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
Total	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
07:30 AM	0	0	0	0	0	2	0	0	0	0	0	0	0	1	0	0	3
07:45 AM	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
Total	0	0	0	0	0	5	0	0	0	0	0	0	0	1	0	0	6
08:00 AM	0	0	0	0	0	2	0	0	0	0	0	0	0	1	0	0	3
08:15 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2
08:30 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2
08:45 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1_
Total	0	0	0	0	0	5	0	0	0	0	0	0	0	3	0	0	8
09:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
09:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
Grand Total	0	0	0	0	0	11	0	0	0	0	0	0	0	6	0	0	17
Apprch %	0	0	0	0	0	100	0	0	0	0	0	0	0	100	0	0	
Total %	0	0	0	0	0	64.7	0	0	0	0	0	0	0	35.3	0	0	

	С	hapel]	Road (Closed	l)	1	Waverl	ey Oal	ks Roa	d	Tile	Intern	ationa	l Drive	eway	1	Waverl	ey Oal	ks Roa	d]
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis I	From 06	5:00 AN	I to 09	:45 AM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 07:30 A	M															
07:30 AM	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	1	0	0	1	3
07:45 AM	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	2
08:00 AM	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	1	0	0	1	3
08:15 AM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	2
Total Volume	0	0	0	0	0	0	7	0	0	7	0	0	0	0	0	0	3	0	0	3	10
% App. Total	0	0	0	0		0	100	0	0		0	0	0	0		0	100	0	0		
PHF	.000	.000	.000	.000	.000	.000	.875	.000	.000	.875	.000	.000	.000	.000	.000	.000	.750	.000	.000	.750	.833

Transportation Data Corporation


Mario Perone, mperone l@verizon.net tel (781) 587-0086 cell (781) 439-4999

N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA

Client: Bryant/T. Brayton

File Name: 04759B Site Code : 216023 Start Date : 9/28/2016

	C	hapel l	Road (Closed)	7	Vaverl	ey Oak	s Roa	d	Tile	Intern	ationa	l Drive	eway	1	Vaverl	ey Oak	s Roa	d	
		Fr	om No	rth			F	rom Ea	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 06	:00 AN	1 to 09:	45 AM -	Peak 1	of 1														
Peak Hour for	Entire	Intersec	ction B	egins at	08:15 A	M															
08:15 AM	0	0	0	4	4	0	141	0	0	141	0	0	0	2	2	0	132	0	0	132	279
08:30 AM	0	0	0	5	5	0	165	0	0	165	0	0	0	0	0	0	121	0	0	121	291
08:45 AM	0	0	0	4	4	0	179	0	0	179	0	0	0	0	0	0	142	0	0	142	325
09:00 AM	0	0	0	0	0	0	159	0	0	159	0	0	0	0	0	0	120	0	0	120	279
Total Volume	0	0	0	13	13	0	644	0	0	644	0	0	0	2	2	0	515	0	0	515	1174
% App. Total	0	0	0	100		0	100	0	0		0	0	0	100		0	100	0	0		
PHF	.000	.000	.000	.650	.650	.000	.899	.000	.000	.899	.000	.000	.000	.250	.250	.000	.907	.000	.000	.907	.903
Cars & Peds	0	0	0	13	13	0	633	0	0	633	0	0	0	2	2	0	495	0	0	495	1143
% Cars & Peds	0	0	0	100	100	0	98.3	0	0	98.3	0	0	0	100	100	0	96.1	0	0	96.1	97.4
Trucks & Buses	0	0	0	0	0	0	8	0	0	8	0	0	0	0	0	0	17	0	0	17	25
% Trucks & Buses	0	0	0	0	0	0	1.2	0	0	1.2	0	0	0	0	0	0	3.3	0	0	3.3	2.1
Bikes by Direction	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	3	0	0	3	6
% Bikes by Direction	0	0	0	0	0	0	0.5	0	0	0.5	0	0	0	0	0	0	0.6	0	0	0.6	0.5

N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

Site Code : 216023 Start Date : 9/28/2016 Page No : 1

File Name: 04759BB

Groups Printed- Cars & Peds - Trucks & Buses - Bikes by Direction

										- Bikes b							
	Cha	pel Road	(Closed	l)	Wa	verley Oa	aks Roa	d	Tile In	ternation	al Drive	eway	Wa	verley O	aks Roa	ıd	
		From N	orth			From 1	East			From S	outh			From	West		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
01:00 PM	0	0	0	0	0	113	0	0	1	0	0	0	0	113	0	0	227
01:15 PM	0	0	0	0	1	81	0	0	0	0	0	0	0	99	0	0	181
01:30 PM	0	0	0	1	0	97	1	0	0	0	0	1	0	96	0	0	196
01:45 PM	0	0	0	1	0	90	0	0	0	0	0	0	1	93	0	0	185
Total	0	0	0	2	1	381	1	0	1	0	0	1	1	401	0	0	789
					ı												
02:00 PM	0	0	0	1	0	98	0	0	0	0	0	0	0	111	0	0	210
02:15 PM	0	0	0	1	0	119	0	0	0	0	0	0	0	113	0	0	233
02:30 PM	0	0	0	0	0	97	0	0	0	0	0	0	1	104	0	0	202
02:45 PM	0	0	0	1	0	109	0	0	1	0	0	0	1	119	0	0	231
Total	0	0	0	3	0	423	0	0	1	0	0	0	2	447	0	0	876
00.00.00.5	1 0				1 0	405						ا م		4.50			20.5
03:00 PM	0	0	0	1	0	135	0	0	0	0	0	0	0	159	0	0	295
03:15 PM	0	0	0	1	0	130	0	0	0	0	0	0	0	145	0	0	276
03:30 PM	0	-	0	1	1	149	0	0	0	0	0	0	0	131	0	0	282
03:45 PM	0	0	0	3	0	153 567	0	0	0	0	0	0	0	145 580	0	0	298
Total	0	U	U	3	1	307	U	U	0	U	U	U I	U	380	U	U	1151
04:00 PM	0	0	0	1	0	138	0	0	0	0	0	0	1	143	0	0	283
04:15 PM	0	0	0	4	0	143	0	0	0	0	0	0	0	169	0	0	316
04:30 PM	0	0	0	2	0	151	0	0	0	0	0	0	0	171	0	0	324
04:45 PM	0	0	0	2	0	139	0	0	0	0	0	1	0	162	0	0	304
Total	0	0	0	9	0	571	0	0	0	0	0	1	1	645	0	0	1227
05:00 PM	0	0	0	3	0	162	0	0	0	0	0	0	0	182	0	0	347
05:15 PM	0	0	0	1	0	150	0	0	0	0	0	1	0	169	0	0	321
05:30 PM	0	0	0	2	0	131	0	0	0	0	0	1	0	200	0	0	334
05:45 PM	0	0	0	5	0	138	0	0	0	0	0	0	0	194	0	0	337
Total	0	0	0	11	0	581	0	0	0	0	0	2	0	745	0	0	1339
	1				1												
Grand Total	0	0	0	28	2	2523	1	0	2	0	0	4	4	2818	0	0	5382
Apprch %	0	0	0	100	0.1	99.9	0	0	33.3	0	0	66.7	0.1	99.9	0	0	
Total %	0	0	0_	0.5	0	46.9	0	0	0_	0	0	0.1	0.1	52.4	0_	0	
Cars & Peds	0	0	0	28	2	2502	1	0	2	0	0	4	4	2774	0	0	5317
% Cars & Peds	0	0	0	100	100	99.2	100	0	100	0	0	100	100	98.4	0	0	98.8
Trucks & Buses	0	0	0	0	0	20	0	0	0	0	0	0	0	37	0	0	57
% Trucks & Buses	0	0	0	0	0	0.8	0	0	0	0	0	0	0	1.3	0	0	1.1
Bikes by Direction	0	0	0	0	0	1	0	0	0	0	0	0	0	7	0	0	8
% Bikes by Direction	0	0	0	0	0	0	0	0	0	0	0	0	0	0.2	0	0	0.1

	C	hapel 1	Road (Closed	l)	1	Vaverl	ey Oal	ks Roa	d	Tile	Intern	ationa	l Drive	eway	1	Waverl	ley Oak	ks Roa	d	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 01	1:00 PM	1 to 03:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 03:00 P	M															
03:00 PM	0	0	0	1	1	0	135	0	0	135	0	0	0	0	0	0	159	0	0	159	295
03:15 PM	0	0	0	1	1	0	130	0	0	130	0	0	0	0	0	0	145	0	0	145	276
03:30 PM	0	0	0	1	1	1	149	0	0	150	0	0	0	0	0	0	131	0	0	131	282
03:45 PM	0	0	0	0	0	0	153	0	0	153	0	0	0	0	0	0	145	0	0	145	298
Total Volume	0	0	0	3	3	1	567	0	0	568	0	0	0	0	0	0	580	0	0	580	1151
% App. Total	0	0	0	100		0.2	99.8	0	0		0	0	0	0		0	100	0	0		
PHF	.000	.000	.000	.750	.750	.250	.926	.000	.000	.928	.000	.000	.000	.000	.000	.000	.912	.000	.000	.912	.966
Cars & Peds	0	0	0	3	3	1	561	0	0	562	0	0	0	0	0	0	567	0	0	567	1132
% Cars & Peds	0	0	0	100	100	100	98.9	0	0	98.9	0	0	0	0	0	0	97.8	0	0	97.8	98.3
Trucks & Buses	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	13	0	0	13	19
% Trucks & Buses	0	0	0	0	0	0	1.1	0	0	1.1	0	0	0	0	0	0	2.2	0	0	2.2	1.7
Bikes by Direction	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bikes by Direction	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759BB Site Code : 216023 Start Date : 9/28/2016

	C	hapel l	Road (Closed))	1	Vaverl	ey Oak	s Roa	d	Tile	Intern	ationa	l Drive	eway	1	Waverl	ey Oak	s Roa	d	
		Fr	om No	rth			F	rom Ea	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 04	:00 PM	I to 05:4	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Intersec	ction B	egins at	05:00 P	M															
05:00 PM	0	0	0	3	3	0	162	0	0	162	0	0	0	0	0	0	182	0	0	182	347
05:15 PM	0	0	0	1	1	0	150	0	0	150	0	0	0	1	1	0	169	0	0	169	321
05:30 PM	0	0	0	2	2	0	131	0	0	131	0	0	0	1	1	0	200	0	0	200	334
05:45 PM	0	0	0	5	5	0	138	0	0	138	0	0	0	0	0	0	194	0	0	194	337
Total Volume	0	0	0	11	11	0	581	0	0	581	0	0	0	2	2	0	745	0	0	745	1339
% App. Total	0	0	0	100		0	100	0	0		0	0	0	100		0	100	0	0		
PHF	.000	.000	.000	.550	.550	.000	.897	.000	.000	.897	.000	.000	.000	.500	.500	.000	.931	.000	.000	.931	.965
Cars & Peds	0	0	0	11	11	0	579	0	0	579	0	0	0	2	2	0	735	0	0	735	1327
% Cars & Peds	0	0	0	100	100	0	99.7	0	0	99.7	0	0	0	100	100	0	98.7	0	0	98.7	99.1
Trucks & Buses	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	4	0	0	4	5
% Trucks & Buses	0	0	0	0	0	0	0.2	0	0	0.2	0	0	0	0	0	0	0.5	0	0	0.5	0.4
Bikes by Direction	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	6	0	0	6	7
% Bikes by Direction	0	0	0	0	0	0	0.2	0	0	0.2	0	0	0	0	0	0	0.8	0	0	0.8	0.5

N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759BB Site Code : 216023 Start Date : 9/28/2016

Page No : 1

Groups Printed- Cars & Peds

									ars & Pe								
	Chaj	pel Road	`	l)	Wav	verley Oa		d	Tile In	ternation		eway	Way	verley Oa		d	
		From N				From I				From S	outh			From V	Vest		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
01:00 PM	0	0	0	0	0	112	0	0	1	0	0	0	0	112	0	0	225
01:15 PM	0	0	0	0	1	81	0	0	0	0	0	0	0	98	0	0	180
01:30 PM	0	0	0	1	0	97	1	0	0	0	0	1	0	93	0	0	193
01:45 PM	0	0	0	1	0	90	0	0	0	0	0	0	1	91	0	0	183
Total	0	0	0	2	1	380	1	0	1	0	0	1	1	394	0	0	781
02:00 PM	1 0	0	0		1 0	0.5	0	ا م	0	0	0	ا م	0	100	0	0	205
02:00 PM 02:15 PM	0	0	0	1 1	0	95 117	0	0	0	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	109 112	0	0	205 230
02:15 PM 02:30 PM	0	0	0	0	0	97	0	0	0	0	0	0	0	102	0	0	200
02:30 PM 02:45 PM	0	0	0	1	0	108	0	0	1	0	0	0	1	102	0	0	200
Total	0	0	0	3	0	417	0	0	1	0	0	0	2	440	0	0	863
Total	1 0	U	U	3	U	417	U	U I	1	U	U	0	2	440	U	U	803
03:00 PM	0	0	0	1	0	135	0	0	0	0	0	0	0	158	0	0	294
03:15 PM	0	0	0	1	0	130	0	0	0	0	0	0	0	143	0	0	274
03:30 PM	0	0	0	1	1	145	0	0	0	0	0	0	0	126	0	0	273
03:45 PM	0	0	0	0	0	151	0	0	0	0	0	0	0	140	0	0	291
Total	0	0	0	3	1	561	0	0	0	0	0	0	0	567	0	0	1132
	ı				ı												
04:00 PM	0	0	0	1	0	137	0	0	0	0	0	0	1	140	0	0	279
04:15 PM	0	0	0	4	0	142	0	0	0	0	0	0	0	166	0	0	312
04:30 PM	0	0	0	2	0	148	0	0	0	0	0	0	0	171	0	0	321
04:45 PM	0	0	0	2	0	138	0	0	0	0	0	1	0	161	0	0	302
Total	0	0	0	9	0	565	0	0	0	0	0	1	1	638	0	0	1214
05:00 PM	0	0	0	3	0	162	0	0	0	0	0	0	0	180	0	0	345
05:15 PM	0	0	0	1	0	150	0	0	0	0	0	1	0	166	0	0	318
05:30 PM	0	0	0	2	0	130	0	0	0	0	0	1	0	199	0	0	332
05:45 PM	ő	0	0	5	0	137	0	0	0	0	0	0	0	190	0	0	332
Total	0	0	0	11	0	579	0	0	0	0	0	2	0	735	0	0	1327
Grand Total	0	0	0	28	2	2502	1	0	2	0	0	4	4	2774	0	0	5317
Appreh %	0	0	0	100	0.1	99.9	0	0	33.3	0	0	66.7	0.1	99.9	0	0	3317
Appren % Total %	0	0	0	0.5	0.1	99.9 47.1	0	0	33.3	0	0	0.1	0.1	52.2	0	0	
rotal %	l 0	U	U	0.5	U	4/.1	U	U	U	U	U	0.1	0.1	32.2	U	U	

	С	hapel	Road (Closed	l)	1	Waverl	ey Oal	ks Roa	d	Tile	Intern	ationa	l Drive	way	7	Waverl	ey Oal	ks Roa	d	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis I	From 01	:00 PM	1 to 03:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 03:00 P	M															
03:00 PM	0	0	0	1	1	0	135	0	0	135	0	0	0	0	0	0	158	0	0	158	294
03:15 PM	0	0	0	1	1	0	130	0	0	130	0	0	0	0	0	0	143	0	0	143	274
03:30 PM	0	0	0	1	1	1	145	0	0	146	0	0	0	0	0	0	126	0	0	126	273
03:45 PM	0	0	0	0	0	0	151	0	0	151	0	0	0	0	0	0	140	0	0	140	291
Total Volume	0	0	0	3	3	1	561	0	0	562	0	0	0	0	0	0	567	0	0	567	1132
% App. Total	0	0	0	100		0.2	99.8	0	0		0	0	0	0		0	100	0	0		
PHF	.000	.000	.000	.750	.750	.250	.929	.000	.000	.930	.000	.000	.000	.000	.000	.000	.897	.000	.000	.897	.963

N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759BB Site Code : 216023 Start Date : 9/28/2016

		la a mal 1	Daad (Classi	1)	Ι τ	X 7	ar. Oal	D		Tile	T4	.4	I Dada		•	Mariani	ar. Oal	D	a a	1
	·	•	,	Closed	1)	'	waveri	ey Oal	s Roa	u	Tile	Intern			eway	,	vaveri	ley Oal	s Roa	a	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis I	From 04	4:00 PM	1 to 05:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 05:00 P	M															
05:00 PM	0	0	0	3	3	0	162	0	0	162	0	0	0	0	0	0	180	0	0	180	345
05:15 PM	0	0	0	1	1	0	150	0	0	150	0	0	0	1	1	0	166	0	0	166	318
05:30 PM	0	0	0	2	2	0	130	0	0	130	0	0	0	1	1	0	199	0	0	199	332
05:45 PM	0	0	0	5	5	0	137	0	0	137	0	0	0	0	0	0	190	0	0	190	332
Total Volume	0	0	0	11	11	0	579	0	0	579	0	0	0	2	2	0	735	0	0	735	1327
% App. Total	0	0	0	100		0	100	0	0		0	0	0	100		0	100	0	0		
PHF	.000	.000	.000	.550	.550	.000	.894	.000	.000	.894	.000	.000	.000	.500	.500	.000	.923	.000	.000	.923	.962

N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759BB Site Code : 216023 Start Date : 9/28/2016

Groups Printed-	Trucks	& Buses
-----------------	--------	---------

		G1		(CI	•\	***		•		icks & D		15.		***				1
		Chap	el Road		1)	Wav	verley Oa		d	Tile In	ternation		eway	Way	verley Oa		d	
L			From N				From I				From S				From V			
L	Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
	01:00 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2
	01:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
	01:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3
	01:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
	Total	0	0	0	0	0	1	0	0	0	0	0	0	0	7	0	0	8
	02:00 PM	0	0	0	0	0	3	0	0	0	0	0	0	0	2	0	0	5
	02:15 PM	0	0	0	0	0	2	0	0	0	0	0	0	0	1	0	0	3
	02:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
	02:45 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	2	0	0	3
	Total	0	0	0	0	0	6	0	0	0	0	0	0	0	7	0	0	13
	03:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
	03:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
	03:30 PM	0	0	0	0	0	4	0	0	0	0	0	0	0	5	0	0	9
	03:45 PM	0	0	0	0	0	2	0	0	0	0	0	0	0	5	0	0	7_
	Total	0	0	0	0	0	6	0	0	0	0	0	0	0	13	0	0	19
	04:00 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	3	0	0	4
	04:15 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	2	0	0	3
	04:30 PM	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	3
	04:45 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2
	Total	0	0	0	0	0	6	0	0	0	0	0	0	0	6	0	0	12
	05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
	05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
	05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
	05:45 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2
	Total	0	0	0	0	0	1	0	0	0	0	0	0	0	4	0	0	5
	Grand Total	0	0	0	0	0	20	0	0	0	0	0	0	0	37	0	0	57
	Apprch %	0	0	0	0	0	100	0	0	0	0	0	0	0	100	0	0	
	Total %	0	0	0	0	0	35.1	0	0	0	0	0	0	0	64.9	0	0	

	C	hapel	Road (Closed	1)	1	Waverl	ey Oal	ks Road	d	Tile	Intern	ationa	l Drive	way	1	Vaverl	ey Oal	ks Roa	d	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis I	From 01	1:00 PM	1 to 03:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 03:00 P	M															
03:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
03:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	2
03:30 PM	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	0	5	0	0	5	9
03:45 PM	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	5	0	0	5	7
Total Volume	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	13	0	0	13	19
% App. Total	0	0	0	0		0	100	0	0		0	0	0	0		0	100	0	0		
PHF	.000	.000	.000	.000	.000	.000	.375	.000	.000	.375	.000	.000	.000	.000	.000	.000	.650	.000	.000	.650	.528

N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759BB Site Code : 216023 Start Date : 9/28/2016

	C	hapel l	Road (Closed	l)	1	Vaverl	ey Oal	ks Roa	d	Tile	Intern	ationa	l Drive	way	1	Vaverl	ey Oal	ks Roa	d	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 04	1:00 PM	1 to 05:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 04:00 P	M															
04:00 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	3	0	0	3	4
04:15 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	2	0	0	2	3
04:30 PM	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	3
04:45 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	2
Total Volume	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	6	0	0	6	12
% App. Total	0	0	0	0		0	100	0	0		0	0	0	0		0	100	0	0		
PHF	.000	.000	.000	.000	.000	.000	.500	.000	.000	.500	.000	.000	.000	.000	.000	.000	.500	.000	.000	.500	.750

N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759BB Site Code : 216023 Start Date : 9/28/2016

Page No : 1

Groups Printed- Bikes by Direction

									s by Dire								
	Chaj	pel Road	`	d)	Wav	verley Oa		d	Tile Int	ternation		eway	Wav	erley Oa		d	
		From N				From I				From Se				From V			
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					ı												
02:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:45 PM	0	0	0	0	0	0	0_	0	0	0	0	0	0	0	0	0	0_
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1 .				1 -												
03:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04.00 ₽3.6	1 0	0	0		1 0	0	0	0		0	0	0		0	0	0	
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	Ü	0	0	1	0	0	1
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
05:00 PM 05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2
		0		0			0					~	-	2	0	-	2
05:30 PM	0	0	0	-	0	1	0	0	0	0	0	0	0	-	0	0	1
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	7
Total	0	U	U	U	U	1	U	0	U	U	U	0	U	0	U	U	/
Grand Total	0	0	0	0	0	1	0	0	0	0	0	0	0	7	0	0	8
Appreh %	0	0	0	0	0	100	0	0	0	0	0	0	0	100	0	0	0
Appren % Total %	0	0	0	0	0	12.5	0	0	0	0	0	0	0	87.5	0	0	
rotal %	ı U	U	U	0	ı U	12.3	U	U	U	U	U	U	U	01.3	U	U	

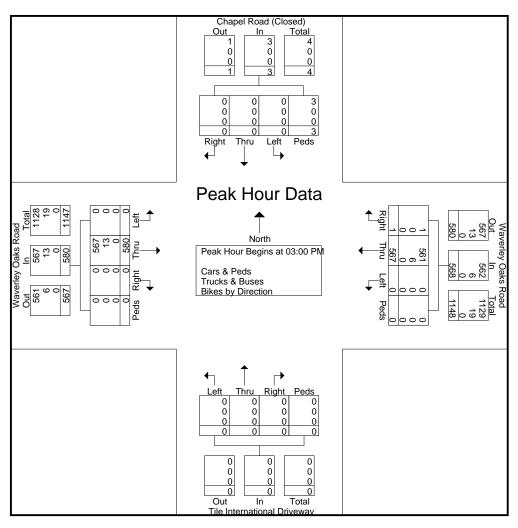
	C	hapel	Road (Closed	1)	1	Waverl	ey Oal	ks Roa	d	Tile	Intern	ationa	l Drive	way	1	Vaverl	ey Oal	ks Roa	d	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 01	:00 PM	1 to 03:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 01:00 P	M															
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759BB Site Code : 216023 Start Date : 9/28/2016

	С	hapel 1	Road (Closed	l)	1	Waverl	ey Oal	ks Roa	d	Tile	Intern	ationa	l Drive	way	7	Vaverl	ey Oal	ks Roa	d	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 04	1:00 PM	1 to 05:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins at	t 05:00 P	M															
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	2
05:30 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	3
Total Volume	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	6	0	0	6	7
% App. Total	0	0	0	0		0	100	0	0		0	0	0	0		0	100	0	0		
PHF	.000	.000	.000	.000	.000	.000	.250	.000	.000	.250	.000	.000	.000	.000	.000	.000	.500	.000	.000	.500	.583

Transportation Data Corporation


Mario Perone, mperone l@verizon.net tel (781) 587-0086 cell (781) 439-4999

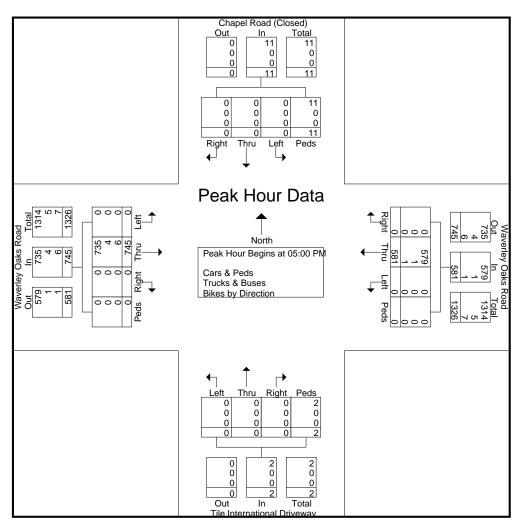
N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA

Client: Bryant/T. Brayton

File Name: 04759BB Site Code : 216023 Start Date : 9/28/2016

	C	hapel l	Road (Closed	l)	1	Vaverl	ey Oak	s Roa	d	Tile	Intern	ationa	l Drive	eway	1	Vaverl	ey Oak	s Roa	d	
		Fr	om No	rth			F	rom Ea	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 01	:00 PM	I to 03:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Intersec	ction B	egins a	t 03:00 P	M															
03:00 PM	0	0	0	1	1	0	135	0	0	135	0	0	0	0	0	0	159	0	0	159	295
03:15 PM	0	0	0	1	1	0	130	0	0	130	0	0	0	0	0	0	145	0	0	145	276
03:30 PM	0	0	0	1	1	1	149	0	0	150	0	0	0	0	0	0	131	0	0	131	282
03:45 PM	0	0	0	0	0	0	153	0	0	153	0	0	0	0	0	0	145	0	0	145	298
Total Volume	0	0	0	3	3	1	567	0	0	568	0	0	0	0	0	0	580	0	0	580	1151
% App. Total	0	0	0	100		0.2	99.8	0	0		0	0	0	0		0	100	0	0		
PHF	.000	.000	.000	.750	.750	.250	.926	.000	.000	.928	.000	.000	.000	.000	.000	.000	.912	.000	.000	.912	.966
Cars & Peds	0	0	0	3	3	1	561	0	0	562	0	0	0	0	0	0	567	0	0	567	1132
% Cars & Peds	0	0	0	100	100	100	98.9	0	0	98.9	0	0	0	0	0	0	97.8	0	0	97.8	98.3
Trucks & Buses	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	13	0	0	13	19
% Trucks & Buses	0	0	0	0	0	0	1.1	0	0	1.1	0	0	0	0	0	0	2.2	0	0	2.2	1.7
Bikes by Direction	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bikes by Direction	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Transportation Data Corporation


Mario Perone, mperone l@verizon.net tel (781) 587-0086 cell (781) 439-4999

N/S: Chapel Road/Tile Int'l Driveway E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA

Client: Bryant/T. Brayton

File Name: 04759BB Site Code : 216023 Start Date : 9/28/2016

	C	hapel l	Road (Closed)	1	Vaverl	ey Oak	s Roa	d	Tile	Intern	ationa	l Drive	eway	1	Waverl	ey Oak	s Roa	d	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 04	1:00 PM	1 to 05:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Intersec	ction B	egins at	05:00 P	M															
05:00 PM	0	0	0	3	3	0	162	0	0	162	0	0	0	0	0	0	182	0	0	182	347
05:15 PM	0	0	0	1	1	0	150	0	0	150	0	0	0	1	1	0	169	0	0	169	321
05:30 PM	0	0	0	2	2	0	131	0	0	131	0	0	0	1	1	0	200	0	0	200	334
05:45 PM	0	0	0	5_	5	0	138	0	0	138	0	0	0	0	0	0	194	0	0	194	337
Total Volume	0	0	0	11	11	0	581	0	0	581	0	0	0	2	2	0	745	0	0	745	1339
% App. Total	0	0	0	100		0	100	0	0		0	0	0	100		0	100	0	0		
PHF	.000	.000	.000	.550	.550	.000	.897	.000	.000	.897	.000	.000	.000	.500	.500	.000	.931	.000	.000	.931	.965
Cars & Peds	0	0	0	11	11	0	579	0	0	579	0	0	0	2	2	0	735	0	0	735	1327
% Cars & Peds	0	0	0	100	100	0	99.7	0	0	99.7	0	0	0	100	100	0	98.7	0	0	98.7	99.1
Trucks & Buses	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	4	0	0	4	5
% Trucks & Buses	0	0	0	0	0	0	0.2	0	0	0.2	0	0	0	0	0	0	0.5	0	0	0.5	0.4
Bikes by Direction	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	6	0	0	6	7
% Bikes by Direction	0	0	0	0	0	0	0.2	0	0	0.2	0	0	0	0	0	0	0.8	0	0	0.8	0.5

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759C Site Code : 216023

Start Date : 9/28/2016

Page No : 1

Groups Printed- Cars & Peds - Trucks & Buses - Bikes by Direction

			meu- Cars		icks & Buses					
	T	rapelo Road		Trapel	o Road (Rout	te 60)	Waverley O	Oaks Road (Ro	oute 60)	
	J	From North			From South			From West		
Start Time	Right	Thru	Peds	Thru	Left	Peds	Right	Left	Peds	Int. Total
06:00 AM	14	37	0	11	40	0	31	8	0	141
06:15 AM	24	52	0	24	55	0	38	13	1	207
06:30 AM	16	67	0	35	74	0	59	5	1	257
06:45 AM	20	113	0	42	77	0	63	11	2	328
Total	74	269	0	112	246	0	191	37	4	933
07:00 AM	18	121	0	51	84	0	74	16	2	366
07:15 AM	26	115	0	78	110	0	79	17	4	429
07:30 AM	31	117	0	88	123	0	68	24	1	452
07:45 AM	32	105	0	98	117	0	82	22	0	456
Total	107	458	0	315	434	0	303	79	7	1703
							1			
08:00 AM	46	103	0	93	134	0	66	28	1	471
08:15 AM	35	102	0	98	141	0	57	27	2	462
08:30 AM	37	102	0	79	146	0	65	26	0	455
08:45 AM	48	109	0	101	164	0	74	19	0	515
Total	166	416	0	371	585	0	262	100	3	1903
							1			
09:00 AM	38	79	0	66	135	0	53	22	1	394
09:15 AM	44	67	0	87	127	0	65	8	2	400
09:30 AM	36	64	0	63	118	0	40	20	2	343
09:45 AM	36	67	0	61	112	0	85	14	1	376
Total	154	277	0	277	492	0	243	64	6	1513
							ı		1	
Grand Total	501	1420	0	1075	1757	0	999	280	20	6052
Apprch %	26.1	73.9	0	38	62	0	76.9	21.6	1.5	
Total %	8.3	23.5	0	17.8	29	0	16.5	4.6	0.3	
Cars & Peds	490	1381	0	1048	1703	0	960	264	20	5866
% Cars & Peds	97.8	97.3	0	97.5	96.9	0	96.1	94.3	100	96.9
Trucks & Buses	10	25	0	17	39	0	35	14	0	140
% Trucks & Buses	2	1.8	0	1.6	2.2	0	3.5	5	0	2.3
Bikes by Direction	1	14	0	10	15	0	4	2	0	46
% Bikes by Direction	0.2	1	0	0.9	0.9	0	0.4	0.7	0	0.8

		Trapel	o Road		Tr	apelo Roa	d (Route	60)	Waverle	ey Oaks R	Road (Rou	ıte 60)	
		From	North			From	South			From	West		
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis F	rom 06:00 A	M to 09:4	5 AM - Pe	eak 1 of 1									
Peak Hour for Entire	Intersection 1	Begins at (08:00 AM										
08:00 AM	46	103	0	149	93	134	0	227	66	28	1	95	471
08:15 AM	35	102	0	137	98	141	0	239	57	27	2	86	462
08:30 AM	37	102	0	139	79	146	0	225	65	26	0	91	455
08:45 AM	48	109	0	157	101	164	0	265	74	19	0	93	515
Total Volume	166	416	0	582	371	585	0	956	262	100	3	365	1903
% App. Total	28.5	71.5	0		38.8	61.2	0		71.8	27.4	0.8		
PHF	.865	.954	.000	.927	.918	.892	.000	.902	.885	.893	.375	.961	.924
Cars & Peds	165	402	0	567	359	572	0	931	249	94	3	346	1844
% Cars & Peds	99.4	96.6	0	97.4	96.8	97.8	0	97.4	95.0	94.0	100	94.8	96.9
Trucks & Buses	1	10	0	11	5	5	0	10	11	6	0	17	38
% Trucks & Buses	0.6	2.4	0	1.9	1.3	0.9	0	1.0	4.2	6.0	0	4.7	2.0
Bikes by Direction	0	4	0	4	7	8	0	15	2	0	0	2	21
% Bikes by Direction	0	1.0	0	0.7	1.9	1.4	0	1.6	0.8	0	0	0.5	1.1

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759C Site Code : 216023

Start Date : 9/28/2016

Page No : 1

Groups Printed- Cars & Peds

			Gre	oups rrinteu-						
		apelo Road			Road (Route 6	50)	Waverley Oak		te 60)	
	Fı	rom North		Fr	om South		Fr	om West		
Start Time	Right	Thru	Peds	Thru	Left	Peds	Right	Left	Peds	Int. Total
06:00 AM	14	37	0	11	40	0	31	7	0	140
06:15 AM	22	52	0	24	52	0	37	13	1	201
06:30 AM	16	64	0	31	68	0	57	5	1	242
06:45 AM	20	110	0	40	69	0	62	11	2	314
Total	72	263	0	106	229	0	187	36	4	897
07:00 AM	17	120	0	51	82	0	72	16	2	360
07:15 AM	25	112	0	75	107	0	77	16	4	416
07:30 AM	29	113	0	85	120	0	67	22	1	437
07:45 AM	31	104	0	97	113	0	80	21	0	446
Total	102	449	0	308	422	0	296	75	7	1659
08:00 AM	46	101	0	89	133	0	65	25	1	460
08:15 AM	34	102	0	95	136	0	53	27	2	449
08:30 AM	37	93	0	77	142	0	60	23	0	432
08:45 AM	48	106	0	98	161	0	71	19	0	503
Total	165	402	0	359	572	0	249	94	3	1844
09:00 AM	36	74	0	65	130	0	48	20	1	374
09:15 AM	44	66	0	87	124	0	63	7	2	393
09:30 AM	35	62	0	63	117	0	34	19	2	332
09:45 AM	36	65	0	60	109	0	83	13	1	367
Total	151	267	0	275	480	0	228	59	6	1466
Grand Total	490	1381	0	1048	1703	0	960	264	20	5866
Apprch %	26.2	73.8	0	38.1	61.9	0	77.2	21.2	1.6	
Total %	8.4	23.5	0	17.9	29	0	16.4	4.5	0.3	

		Trapel	o Road North		Tra	pelo Road From	`	60)	Waverle	ey Oaks R From	`	ite 60)	
		From	North			From	Soum			From	west		
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis F	from 06:00 A	AM to 09:4	5 AM - Pe	eak 1 of 1									
Peak Hour for Entire	Intersection	Begins at (08:00 AM										
08:00 AM	46	101	0	147	89	133	0	222	65	25	1	91	460
08:15 AM	34	102	0	136	95	136	0	231	53	27	2	82	449
08:30 AM	37	93	0	130	77	142	0	219	60	23	0	83	432
08:45 AM	48	106	0	154	98	161	0	259	71	19	0	90	503
Total Volume	165	402	0	567	359	572	0	931	249	94	3	346	1844
% App. Total	29.1	70.9	0		38.6	61.4	0		72	27.2	0.9		
PHF	.859	.948	.000	.920	.916	.888	.000	.899	.877	.870	.375	.951	.917

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759C Site Code : 216023

Start Date : 9/28/2016

|--|

	Tı	rapelo Road		Trapelo	Road (Rout		Waverley O	aks Road (R	oute 60)	
	F	rom North]	From South]	From West		
Start Time	Right	Thru	Peds	Thru	Left	Peds	Right	Left	Peds	Int. Total
06:00 AM	0	0	0	0	0	0	0	1	0	1
06:15 AM	1	0	0	0	3	0	1	0	0	5
06:30 AM	0	0	0	3	6	0	1	0	0	10
06:45 AM	0	3	0	2	8	0	0	0	0	13
Total	1	3	0	5	17	0	2	1	0	29
07:00 AM	1	1	0	0	2	0	2	0	0	6
07:15 AM	1	2	0	2	0	0	2	1	0	8
07:30 AM	2	3	0	3	1	0	1	1	0	11
07:45 AM	1	0	0	1	2	0	2	1	0	7
Total	5	6	0	6	5	0	7	3	0	32
08:00 AM	0	0	0	1	0	0	0	3	0	4
08:15 AM	1	0	0	2	4	0	3	0	0	10
08:30 AM	0	8	0	0	i	0	5	3	0	17
08:45 AM	0	2	0	2	0	0	3	0	0	7
Total	1	10	0	5	5	0	11	6	0	38
09:00 AM	2	4	0	1	5	0	5	1	0	18
09:00 AM 09:15 AM	0	0	0	1	3	0	5	1	0	
09:30 AM	1	0	0	0		0	6	1	0	6
09:30 AM 09:45 AM	0	2	0	0	2	0	0	1	0	8
Total	3	6	0	1	12	0	15	4	0	41
			- I						- I	
Grand Total	10	25	0	17	39	0	35	14	0	140
Apprch %	28.6	71.4	0	30.4	69.6	0	71.4	28.6	0	
Total %	7.1	17.9	0	12.1	27.9	0	25	10	0	

		Trapel	o Road		Tr	apelo Road	d (Route	60)	Waverlo	ey Oaks I	Road (Rou	ıte 60)	
		From	North			From	South			From	ı West		
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis F	From 06:00 A	AM to 09:4	5 AM - Pe	eak 1 of 1					_				
Peak Hour for Entire	Intersection	Begins at	08:15 AM										
08:15 AM	1	0	0	1	2	4	0	6	3	0	0	3	10
08:30 AM	0	8	0	8	0	1	0	1	5	3	0	8	17
08:45 AM	0	2	0	2	2	0	0	2	3	0	0	3	7
09:00 AM	2	4	0	6	1	5	0	6	5	1	0	6	18
Total Volume	3	14	0	17	5	10	0	15	16	4	0	20	52
% App. Total	17.6	82.4	0		33.3	66.7	0		80	20	0		
PHF	.375	.438	.000	.531	.625	.500	.000	.625	.800	.333	.000	.625	.722

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759C Site Code : 216023

Start Date : 9/28/2016

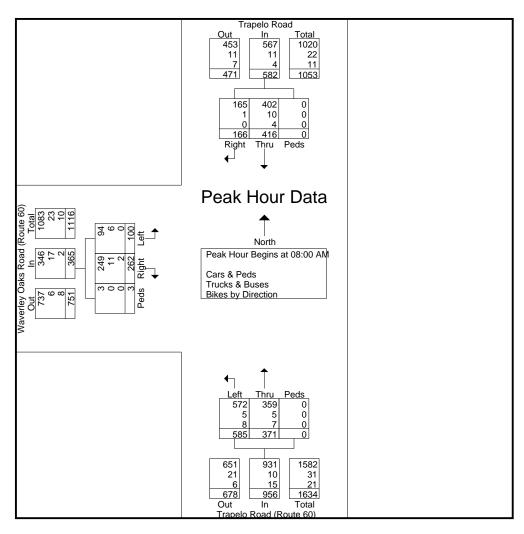
Page No : 1

Groups Printed- Bikes by Direction

Trapelo Road Trapelo Road (Route 60) Waverley Oaks Road (Route 60)													
						te 60)			oute 60)				
	F	rom North			From South			From West					
Start Time	Right	Thru	Peds	Thru	Left	Peds	Right	Left	Peds	Int. Total			
06:00 AM	0	0	0	0	0	0	0	0	0	0			
06:15 AM	1	0	0	0	0	0	0	0	0	1			
06:30 AM	0	3	0	1	0	0	1	0	0	5			
06:45 AM	0	0	0	0	0	0	1	0	0	1_			
Total	1	3	0	1	0	0	2	0	0	7			
07:00 AM	0	0	0	0	0	0	0	0	0	0			
07:15 AM	0	1	0	1	3	0	0	0	0	5			
07:30 AM	0	1	0	0	2	0	0	1	0	4			
07:45 AM	0	1	0	0	2	0	0	0	0	3			
Total	0	3	0	1	7	0	0	1	0	12			
							1						
08:00 AM	0	2	0	3	1	0	1	0	0	7			
08:15 AM	0	0	0	1	1	0	1	0	0	3			
08:30 AM	0	1	0	2	3	0	0	0	0	6			
08:45 AM	0	1	0	1	3	0	0	0	0	5			
Total	0	4	0	7	8	0	2	0	0	21			
							1						
09:00 AM	0	1	0	0	0	0	0	1	0	2			
09:15 AM	0	1	0	0	0	0	0	0	0	1			
09:30 AM	0	2	0	0	0	0	0	0	0	2			
09:45 AM	0	0	0	1	0	0	0	0	0	1_			
Total	0	4	0	1	0	0	0	1	0	6			
							ı		1				
Grand Total	1	14	0	10	15	0	4	2	0	46			
Apprch %	6.7	93.3	0	40	60	0	66.7	33.3	0				
Total %	2.2	30.4	0	21.7	32.6	0	8.7	4.3	0				

	Trapelo Road From North Dight Then Dade Are Total				Trapelo Road (Route 60) From South				Waverlo	ey Oaks R From	`	ite 60)	
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis F	From 06:00 A	AM to 09:4	5 AM - Pe	eak 1 of 1									
Peak Hour for Entire	Intersection	Begins at (08:00 AM										
08:00 AM	0	2	0	2	3	1	0	4	1	0	0	1	7
08:15 AM	0	0	0	0	1	1	0	2	1	0	0	1	3
08:30 AM	0	1	0	1	2	3	0	5	0	0	0	0	6
08:45 AM	0	1	0	1	1	3	0	4	0	0	0	0	5_
Total Volume	0	4	0	4	7	8	0	15	2	0	0	2	21
% App. Total	0	100	0		46.7	53.3	0		100	0	0		
PHF	.000	.500	.000	.500	.583	.667	.000	.750	.500	.000	.000	.500	.750

Transportation Data Corporation


Mario Perone, mperone1@verizon.net tel (781) 587-0086 cell (781) 439-4999

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60)

City, State: Waltham, MA Client: Bryant/T. Brayton

File Name : 04759C Site Code : 216023 Start Date : 9/28/2016

		Trapelo Road				pelo Road	(Route	60)	Waverle	y Oaks R	oad (Rou	te 60)	
		From 1	North			From S	South			From	West		
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis F	rom 06:00 A	M to 09:45	5 AM - Pe	eak 1 of 1									
Peak Hour for Entire	Intersection 1	Begins at 0	8:00 AM										
08:00 AM	46	103	0	149	93	134	0	227	66	28	1	95	471
08:15 AM	35	102	0	137	98	141	0	239	57	27	2	86	462
08:30 AM	37	102	0	139	79	146	0	225	65	26	0	91	455
08:45 AM	48	109	0	157	101	164	0	265	74	19	0	93	515
Total Volume	166	416	0	582	371	585	0	956	262	100	3	365	1903
% App. Total	28.5	71.5	0		38.8	61.2	0		71.8	27.4	0.8		
PHF	.865	.954	.000	.927	.918	.892	.000	.902	.885	.893	.375	.961	.924
Cars & Peds	165	402	0	567	359	572	0	931	249	94	3	346	1844
% Cars & Peds	99.4	96.6	0	97.4	96.8	97.8	0	97.4	95.0	94.0	100	94.8	96.9
Trucks & Buses	1	10	0	11	5	5	0	10	11	6	0	17	38
% Trucks & Buses	0.6	2.4	0	1.9	1.3	0.9	0	1.0	4.2	6.0	0	4.7	2.0
Bikes by Direction	0	4	0	4	7	8	0	15	2	0	0	2	21
% Bikes by Direction	0	1.0	0	0.7	1.9	1.4	0	1.6	0.8	0	0	0.5	1.1

Transportation Data Corporation

Mario Perone, mperone1@verizon.net tel (781) 587-0086 cell (781) 439-4999

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

Site Code : 216023 Start Date : 9/28/2016 Page No : 1

File Name: 04759CC

Groups Printed- Cars & Peds - Trucks & Buses - Bikes by Direction

Groups Printed- Cars & Peds - Trucks & Buses - Bikes by Direction Trapelo Road Trapelo Road (Route 60) Waverley Oaks Road (Route 60)												
		rapelo Road				e 60)			ute 60)			
		rom North]	From South]	From West				
Start Time	Right	Thru	Peds	Thru	Left	Peds	Right	Left	Peds	Int. Total		
01:00 PM	29	59	0	64	88	0	78	44	1	363		
01:15 PM	17	61	0	65	72	0	92	22	2	331		
01:30 PM	23	46	0	68	71	0	81	26	1	316		
01:45 PM	22	54	0	47	82	0	80	26	0	311		
Total	91	220	0	244	313	0	331	118	4	1321		
02:00 PM	12	59	0	79	75	0	90	39	0	354		
			-						- 1			
02:15 PM	20 17	61 80	0	71	82	0	86	29	0	349		
02:30 PM			0	78 77	72 89	0	75 77	40	0	362		
02:45 PM	16	75	0			0		37	1	372		
Total	65	275	0	305	318	0	328	145	1	1437		
03:00 PM	24	76	0	87	99	0	91	44	0	421		
03:15 PM	21	71	0	87	107	0	99	48	1	434		
03:30 PM	29	83	0	115	105	0	106	69	1	508		
03:45 PM	14	83	0	99	130	0	108	34	1	469		
Total	88	313	0	388	441	0	404	195	3	1832		
	i						ı		1			
04:00 PM	17	72	0	113	124	0	130	55	0	511		
04:15 PM	19	83	0	108	122	0	110	58	0	500		
04:30 PM	24	68	0	107	113	0	124	75	3	514		
04:45 PM	16	81	0	116	117	0	136	71	5	542		
Total	76	304	0	444	476	0	500	259	8	2067		
05:00 PM	23	94	0	130	124	0	130	75	3	579		
05:15 PM	35	76	0	138	135	0	150	68	0	602		
05:30 PM	18	63	o l	141	109	0	149	74	1	555		
05:45 PM	28	95	o l	156	126	0	133	87	2	627		
Total	104	328	0	565	494	0	562	304	6	2363		
G 177 1	104	1.440	م ا	1046	20.42	0	2125	1001	22	0020		
Grand Total	424	1440	0	1946	2042	0	2125	1021	22	9020		
Appreh %	22.7	77.3	0	48.8	51.2	0	67.1	32.2	0.7			
Total %	4.7	16	0	21.6	22.6	0	23.6	11.3	0.2	00.42		
Cars & Peds	416	1412	0	1897	2016	0	2080	999	22	8842		
% Cars & Peds	98.1	98.1	0	97.5	98.7	0	97.9	97.8	100	98		
Trucks & Buses	7	23	0	39	25	0	38	21	0	153		
% Trucks & Buses	1.7	1.6	0	2	1.2	0	1.8	2.1	0	1.7		
Bikes by Direction	1	5	0	10	1	0	7	1	0	25		
% Bikes by Direction	0.2	0.3	0	0.5	0	0	0.3	0.1	0	0.3		

	Trapelo Road			Tra	apelo Road	(Route	60)	Waverle	y Oaks R	oad (Rou	te 60)		
		From	North			From	South			From	West		
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis F	from 01:00 P	M to 03:45	5 PM - Pea	k 1 of 1									
Peak Hour for Entire	Intersection I	Begins at C	3:00 PM										
03:00 PM	24	76	0	100	87	99	0	186	91	44	0	135	421
03:15 PM	21	71	0	92	87	107	0	194	99	48	1	148	434
03:30 PM	29	83	0	112	115	105	0	220	106	69	1	176	508
03:45 PM	14	83	0	97	99	130	0	229	108	34	1	143	469
Total Volume	88	313	0	401	388	441	0	829	404	195	3	602	1832
% App. Total	21.9	78.1	0		46.8	53.2	0		67.1	32.4	0.5		
PHF	.759	.943	.000	.895	.843	.848	.000	.905	.935	.707	.750	.855	.902
Cars & Peds	86	301	0	387	378	435	0	813	389	191	3	583	1783
% Cars & Peds	97.7	96.2	0	96.5	97.4	98.6	0	98.1	96.3	97.9	100	96.8	97.3
Trucks & Buses	2	12	0	14	8	6	0	14	15	4	0	19	47
% Trucks & Buses	2.3	3.8	0	3.5	2.1	1.4	0	1.7	3.7	2.1	0	3.2	2.6
Bikes by Direction	0	0	0	0	2	0	0	2	0	0	0	0	2
% Bikes by Direction	0	0	0	0	0.5	0	0	0.2	0	0	0	0	0.1

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759CC Site Code : 216023 Start Date : 9/28/2016

	Trapelo Road From North			Tr	apelo Roa	`	60)	Waverl	ey Oaks F	*	ite 60)		
		From	North			From	South			From	West		
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis F	rom 04:00 F	PM to 05:4	5 PM - Pe	ak 1 of 1									
Peak Hour for Entire !	Intersection	Begins at	05:00 PM										
05:00 PM	23	94	0	117	130	124	0	254	130	75	3	208	579
05:15 PM	35	76	0	111	138	135	0	273	150	68	0	218	602
05:30 PM	18	63	0	81	141	109	0	250	149	74	1	224	555
05:45 PM	28	95	0	123	156	126	0	282	133	87	2	222	627
Total Volume	104	328	0	432	565	494	0	1059	562	304	6	872	2363
% App. Total	24.1	75.9	0		53.4	46.6	0		64.4	34.9	0.7		
PHF	.743	.863	.000	.878	.905	.915	.000	.939	.937	.874	.500	.973	.942
Cars & Peds	103	322	0	425	555	491	0	1046	555	301	6	862	2333
% Cars & Peds	99.0	98.2	0	98.4	98.2	99.4	0	98.8	98.8	99.0	100	98.9	98.7
Trucks & Buses	0	1	0	1	2	2	0	4	2	2	0	4	9
% Trucks & Buses	0	0.3	0	0.2	0.4	0.4	0	0.4	0.4	0.7	0	0.5	0.4
Bikes by Direction	1	5	0	6	8	1	0	9	5	1	0	6	21
% Bikes by Direction	1.0	1.5	0	1.4	1.4	0.2	0	0.8	0.9	0.3	0	0.7	0.9

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759CC Site Code : 216023 Start Date : 9/28/2016

Page No : 1

Groups Printed- Care & Pede

	7	Trapelo Road			ed- Cars & Pe o Road (Rout		Wayanlay O	aks Road (Rou	rto (0)	
					`	e ou)		,	ite oo)	
a. m		From North	ъ.		From South	ъ.		rom West	D 1	T . M . 1
Start Time	Right	Thru	Peds	Thru	Left	Peds	Right	Left	Peds	Int. Total
01:00 PM	28	56	0	60	86	0	74	44	1	349
01:15 PM	17	58	0	60	72	0	90	22	2	321
01:30 PM	23	44	0	63	69	0	79	22	1	301
01:45 PM	21	53	0	42	82	0	77	24	0	299
Total	89	211	0	225	309	0	320	112	4	1270
02:00 PM	12	59	0	78	72	0	89	38	0	348
02:15 PM	20	61	0	68	79	0	86	28	0	342
02:30 PM	17	80	0	76	71	0	74	39	0	357
02:45 PM	16	74	0	77	87	0	76	33	1	364
Total	65	274	0	299	309	0	325	138	1	1411
03:00 PM	23	72	0	85	98	0	90	42	0	410
03:15 PM	21	70	0	83	107	0	97	46	1	425
03:30 PM	29	77	0	112	101	0	99	69	1	488
03:45 PM	13	82	0	98	129	0	103	34	1	460
Total	86	301	0	378	435	0	389	191	3	1783
04:00 PM	16	72	0	110	124	0	127	55	0	504
04:15 PM	18	83	0	107	121	0	108	56	0	493
04:30 PM	23	68	0	107	111	0	123	75	3	510
04:45 PM	16	81	0	116	116	0	133	71	5	538
Total	73	304	0	440	472	0	491	257	8	2045
05:00 PM	23	93	0	124	124	0	127	75	3	569
05:15 PM	35	74	0	137	135	0	149	68	0	598
05:30 PM	17	60	0	139	108	0	148	73	1	546
05:45 PM	28	95	0	155	124	0	131	85	2	620
Total	103	322	0	555	491	0	555	301	6	2333
Grand Total	416	1412	0	1897	2016	0	2080	999	22	8842
Apprch %	22.8	77.2	0	48.5	51.5	0	67.1	32.2	0.7	
Total %	4.7	16	0	21.5	22.8	0	23.5	11.3	0.2	

		Trapelo Road From North Pight Then Pods App Total			Trapelo Road (Route 60) From South				Waverlo	ey Oaks R From	`	ite 60)	
Start Time	Right	Thru	Peds A	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis F	from 01:00 P	M to 03:4:	5 PM - Peak	1 of 1									
Peak Hour for Entire	Intersection 1	Begins at (03:00 PM										
03:00 PM	23	72	0	95	85	98	0	183	90	42	0	132	410
03:15 PM	21	70	0	91	83	107	0	190	97	46	1	144	425
03:30 PM	29	77	0	106	112	101	0	213	99	69	1	169	488
03:45 PM	13	82	0	95	98	129	0	227	103	34	1	138	460
Total Volume	86	301	0	387	378	435	0	813	389	191	3	583	1783
% App. Total	22.2	77.8	0		46.5	53.5	0		66.7	32.8	0.5		
PHF	.741	.918	.000	.913	.844	.843	.000	.895	.944	.692	.750	.862	.913

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759CC Site Code : 216023 Start Date : 9/28/2016

	Trapelo Road From North Right Thru Peds App Total				Trapelo Road (Route 60) From South				Waverl	ey Oaks R From	`	ıte 60)	
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis F	from 04:00 P	M to 05:4	5 PM - Pe	ak 1 of 1									
Peak Hour for Entire	Intersection 1	Begins at	05:00 PM										
05:00 PM	23	93	0	116	124	124	0	248	127	75	3	205	569
05:15 PM	35	74	0	109	137	135	0	272	149	68	0	217	598
05:30 PM	17	60	0	77	139	108	0	247	148	73	1	222	546
05:45 PM	28	95	0	123	155	124	0	279	131	85	2	218	620
Total Volume	103	322	0	425	555	491	0	1046	555	301	6	862	2333
% App. Total	24.2	75.8	0		53.1	46.9	0		64.4	34.9	0.7		
PHF	.736	.847	.000	.864	.895	.909	.000	.937	.931	.885	.500	.971	.941

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759CC Site Code : 216023 Start Date : 9/28/2016

Groups Printed-	Trucks	&	Buses
------------------------	--------	---	-------

Trapelo Road Trapelo Road (Route 60) Waverley Oaks Road (Route 60)													
						50)			te 60)				
	Fr	om North		Fı	om South		Fr	om West					
Start Time	Right	Thru	Peds	Thru	Left	Peds	Right	Left	Peds	Int. Total			
01:00 PM	1	3	0	4	2	0	4	0	0	14			
01:15 PM	0	3	0	5	0	0	2	0	0	10			
01:30 PM	0	2	0	5	2	0	2	4	0	15			
01:45 PM	1	1	0	5	0	0	3	2	0	12			
Total	2	9	0	19	4	0	11	6	0	51			
02:00 PM	0	0	0	1	3	0	1	1	0	6			
02:15 PM	0	0	0	3	3	0	0	1	o l	7			
02:30 PM	0	0	0	2	1	0	1	1	ő	5			
02:45 PM	0	1	0	0	2	0	1	4	o l	8			
Total	0	1	0	6	9	0	3	7	0	26			
03:00 PM	1	4	0	2	1	0	1	2	0	11			
03:15 PM	0	1	0	3	0	0	2	2	0	8			
03:30 PM	0	6	0	3	4	0	7	0	0	20			
03:45 PM	1	1	0	0	1	0	5	0	ő	8			
Total	2	12	0	8	6	0	15	4	0	47			
04:00 PM	1	0	0	3	0	0	3	0	0	7			
04:15 PM	1	0	0	1	1	0	1	2	0	6			
04:30 PM	1	0	0	0	2	0	1	0	0	4			
04:45 PM	0	0	0	0	1	0	2	0	0	3			
Total	3	0	0	4	4	0	7	2	0	20			
05:00 PM	0	0	0	1	0	0	1	0	0	2			
05:00 PM 05:15 PM	0	1	0	0	0	0	0	0	0	1			
05:30 PM	0	0	0	0	0	0	1	1	0	2			
05:45 PM	0	0	0	1	2	0	0	1	0	4			
Total	0	1	0	2	2	0	2	2	0	9			
Grand Total	7	23	0	39	25	0	38	21	0	153			
	23.3	23 76.7	0		39.1	0	58 64.4		- 1	155			
Apprch % Total %	23.3 4.6	15	0	60.9 25.5	39.1 16.3	0	24.8	35.6 13.7	0				
ı otai %	4.0	15	U	23.3	10.3	U	24.8	13.7	0				

		Trapelo From			Trapelo Road (Route 60) From South				Waverl	ey Oaks R From	`	ıte 60)	
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis I	From 01:00 I	PM to 03:45	5 PM - Pe	ak 1 of 1									
Peak Hour for Entire	Intersection	Begins at (01:00 PM										
01:00 PM	1	3	0	4	4	2	0	6	4	0	0	4	14
01:15 PM	0	3	0	3	5	0	0	5	2	0	0	2	10
01:30 PM	0	2	0	2	5	2	0	7	2	4	0	6	15
01:45 PM	1	1	0	2	5	0	0	5	3	2	0	5	12_
Total Volume	2	9	0	11	19	4	0	23	11	6	0	17	51
% App. Total	18.2	81.8	0		82.6	17.4	0		64.7	35.3	0		
PHF	.500	.750	.000	.688	.950	.500	.000	.821	.688	.375	.000	.708	.850

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759CC Site Code : 216023 Start Date : 9/28/2016

		Trapel From		Tra	pelo Road From	`	60)	Waverl					
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1													
Peak Hour for Entire	Intersection	Begins at (04:00 PM										
04:00 PM	1	0	0	1	3	0	0	3	3	0	0	3	7
04:15 PM	1	0	0	1	1	1	0	2	1	2	0	3	6
04:30 PM	1	0	0	1	0	2	0	2	1	0	0	1	4
04:45 PM	0	0	0	0	0	1	0	1	2	0	0	2	3
Total Volume	3	0	0	3	4	4	0	8	7	2	0	9	20
% App. Total	100	0	0		50	50	0		77.8	22.2	0		
PHF	.750	.000	.000	.750	.333	.500	.000	.667	.583	.250	.000	.750	.714

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759CC Site Code : 216023 Start Date : 9/28/2016

Groups	Printed-	Bikes	by l	Direction
--------	----------	-------	------	-----------

Г	Trapelo Road Trapelo Road (Route 60) Waverley Oaks Road (Route 60)												
			rapelo Road		Trapel		te 60)						
L			From North			From South			From West				
L	Start Time	Right	Thru	Peds	Thru	Left	Peds	Right	Left	Peds	Int. Total		
	01:00 PM	0	0	0	0	0	0	0	0	0	0		
	01:15 PM	0	0	0	0	0	0	0	0	0	0		
	01:30 PM	0	0	0	0	0	0	0	0	0	0		
_	01:45 PM	0	0	0	0	0	0	0	0	0	0		
	Total	0	0	0	0	0	0	0	0	0	0		
	02:00 PM	0	0	0	0	0	0	0	0	0	0		
	02:15 PM	0	0	0	0	0	0	0	0	0	0		
	02:30 PM	0	0	0	0	0	0	0	0	0	0		
_	02:45 PM	0	0	0	0	0	0	0	0	0	0		
	Total	0	0	0	0	0	0	0	0	0	0		
	03:00 PM	0	0	0	0	0	0	0	0	0	0		
	03:15 PM	0	0	0	1	0	0	0	0	0	1		
	03:30 PM	0	0	0	0	0	0	0	0	0	0		
_	03:45 PM	0	0	0	1	0	0	0	0	0	1		
	Total	0	0	0	2	0	0	0	0	0	2		
	04:00 PM	0	0	0	0	0	0	0	0	0	0		
	04:15 PM	0	0	0	0	0	0	1	0	0	1		
	04:30 PM	0	0	0	0	0	0	0	0	0	0		
_	04:45 PM	0	0	0	0	0	0	1	0	0	1		
	Total	0	0	0	0	0	0	2	0	0	2		
	05:00 PM	0	1	0	5	0	0	2	0	0	8		
	05:15 PM	0	1	0	1	0	0	1	0	0	3		
	05:30 PM	1	3	0	2	1	0	0	0	0	7		
	05:45 PM	0	0	0	0	0	0	2	1	0	3		
	Total	1	5	0	8	1	0	5	1	0	21		
	Grand Total	1	5	0	10	1	0	7	1	0	25		
	Apprch %	16.7	83.3	0	90.9	9.1	0	87.5	12.5	0			
	Total %	4	20	0	40	4	0	28	4	0			

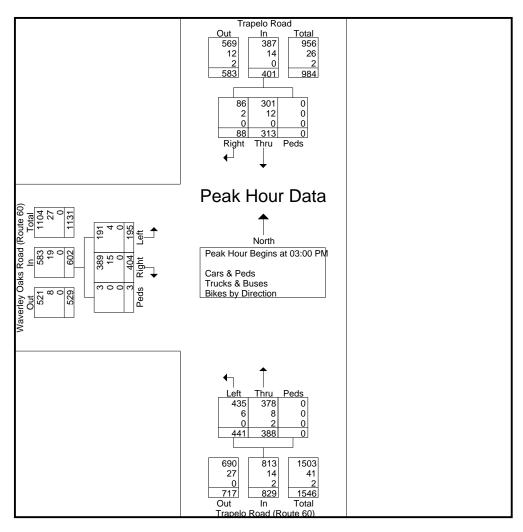
			Tra	apelo Roa	d (Route	60)	Waverl						
				From	South			From	West				
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 01:00 PM to 03:45 PM - Peak 1 of 1													
Peak Hour for Entire	Intersection	Begins at (03:00 PM										
03:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
03:15 PM	0	0	0	0	1	0	0	1	0	0	0	0	1
03:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
03:45 PM	0	0	0	0	1	0	0	1	0	0	0	0	1_
Total Volume	0	0	0	0	2	0	0	2	0	0	0	0	2
% App. Total	0	0	0		100	0	0		0	0	0		
PHF	.000	.000	.000	.000	.500	.000	.000	.500	.000	.000	.000	.000	.500

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759CC Site Code : 216023 Start Date : 9/28/2016

			Tra	pelo Road From	`	60)	Waverl						
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1													
Peak Hour for Entire	Intersection I	Begins at	05:00 PM										
05:00 PM	0	1	0	1	5	0	0	5	2	0	0	2	8
05:15 PM	0	1	0	1	1	0	0	1	1	0	0	1	3
05:30 PM	1	3	0	4	2	1	0	3	0	0	0	0	7
05:45 PM	0	0	0	0	0	0	0	0	2	1	0	3	3_
Total Volume	1	5	0	6	8	1	0	9	5	1	0	6	21
Mark App. Total	16.7	83.3	0		88.9	11.1	0		83.3	16.7	0		
PHF	.250	.417	.000	.375	.400	.250	.000	.450	.625	.250	.000	.500	.656

Transportation Data Corporation

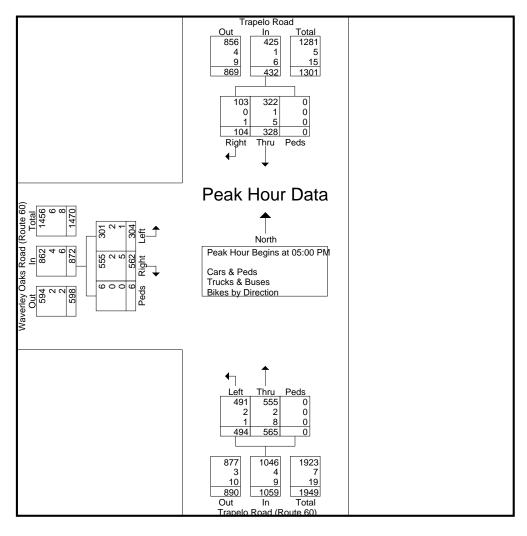

Mario Perone, mperone1@verizon.net tel (781) 587-0086 cell (781) 439-4999

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60)

City, State: Waltham, MA Client: Bryant/T. Brayton

File Name : 04759CC Site Code : 216023 Start Date : 9/28/2016

		Trapel		Tr	apelo Road	d (Route	60)	Waverl					
				From	South								
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 01:00 PM to 03:45 PM - Peak 1 of 1													
Peak Hour for Entire I	Intersection	Begins at (03:00 PM										
03:00 PM	24	76	0	100	87	99	0	186	91	44	0	135	421
03:15 PM	21	71	0	92	87	107	0	194	99	48	1	148	434
03:30 PM	29	83	0	112	115	105	0	220	106	69	1	176	508
03:45 PM	14	83	0	97	99	130	0	229	108	34	1	143	469
Total Volume	88	313	0	401	388	441	0	829	404	195	3	602	1832
% App. Total	21.9	78.1	0		46.8	53.2	0		67.1	32.4	0.5		
PHF	.759	.943	.000	.895	.843	.848	.000	.905	.935	.707	.750	.855	.902
Cars & Peds	86	301	0	387	378	435	0	813	389	191	3	583	1783
% Cars & Peds	97.7	96.2	0	96.5	97.4	98.6	0	98.1	96.3	97.9	100	96.8	97.3
Trucks & Buses	2	12	0	14	8	6	0	14	15	4	0	19	47
% Trucks & Buses	2.3	3.8	0	3.5	2.1	1.4	0	1.7	3.7	2.1	0	3.2	2.6
Bikes by Direction	0	0	0	0	2	0	0	2	0	0	0	0	2
% Bikes by Direction	0	0	0	0	0.5	0	0	0.2	0	0	0	0	0.1


Mario Perone, mperone l@verizon.net tel (781) 587-0086 cell (781) 439-4999

N/S: Trapelo Road/Route 60 W: Waverley Oaks Road (Route 60) City, State: Waltham, MA

Client: Bryant/T. Brayton

File Name: 04759CC Site Code : 216023 Start Date : 9/28/2016

		Trapelo			Tra	pelo Road	`	60)	Waverle	ey Oaks R	`	ıte 60)	
		From 1	North			From S	South			From	West		
Start Time	Right	Thru	Peds	App. Total	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis F	rom 04:00 P	M to 05:45	PM - Pe	ak 1 of 1									
Peak Hour for Entire !	Intersection 1	Begins at 0	5:00 PM										
05:00 PM	23	94	0	117	130	124	0	254	130	75	3	208	579
05:15 PM	35	76	0	111	138	135	0	273	150	68	0	218	602
05:30 PM	18	63	0	81	141	109	0	250	149	74	1	224	555
05:45 PM	28	95	0	123	156	126	0	282	133	87	2	222	627
Total Volume	104	328	0	432	565	494	0	1059	562	304	6	872	2363
% App. Total	24.1	75.9	0		53.4	46.6	0		64.4	34.9	0.7		
PHF	.743	.863	.000	.878	.905	.915	.000	.939	.937	.874	.500	.973	.942
Cars & Peds	103	322	0	425	555	491	0	1046	555	301	6	862	2333
% Cars & Peds	99.0	98.2	0	98.4	98.2	99.4	0	98.8	98.8	99.0	100	98.9	98.7
Trucks & Buses	0	1	0	1	2	2	0	4	2	2	0	4	9
% Trucks & Buses	0	0.3	0	0.2	0.4	0.4	0	0.4	0.4	0.7	0	0.5	0.4
Bikes by Direction	1	5	0	6	8	1	0	9	5	1	0	6	21
% Bikes by Direction	1.0	1.5	0	1.4	1.4	0.2	0	0.8	0.9	0.3	0	0.7	0.9

Mario Perone, mperone1@verizon.net tel (781) 587-0086 cell (781) 439-4999

Groups Printed- Cars & Peds - Trucks & Buses - Bikes by Direction

N/S: Beaver Street

Apprch %

Cars & Peds

% Cars & Peds

Trucks & Buses

% Trucks & Buses

Bikes by Direction

% Bikes by Direction

Total %

1.4

0.4

24

96

1

0

71.1

18.4

1282

98.5

16

1.2

0.3

4

27.4

7.1

484

96.6

15

3

2

0.4

E/W: Waverley Oaks Road (Route 60)

0.1

0

2

0

0

0

0

100

22.3

5.3

361

95.8

12

3.2

1.1

4

44.9

10.8

724

95.4

28

3.7

0.9

32.7

7.8

537

97.1

15

2.7

0.2

1

City, State: Waltham, MA Client: Bryant/T. Brayton

te 60) Site Code : 216023 Start Date : 9/28/2016

0.1

0

3

0

0

0

0

100

24.8

3.8

254

94.1

16

5.9

0

0

72.8

11.2

756

95.3

33

4.2

0.5

4

7.9

2.7

182

94.3

9

2

1

4.7

Page No : 1

File Name: 04759A

0.9

0.1

10

0

0

0

0

100

6830

96.8

196

2.8

33

0.5

1.6

0.2

13

76.5

23.5

0

		D (7	Group	s Printea							HOH	***				
		Beaver S			Way	verley O		ıd		Beaver S			Way	verley Oa		d	
		From N				From				From S				From V			
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
06:00 AM	0	28	6	0	7	17	20	0	14	32	3	0	15	21	0	0	163
06:15 AM	1	34	22	0	9	31	12	0	17	26	6	1	13	39	0	0	211
06:30 AM	0	45	24	0	17	41	14	0	18	47	7	0	15	41	0	0	269
06:45 AM	2	64	30	0	28	39	25	0	29	74	6	0	25	49	0	0	371
Total	3	171	82	0	61	128	71	0	78	179	22	1	68	150	0	0	1014
07:00 AM	2	99	25	1	26	46	33	0	41	93	15	0	20	46	1	0	448
07:15 AM	3	109	35	0	33	51	34	0	33	128	11	0	13	44	2	0	496
07:30 AM	2	102	42	0	30	54	40	0	47	139	16	0	13	50	1	0	536
07:45 AM	1	105	45	0	26	58	48	0	53	150	25	1	18	64	0	1	595
Total	8	415	147	1	115	209	155	0	174	510	67	1	64	204	4	1	2075
08:00 AM	3	113	46	0	29	53	49	0	52	140	20	0	18	56	3	4	586
08:15 AM	1	91	37	0	31	45	40	0	62	142	13	0	20	54	2	4	542
08:30 AM	2	90	40	0	35	58	39	0	50	141	11	0	19	54	2	1	542
08:45 AM	2	93	38	0	22	50	39	1	71	130	14	0	16	71	2	0	549
Total	8	387	161	0	117	206	167	1	235	553	58	0	73	235	9	9	2219
09:00 AM	2	92	31	0	19	56	41	0	49	117	15	0	16	49	2	0	489
09:15 AM	0	103	26	0	21	66	44	0	28	107	12	1	14	50	1	0	473
09:30 AM	4	78	32	1	23	52	47	0	40	85	11	0	18	53	0	0	444
09:45 AM	0	56	22	0	21	42	28	0	29	69	8	0	17	52	1	0	345
Total	6	329	111	1	84	216	160	0	146	378	46	1	65	204	4	0	1751
Grand Total	25	1302	501	2	377	759	553	1	633	1620	193	3	270	793	17	10	7059

0.1

100

0

1

0

0

0

0

25.8

612

96.7

20

3.2

0.2

1

66.1

22.9

1585

97.8

27

1.7

0.5

8

			iver St			, T		ey Oak		d			iver St			\ \ \		ey Oak		d	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Ar	alysis I	From 0	5:00 AN	M to 09:	45 AM -	Peak 1	l of 1														
Peak Hour for	Entire	Interse	ction B	egins at	: 07:45 A	M															1
07:45 AM	1	105	45	0	151	26	58	48	0	132	53	150	25	1	229	18	64	0	1	83	595
08:00 AM	3	113	46	0	162	29	53	49	0	131	52	140	20	0	212	18	56	3	4	81	586
08:15 AM	1	91	37	0	129	31	45	40	0	116	62	142	13	0	217	20	54	2	4	80	542
08:30 AM	2	90	40	0	132	35	58	39	0	132	50	141	11	0	202	19	54	2	1	76	542
Total Volume	7	399	168	0	574	121	214	176	0	511	217	573	69	1	860	75	228	7	10	320	2265
% App. Total	1.2	69.5	29.3	0		23.7	41.9	34.4	0		25.2	66.6	8	0.1		23.4	71.2	2.2	3.1		
PHF	.583	.883	.913	.000	.886	.864	.922	.898	.000	.968	.875	.955	.690	.250	.939	.938	.891	.583	.625	.964	.952
Cars & Peds	7	393	162	0	562	116	207	170	0	493	210	560	65	1	836	68	217	6	10	301	2192
% Cars & Peds	100	98.5	96.4	0	97.9	95.9	96.7	96.6	0	96.5	96.8	97.7	94.2	100	97.2	90.7	95.2	85.7	100	94.1	96.8
Trucks & Buses	0	3	5	0	8	1	2	5	0	8	7	10	3	0	20	7	7	1	0	15	51
% Trucks & Buses	0	0.8	3.0	0	1.4	0.8	0.9	2.8	0	1.6	3.2	1.7	4.3	0	2.3	9.3	3.1	14.3	0	4.7	2.3
Bikes by Direction	0	3	1	0	4	4	5	1	0	10	0	3	1	0	4	0	4	0	0	4	22
% Bikes by Direction	0	0.8	0.6	0	0.7	3.3	2.3	0.6	0	2.0	0	0.5	1.4	0	0.5	0	1.8	0	0	1.3	1.0

N/S: Beaver Street

E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759A

Site Code : 216023 Start Date : 9/28/2016

Page No : 1

Groups Printed- Cars & Peds

						Gr	oups Pr	ıntea- C	ars & Po	eas							
		Beaver S	Street		Way	verley Oa	aks Roa	d		Beaver S	Street		Way	verley O	aks Roa	d	
		From N	North			From 1	East			From S	South			From	West		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
06:00 AM	0	27	6	0	7	17	20	0	14	31	3	0	15	20	0	0	160
06:15 AM	1	34	21	0	8	29	12	0	17	26	6	1	13	38	0	0	206
06:30 AM	0	44	23	0	16	36	13	0	17	45	6	0	15	40	0	0	255
06:45 AM	2	64	30	0	24	35	24	0	28	69	6	0	24	46	0	0	352
Total	3	169	80	0	55	117	69	0	76	171	21	1	67	144	0	0	973
	1				•												
07:00 AM	2	99	25	1	25	45	32	0	40	90	14	0	19	44	1	0	437
07:15 AM	2	107	35	0	33	50	34	0	33	128	10	0	13	40	1	0	486
07:30 AM	2	100	41	0	29	52	39	0	46	136	16	0	12	48	1	0	522
07:45 AM	1	105	43	0	25	56	44	0	52	148	23	1	17	63	0	1	579
Total	7	411	144	1	112	203	149	0	171	502	63	1	61	195	3	1	2024
08:00 AM	3	111	46	0	27	51	49	0	50	137	19	0	17	54	2	4	570
08:15 AM	1	89	35	0	30	44	38	0	60	137	12	0	17	52	2	4	521
08:30 AM	2	88	38	0	34	56	39	0	48	138	11	0	17	48	2	1	522
08:45 AM	2	92	38	0	21	48	37	1	69	129	13	0	15	69	1	0	535
Total	8	380	157	0	112	199	163	1	227	541	55	0	66	223	7	9	2148
	ı																
09:00 AM	2	90	30	0	18	53	39	0	45	114	13	0	14	45	1	0	464
09:15 AM	0	101	23	0	21	62	44	0	28	105	12	1	13	48	1	0	459
09:30 AM	4	76	29	1	22	49	45	0	38	83	10	0	17	49	0	0	423
09:45 AM	0	55	21	0	21	41	28	0	27	69	8	0	16	52	1	0	339
Total	6	322	103	1	82	205	156	0	138	371	43	1	60	194	3	0	1685
1	1				i											ı	
Grand Total	24	1282	484	2	361	724	537	1	612	1585	182	3	254	756	13	10	6830
Apprch %	1.3	71.5	27	0.1	22.2	44.6	33.1	0.1	25.7	66.5	7.6	0.1	24.6	73.2	1.3	1	
Total %	0.4	18.8	7.1	0	5.3	10.6	7.9	0	9	23.2	2.7	0	3.7	11.1	0.2	0.1	

		Bea	ver St	reet		1	Vaverl	ey Oal	ks Roa	d		Bea	ver St	reet		1	Waverl	ey Oal	ks Roa	d]
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 06	5:00 AN	M to 09	:45 AM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 07:30 A	M															
07:30 AM	2	100	41	0	143	29	52	39	0	120	46	136	16	0	198	12	48	1	0	61	522
07:45 AM	1	105	43	0	149	25	56	44	0	125	52	148	23	1	224	17	63	0	1	81	579
08:00 AM	3	111	46	0	160	27	51	49	0	127	50	137	19	0	206	17	54	2	4	77	570
08:15 AM	1	89	35	0	125	30	44	38	0	112	60	137	12	0	209	17	52	2	4	75	521
Total Volume	7	405	165	0	577	111	203	170	0	484	208	558	70	1	837	63	217	5	9	294	2192
% App. Total	1.2	70.2	28.6	0		22.9	41.9	35.1	0		24.9	66.7	8.4	0.1		21.4	73.8	1.7	3.1		
PHF	.583	.912	.897	.000	.902	.925	.906	.867	.000	.953	.867	.943	.761	.250	.934	.926	.861	.625	.563	.907	.946

N/S: Beaver Street

E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759A

Site Code : 216023 Start Date : 9/28/2016

Page No : 1

Groups Printed- Trucks & Buses

		Beaver S	Street		Wav	verley O			20115 66 2	Beaver S	Street		Wa	verley Oa	ks Roa	d	
		From N	orth			From	East			From S	outh			From V	Vest		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
06:00 AM	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0	3
06:15 AM	0	0	0	0	1	2	0	0	0	0	0	0	0	1	0	0	4
06:30 AM	0	1	1	0	1	5	1	0	1	1	1	0	0	1	0	0	13
06:45 AM	0	0	0	0	4	4	1_	0	0	3	0	0	1	3	0	0	16
Total	0	2	1	0	6	11	2	0	1	5	1	0	1	6	0	0	36
07:00 AM	0	0	0	0	1	1	1	0	1	3	1	0	1	2	0	0	11
07:15 AM	1	2	0	0	0	1	0	0	0	0	1	0	0	4	1	0	10
07:30 AM	0	1	1	0	1	1	1	0	1	2	0	0	1	2	0	0	11
07:45 AM	0	0	2	0	1	0	4	0	1	2	2	0	1	0	0	0	13
Total	1	3	3	0	3	3	6	0	3	7	4	0	3	8	1	0	45
08:00 AM	0	2	0	0	0	0	0	0	2	1	1	0	1	1	1	0	9
08:15 AM	0	0	2	0	0	1	1	0	2	4	0	0	3	1	0	0	14
08:30 AM	0	1	1	0	0	1	0	0	2	3	0	0	2	5	0	0	15
08:45 AM	0	1	0	0	1	1	2	0	2	1	1	0	1	2	1	0	13
Total	0	4	3	0	1	3	3	0	8	9	2	0	7	9	2	0	51
09:00 AM	0	2	1	0	1	3	2	0	4	2	1	0	2	4	1	0	23
09:15 AM	0	2	3	0	0	4	0	0	0	2	0	0	1	2	0	0	14
09:30 AM	0	2	3	0	1	3	2	0	2	2	1	0	1	4	0	0	21
09:45 AM	0	1	1	0	0	1	0	0	2	0	0	0	1	0	0	0	6
Total	0	7	8	0	2	11	4	0	8	6	2	0	5	10	1	0	64
Grand Total	1	16	15	0	12	28	15	0	20	27	9	0	16	33	4	0	196
Apprch %	3.1	50	46.9	0	21.8	50.9	27.3	0	35.7	48.2	16.1	0	30.2	62.3	7.5	0	
Total %	0.5	8.2	7.7	0	6.1	14.3	7.7	0	10.2	13.8	4.6	0	8.2	16.8	2	0	

			ver St			1	Waverl	•		d			aver St			1		ey Oal		d	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 06	5:00 AN	M to 09	:45 AM -	Peak 1	l of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 08:45 A	M															
08:45 AM	0	1	0	0	1	1	1	2	0	4	2	1	1	0	4	1	2	1	0	4	13
09:00 AM	0	2	1	0	3	1	3	2	0	6	4	2	1	0	7	2	4	1	0	7	23
09:15 AM	0	2	3	0	5	0	4	0	0	4	0	2	0	0	2	1	2	0	0	3	14
09:30 AM	0	2	3	0	5	1	3	2	0	6	2	2	1	0	5	1	4	0	0	5	21
Total Volume	0	7	7	0	14	3	11	6	0	20	8	7	3	0	18	5	12	2	0	19	71
% App. Total	0	50	50	0		15	55	30	0		44.4	38.9	16.7	0		26.3	63.2	10.5	0		
PHF	.000	.875	.583	.000	.700	.750	.688	.750	.000	.833	.500	.875	.750	.000	.643	.625	.750	.500	.000	.679	.772

N/S: Beaver Street

E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759A

Site Code : 216023 Start Date : 9/28/2016

Page No : 1

Groups Printed- Bikes by Direction

									S Dy Dire								
		Beaver S	Street		Way	verley Oa	aks Roa	d		Beaver S			Wa	verley O	aks Roa	d	
		From 1	North			From 1	East			From S				From '	West		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
06:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06:15 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
06:30 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
06:45 AM	0	0	0	0	0	0	0	0	1	2	0	0	0	0	0	0	3
Total	0	0	1	0	0	0	0	0	1	3	0	0	0	0	0	0	5
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	3
07:45 AM	0	0	0	0	0	2	0	0	0	0	0	0	0	1	0	0	3
Total	0	1	0	0	0	3	0	0	0	1	0	0	0	1	0	0	6
08:00 AM	0	0	0	0	2	2	0	0	0	2	0	0	0	1	0	0	7
08:15 AM	0	2	0	0	1	0	1	0	0	1	1	0	0	1	0	0	7
08:30 AM	0	1	1	0	1	1	0	0	0	0	0	0	0	1	0	0	5
08:45 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1_
Total	0	3	1	0	4	4	1	0	0	3	1	0	0	3	0	0	20
09:00 AM	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2
09:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2
Grand Total	0	4	2	0	4	7	1	0	1	8	2	0	0	4	0	0	33
Apprch %	0	66.7	33.3	0	33.3	58.3	8.3	0	9.1	72.7	18.2	0	0	100	0	0	
Total %	0	12.1	6.1	0	12.1	21.2	3	0	3	24.2	6.1	0	0	12.1	0	0	

		Bea	ver St	reet		1	Vaverl	ey Oal	ks Roa	d		Bea	ver St	reet		1	Waverl	ey Oal	ks Roa	d]
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 06	5:00 AN	M to 09	:45 AM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 07:45 A	M															
07:45 AM	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	1	0	0	1	3
08:00 AM	0	0	0	0	0	2	2	0	0	4	0	2	0	0	2	0	1	0	0	1	7
08:15 AM	0	2	0	0	2	1	0	1	0	2	0	1	1	0	2	0	1	0	0	1	7
08:30 AM	0	1	1	0	2	1	1	0	0	2	0	0	0	0	0	0	1	0	0	1	5
Total Volume	0	3	1	0	4	4	5	1	0	10	0	3	1	0	4	0	4	0	0	4	22
% App. Total	0	75	25	0		40	50	10	0		0	75	25	0		0	100	0	0		
PHF	.000	.375	.250	.000	.500	.500	.625	.250	.000	.625	.000	.375	.250	.000	.500	.000	1.00	.000	.000	1.00	.786

Mario Perone, mperone1@verizon.net tel (781) 587-0086 cell (781) 439-4999

N/S: Beaver Street


E/W: Waverley Oaks Road (Route 60)

City, State: Waltham, MA Client: Bryant/T. Brayton

File Name : 04759A Site Code : 216023

Start Date : 9/28/2016

		Bea	ver St	reet		1	Vaverl	ey Oal	ks Road	l		Bea	ver St	reet		1	Waverl	ey Oak	s Roa	d	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis I	From 06	5:00 AN	A to 09:	45 AM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins at	07:45 A	M															
07:45 AM	1	105	45	0	151	26	58	48	0	132	53	150	25	1	229	18	64	0	1	83	595
08:00 AM	3	113	46	0	162	29	53	49	0	131	52	140	20	0	212	18	56	3	4	81	586
08:15 AM	1	91	37	0	129	31	45	40	0	116	62	142	13	0	217	20	54	2	4	80	542
08:30 AM	2	90	40	0	132	35	58	39	0	132	50	141	11	0	202	19	54	2	1	76	542
Total Volume	7	399	168	0	574	121	214	176	0	511	217	573	69	1	860	75	228	7	10	320	2265
% App. Total	1.2	69.5	29.3	0		23.7	41.9	34.4	0		25.2	66.6	8	0.1		23.4	71.2	2.2	3.1		
PHF	.583	.883	.913	.000	.886	.864	.922	.898	.000	.968	.875	.955	.690	.250	.939	.938	.891	.583	.625	.964	.952
Cars & Peds	7	393	162	0	562	116	207	170	0	493	210	560	65	1	836	68	217	6	10	301	2192
% Cars & Peds	100	98.5	96.4	0	97.9	95.9	96.7	96.6	0	96.5	96.8	97.7	94.2	100	97.2	90.7	95.2	85.7	100	94.1	96.8
Trucks & Buses	0	3	5	0	8	1	2	5	0	8	7	10	3	0	20	7	7	1	0	15	51
% Trucks & Buses	0	0.8	3.0	0	1.4	0.8	0.9	2.8	0	1.6	3.2	1.7	4.3	0	2.3	9.3	3.1	14.3	0	4.7	2.3
Bikes by Direction	0	3	1	0	4	4	5	1	0	10	0	3	1	0	4	0	4	0	0	4	22
% Bikes by Direction	0	0.8	0.6	0	0.7	3.3	2.3	0.6	0	2.0	0	0.5	1.4	0	0.5	0	1.8	0	0	1.3	1.0

N/S: Beaver Street

E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

Site Code : 216023 Start Date : 9/28/2016

Page No : 1

File Name: 04759AA

		Beaver S	244	Group	s Printed							tion	XX 7	l ^	alsa D	J	
		From N			wa	verley O From		a		Beaver S			wav	eriey O From	aks Roa	a	
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
01:00 PM	1	55	28	0	41	40	33	0	34	70	11	0	11	35	2	0	361
01:15 PM	1	51	33	0	28	35	26	0	32	67	17	0	12	46	1	0	349
01:30 PM	2	51	27	2	33	43	26	0	29	67	11	0	12	48	0	0	351
01:45 PM	2	69	25	0	29	41	24	0	24	74	11	2	8	42	0	3	354
Total	6	226	113	2	131	159	109	0	119	278	50	2	43	171	3	3	1415
02:00 PM	1	78	34	0	32	34	28	0	29	98	7	0	13	41	2	1	398
02:15 PM	1	105	33	0	27	46	34	0	31	82	15	0	4	43	6	0	427
02:30 PM	3	75	27	0	25	37	31	0	37	75	13	1	9	36	4	0	373
02:45 PM	4	83	37	0	38	55	37	0	38	106	13	0	17	44	2	0	474
Total	9	341	131	0	122	172	130	0	135	361	48	1	43	164	14	1	1672
03:00 PM	2	85	41	0	35	59	43	0	38	102	11	0	14	56	2	0	488
03:15 PM	2	82	43	0	33	72	47	0	35	114	12	0	18	49	0	0	507
03:30 PM	3	100	33	0	34	88	49	0	38	100	16	1	11	46	4	0	523
03:45 PM	1	87	35	0	46	82	41	0	41	109	21	0	21	63	2	0	549
Total	8	354	152	0	148	301	180	0	152	425	60	1	64	214	8	0	2067
04:00 PM	3	113	39	0	37	80	52	0	36	111	23	0	16	49	0	0	559
04:15 PM	0	119	50	0	39	68	51	1	48	129	17	0	19	48	2	0	591
04:30 PM	4	117	48	0	43	72	59	0	44	136	20	0	22	56	1	0	622
04:45 PM	4	122	53	0	45	70	50	0	40	126	17	0	14	50	2	0	593
Total	11	471	190	0	164	290	212	1	168	502	77	0	71	203	5	0	2365
05:00 PM	3	122	43	0	35	79	59	0	31	121	31	0	24	47	4	0	599
05:15 PM	4	133	34	0	41	80	62	0	41	143	21	0	19	62	6	0	646
05:30 PM	3	108	45	1	36	66	49	2	37	142	17	1	19	48	4	0	578
05:45 PM Total	14	96 459	32 154	1 2	28 140	77 302	52 222	1 3	44 153	132 538	22 91	2 3	14 76	203	20	0	557 2380
					_						, -	- '					
Grand Total	48	1851	740	4	705	1224	853	4	727	2104	326	7	297	955	50	4	9899
Apprch %	1.8	70	28	0.2	25.3	43.9	30.6	0.1	23	66.5	10.3	0.2	22.7	73.1	3.8	0.3	
Total %	0.5	18.7	7.5	0	7.1	12.4	8.6	0	7.3	21.3	3.3	0.1	3	9.6	0.5	0	0.65=
Cars & Peds	47	1819	722	4	696	1188	836	4	708	2077	318	7	292	927	48	4	9697
% Cars & Peds	97.9	98.3	97.6	100	98.7	97.1	98	100	97.4	98.7	97.5	100	98.3	97.1	96	100	98
Γrucks & Buses	1	23	16	0	8	33	17	0	19	24	6	0	4	21	2	0	174
% Trucks & Buses	2.1	1.2	2.2	0	1.1	2.7	2	0	2.6	1.1	1.8	0	1.3	2.2	4	0	1.8
Bikes by Direction	0	9	2	0	1	3	0	0	0	3	2 0.6	0	1	7	0	0	28
% Bikes by Direction	0	0.5	0.3	0	0.1	0.2	0	0	0	0.1	0.6	0	0.3	0.7	U	0	0.3

		Bea	ver St	reet		1	Vaverl	ley Oal	ks Roa	d		Bea	aver St	reet		'	Vaverl	ey Oak	ks Roa	d	
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis I	From 0	1:00 PM	1 to 03:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 03:00 P	M															
03:00 PM	2	85	41	0	128	35	59	43	0	137	38	102	11	0	151	14	56	2	0	72	488
03:15 PM	2	82	43	0	127	33	72	47	0	152	35	114	12	0	161	18	49	0	0	67	507
03:30 PM	3	100	33	0	136	34	88	49	0	171	38	100	16	1	155	11	46	4	0	61	523
03:45 PM	1	87	35	0	123	46	82	41	0	169	41	109	21	0	171	21	63	2	0	86	549
Total Volume	8	354	152	0	514	148	301	180	0	629	152	425	60	1	638	64	214	8	0	286	2067
% App. Total	1.6	68.9	29.6	0		23.5	47.9	28.6	0		23.8	66.6	9.4	0.2		22.4	74.8	2.8	0		
PHF	.667	.885	.884	.000	.945	.804	.855	.918	.000	.920	.927	.932	.714	.250	.933	.762	.849	.500	.000	.831	.941
Cars & Peds	8	351	147	0	506	148	290	180	0	618	150	422	59	1	632	62	207	8	0	277	2033
% Cars & Peds	100	99.2	96.7	0	98.4	100	96.3	100	0	98.3	98.7	99.3	98.3	100	99.1	96.9	96.7	100	0	96.9	98.4
Trucks & Buses	0	2	5	0	7	0	10	0	0	10	2	3	1	0	6	2	7	0	0	9	32
% Trucks & Buses	0	0.6	3.3	0	1.4	0	3.3	0	0	1.6	1.3	0.7	1.7	0	0.9	3.1	3.3	0	0	3.1	1.5
Bikes by Direction	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	2
% Bikes by Direction	0	0.3	0	0	0.2	0	0.3	0	0	0.2	0	0	0	0	0	0	0	0	0	0	0.1

N/S: Beaver Street

E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759AA Site Code : 216023

Start Date : 9/28/2016

		Bea	ver St	reet		1	Vaverl	ey Oak	s Road	l		Bea	ver St	reet		7	Waverl	ey Oak	s Roa	d	İ
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 04	4:00 PM	I to 05:4	5 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins at	04:30 P	M															
04:30 PM	4	117	48	0	169	43	72	59	0	174	44	136	20	0	200	22	56	1	0	79	622
04:45 PM	4	122	53	0	179	45	70	50	0	165	40	126	17	0	183	14	50	2	0	66	593
05:00 PM	3	122	43	0	168	35	79	59	0	173	31	121	31	0	183	24	47	4	0	75	599
05:15 PM	4	133	34	0	171	41	80	62	0	183	41	143	21	0	205	19	62	6	0	87	646
Total Volume	15	494	178	0	687	164	301	230	0	695	156	526	89	0	771	79	215	13	0	307	2460
% App. Total	2.2	71.9	25.9	0		23.6	43.3	33.1	0		20.2	68.2	11.5	0		25.7	70	4.2	0		
PHF	.938	.929	.840	.000	.959	.911	.941	.927	.000	.949	.886	.920	.718	.000	.940	.823	.867	.542	.000	.882	.952
Cars & Peds	15	484	176	0	675	163	298	223	0	684	153	522	89	0	764	79	209	13	0	301	2424
% Cars & Peds	100	98.0	98.9	0	98.3	99.4	99.0	97.0	0	98.4	98.1	99.2	100	0	99.1	100	97.2	100	0	98.0	98.5
Trucks & Buses	0	5	1	0	6	1	3	7	0	11	3	2	0	0	5	0	4	0	0	4	26
% Trucks & Buses	0	1.0	0.6	0	0.9	0.6	1.0	3.0	0	1.6	1.9	0.4	0	0	0.6	0	1.9	0	0	1.3	1.1
Bikes by Direction	0	5	1	0	6	0	0	0	0	0	0	2	0	0	2	0	2	0	0	2	10
% Bikes by Direction	0	1.0	0.6	0	0.9	0	0	0	0	0	0	0.4	0	0	0.3	0	0.9	0	0	0.7	0.4

N/S: Beaver Street

E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759AA Site Code : 216023

Start Date : 9/28/2016

Page No : 1

Groups Printed- Cars & Peds

									ars & P								
		Beaver S			Wa	verley Oa		d		Beaver			Way	verley Oa		d	
		From N				From I				From S				From V			
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
01:00 PM	1	53	27	0	41	37	32	0	32	69	11	0	10	35	1	0	349
01:15 PM	1	51	32	0	26	35	25	0	31	66	17	0	12	46	1	0	343
01:30 PM	2	50	26	2	33	43	26	0	26	65	11	0	12	47	0	0	343
01:45 PM	2	68	23	0	29	40	23	0	23	73	10	2	8	38	0	3	342
Total	6	222	108	2	129	155	106	0	112	273	49	2	42	166	2	3	1377
02:00 PM	1	75	34	0	31	32	27	0	28	96	7	0	12	40	2	1	386
02:15 PM	1	101	32	0	26	42	30	0	30	76	14	0	4	42	6	0	404
02:30 PM	3	74	25	0	25	35	30	0	37	74	10	1	9	36	3	0	362
02:45 PM	4	79	37	0	37	53	36	0	35	105	12	0	17	44	2	0	461
Total	9	329	128	0	119	162	123	0	130	351	43	1	42	162	13	1	1613
								ا م							_		
03:00 PM	2	84	41	0	35	59	43	0	38	102	11	0	14	56	2	0	487
03:15 PM	2	81	42	0	33	70	47	0	34	111	12	0	18	48	0	0	498
03:30 PM	3	99	30	0	34	84	49	0	38	100	15	1	10	44	4	0	511
03:45 PM	1	87	34	0	46	77	41	0	40	109	21	0	20	59	2	0	537
Total	8	351	147	0	148	290	180	0	150	422	59	1	62	207	8	0	2033
04.00 PM		110	20	0	0.5	70	50	ا م	25	110	22	ا م	1.0	16	0		5.40
04:00 PM	2	112	38	0	35	79	52	0	35	110	23	0	16	46	0	0	548
04:15 PM	0	118	50 48	0	39	66	51 58	1	47	126	17 20	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	19	47	2	0	583
04:30 PM	4	115		-	43	71 68		0	43	133			22	54	•	0	612
04:45 PM	10	120 465	53 189	0	44 161	284	48 209	0	40 165	126 495	17 77	0	14 71	48 195	5	0	584
Total	10	403	189	U	101	284	209	1	105	495	//	U I	/1	195	3	U	2327
05:00 PM	3	116	42	0	35	79	57	0	31	121	31	0	24	45	4	0	588
05:15 PM	4	133	33	0	41	80	60	0	39	142	21	0	19	62	6	0	640
05:30 PM	3	107	44	1	35	66	49	2	37	141	16	1	18	47	4	0	571
05:45 PM	4	96	31	1	28	72	52	1	44	132	22	2	14	43	6	0	548
Total	14	452	150	2	139	297	218	3	151	536	90	3	75	197	20	0	2347
Total	1 1 7	432	150	_	137	271	210	5	131	330	70	5	75	177	20	Ü	2347
Grand Total	47	1819	722	4	696	1188	836	4	708	2077	318	7	292	927	48	4	9697
Appreh %	1.8	70.2	27.9	0.2	25.6	43.6	30.7	0.1	22.8	66.8	10.2	0.2	23	72.9	3.8	0.3	
Total %	0.5	18.8	7.4	0.2	7.2	12.3	8.6	0.1	7.3	21.4	3.3	0.1	3	9.6	0.5	0.5	
10001 /0	0.5	10.0	,	3	,	12.0	0.0	0	,.5	21.1	5.5	0.1	3	7.0	0.5	U	

		Bea	ver St	reet		1	Waverl	ey Oal	ks Roa	d						1	Waverl	ey Oal	ks Roa	d	
		Fr	om No	rth			F	rom E	ast	Peds App. Total Right Thru Left Peds App. Total Right Thru 0 137 38 102 11 0 151 14 56 0 150 34 111 12 0 157 18 48 0 167 38 100 15 1 154 10 44 0 164 40 109 21 0 170 20 59 0 618 150 422 59 1 632 62 207						Fı	rom W	est			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis I	From 0	1:00 PM	I to 03:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 03:00 P	M															
03:00 PM	2	84	41	0	127	35	59	43	0	137	38	102	11	0	151	14	56	2	0	72	487
03:15 PM	2	81	42	0	125	33	70	47	0	150	34	111	12	0	157	18	48	0	0	66	498
03:30 PM	3	99	30	0	132	34	84	49	0	167	38	100	15	1	154	10	44	4	0	58	511
03:45 PM	1	87	34	0	122	46	77	41	0	164	40	109	21	0	170	20	59	2	0	81	537
Total Volume	8	351	147	0	506	148	290	180	0	618	150	422	59	1	632	62	207	8	0	277	2033
% App. Total	1.6	69.4	29.1	0		23.9	46.9	29.1	0		23.7	66.8	9.3	0.2		22.4	74.7	2.9	0		
PHF	.667	.886	.875	.000	.958	.804	.863	.918	.000	.925	.938	.950	.702	.250	.929	.775	.877	.500	.000	.855	.946

N/S: Beaver Street

E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759AA Site Code : 216023

Start Date : 9/28/2016

			ver St			1		ey Oal		d						1		•		d	
		Fr	om No	orth			F	rom E	ast		72 43 133 20 0 196 22 54 1 0 77 60 40 126 17 0 183 14 48 2 0 64 71 31 121 31 0 183 24 45 4 0 73 81 39 142 21 0 202 19 62 6 0 87										
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 04	4:00 PM	1 to 05:	:45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 04:30 P	M															
04:30 PM	4	115	48	0	167	43	71	58	0	172	43	133	20	0	196	22	54	1	0	77	612
04:45 PM	4	120	53	0	177	44	68	48	0	160	40	126	17	0	183	14	48	2	0	64	584
05:00 PM	3	116	42	0	161	35	79	57	0	171	31	121	31	0	183	24	45	4	0	73	588
05:15 PM	4	133	33	0	170	41	80	60	0	181	39	142	21	0	202	19	62	6	0	87	640
Total Volume	15	484	176	0	675	163	298	223	0	684	153	522	89	0	764	79	209	13	0	301	2424
% App. Total	2.2	71.7	26.1	0		23.8	43.6	32.6	0		20	68.3	11.6	0		26.2	69.4	4.3	0		
PHF	.938	.910	.830	.000	.953	.926	.931	.929	.000	.945	.890	.919	.718	.000	.946	.823	.843	.542	.000	.865	.947

N/S: Beaver Street

E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759AA Site Code : 216023

Start Date : 9/28/2016

Page No : 1

Groups Printed- Trucks & Buses

		Beaver S	144		117		•		icks & d		744		***		1 D		
					wav	erley Oa		a		Beaver S			wa	verley Oa		a	
		From N				From 1				From S				From V			
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
01:00 PM	0	2	1	0	0	3	1	0	2	1	0	0	1	0	1	0	12
01:15 PM	0	0	1	0	2	0	1	0	1	1	0	0	0	0	0	0	6
01:30 PM	0	1	1	0	0	0	0	0	3	2	0	0	0	1	0	0	8
01:45 PM	0	11	2	0	0	1_	1_	0	1	1_	0	0	0_	4	0	0	11_
Total	0	4	5	0	2	4	3	0	7	5	0	0	1	5	1	0	37
02:00 PM	0	3	0	0	1	2	1	0	1	2	0	0	1	1	0	0	12
02:15 PM	0	4	1	0	1	4	4	0	1	5	1	0	0	1	0	0	22
02:30 PM	0	1	2	0	0	2	1	0	0	1	3	0	0	0	1	0	11
02:45 PM	0	3	0	0	1	2	1	0	3	1	1	0	0	0	0	0	12
Total	0	11	3	0	3	10	7	0	5	9	5	0	1	2	1	0	57
03:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
03:15 PM	0	0	1	0	0	1	0	0	1	3	0	0	0	1	0	0	7
03:30 PM	0	1	3	0	0	4	0	0	0	0	1	0	1	2	0	0	12
03:45 PM	0	0	1	0	0	5	0	0	1	0	0	0	1	4	0	0	12
Total	0	2	5	0	0	10	0	0	2	3	1	0	2	7	0	0	32
04:00 PM	1	1	1	0	1	1	0	0	1	1	0	0	0	3	0	0	10
04:15 PM	0	0	0	0	0	1	0	0	1	3	0	0	0	0	0	0	5
04:30 PM	0	1	0	0	0	1	1	0	1	2	0	0	0	2	0	0	8
04:45 PM	0	1	0	0	1	2	2	0	0	0	0	0	0	2	0	0	8
Total	1	3	1	0	2	5	3	0	3	6	0	0	0	7	0	0	31
05:00 PM	0	3	1	0	0	0	2	0	0	0	0	0	0	0	0	0	6
05:15 PM	0	0	0	0	0	0	2	0	2	0	0	0	0	0	0	0	4
05:30 PM	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	3
05:45 PM	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	4
Total	0	3	2	0	1	4	4	0	2	1	0	0	0	0	0	0	17
Grand Total	1	23	16	0	8	33	17	0	19	24	6	0	4	21	2	0	174
Apprch %	2.5	57.5	40	0	13.8	56.9	29.3	0	38.8	49	12.2	0	14.8	77.8	7.4	0	
Total %	0.6	13.2	9.2	0	4.6	19	9.8	0	10.9	13.8	3.4	0	2.3	12.1	1.1	0	
	•																

			ver St			1	Waverl	•		d			ver St			1	Waverl	•		d	
		Fr	om No	<u>rth</u>			F	rom E	ast			Fr	om So	<u>uth</u>			Fi	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis I	From 01	1:00 PM	1 to 03:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 02:00 P	M															
02:00 PM	0	3	0	0	3	1	2	1	0	4	1	2	0	0	3	1	1	0	0	2	12
02:15 PM	0	4	1	0	5	1	4	4	0	9	1	5	1	0	7	0	1	0	0	1	22
02:30 PM	0	1	2	0	3	0	2	1	0	3	0	1	3	0	4	0	0	1	0	1	11
02:45 PM	0	3	0	0	3	1	2	1	0	4	3	1	1	0	5	0	0	0	0	0	12
Total Volume	0	11	3	0	14	3	10	7	0	20	5	9	5	0	19	1	2	1	0	4	57
% App. Total	0	78.6	21.4	0		15	50	35	0		26.3	47.4	26.3	0		25	50	25	0		
PHF	.000	.688	.375	.000	.700	.750	.625	.438	.000	.556	.417	.450	.417	.000	.679	.250	.500	.250	.000	.500	.648

N/S: Beaver Street

E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759AA Site Code : 216023

Start Date : 9/28/2016

			ver St			'	Waverl	•		d			ver St			1	Waverl	•		d	
		rr	om No	rın			r.	rom E	ast			rr	om So	uın			r i	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 04	1:00 PM	1 to 05:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 04:00 P	M															
04:00 PM	1	1	1	0	3	1	1	0	0	2	1	1	0	0	2	0	3	0	0	3	10
04:15 PM	0	0	0	0	0	0	1	0	0	1	1	3	0	0	4	0	0	0	0	0	5
04:30 PM	0	1	0	0	1	0	1	1	0	2	1	2	0	0	3	0	2	0	0	2	8
04:45 PM	0	1	0	0	1	1	2	2	0	5	0	0	0	0	0	0	2	0	0	2	8
Total Volume	1	3	1	0	5	2	5	3	0	10	3	6	0	0	9	0	7	0	0	7	31
% App. Total	20	60	20	0		20	50	30	0		33.3	66.7	0	0		0	100	0	0		
PHF	.250	.750	.250	.000	.417	.500	.625	.375	.000	.500	.750	.500	.000	.000	.563	.000	.583	.000	.000	.583	.775

N/S: Beaver Street

E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759AA Site Code : 216023

Start Date : 9/28/2016

Page No : 1

Groups Printed- Bikes by Direction

									s by Dire		_						1
		Beaver S			Wa	verley Oa		d		Beaver S			Way	verley Oa		ıd	
		From N				From I				From S			-	From V			
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1_
Total	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
	ı				i												
02:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:15 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
02:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:45 PM	0	1_	0	0	0	0	0_	0	0	0	0	0	0	0	0	0	1_
Total	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2
					ء ا							ا م					
03:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:15 PM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2
03:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2
04.00 77.5	1 0											ا م					
04:00 PM	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
04:15 PM	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	3
04:30 PM	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2
04:45 PM	0	1	0	0	0	0	0	0	0	0	0	0	00	0	00	0	7
Total	0	3	0	0	1	1	0	0	0	1	0	0	0	1	0	0	7
05:00 PM	0	3	0	0	0	0	0	0	0	0	0	0	0	2	0	0	5
05:15 PM	0	0	1	0	0	0	0	0	0	1	0	0	0	2	0	0	2
05:30 PM	0	1	0	-	0		0	-	0	0	1	0	1	1	0	0	
05:45 PM	0	0	1	0	0	0 1	0	0	0	0	0	0	0	3	0	0	4 5
Total	0	4	2	0	0	1	0	0	0	1	1	0	1	6	0	0	16
Total	0	4	2	U	0	1	U	0	U	1	1	0	1	0	U	U	10
Grand Total	0	9	2	0	1	3	0	0	0	3	2	0	1	7	0	0	28
Appreh %	0	81.8	18.2	0	25	75	0	0	0	60	40	0	12.5	87.5	0	0	26
Appren % Total %	0	32.1	7.1	0	3.6	10.7	0	0	0	10.7	7.1	0	3.6	25	0	0	
rotal %	ı U	32.1	/.1	0	3.0	10.7	U	U	U	10.7	/.1	U	5.0	23	U	U	

			ver St			V	Vaverl	ey Oal rom Ea		d			ver St			1	Waverl	ey Oal rom W		d	
		FI	OIII INC	rui				rom E	ası			FI	om 20	սա			FI	OIII VV	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 01	:00 PM	I to 03:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins at	t 02:30 P	M															
02:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:45 PM	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
03:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:15 PM	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	2
Total Volume	0	2	0	0	2	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	3
% App. Total	0	100	0	0		0	100	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.500	.000	.000	.500	.000	.250	.000	.000	.250	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.375

N/S: Beaver Street

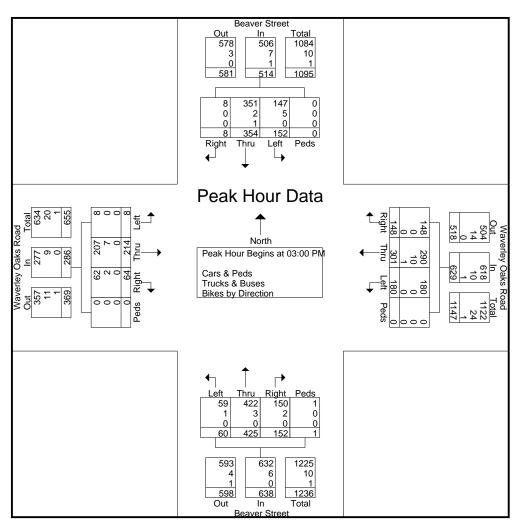
E/W: Waverley Oaks Road (Route 60) City, State: Waltham, MA Client: Bryant/T. Brayton

File Name: 04759AA Site Code : 216023

Start Date : 9/28/2016

			ver St			1		ey Oak		d			ver St			7	Waverl	•		d	
		Fr	om No	rth			F	rom Ea	ast			Fr	om So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis I	From 04	4:00 PM	1 to 05:	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins a	t 05:00 P	M															
05:00 PM	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	5
05:15 PM	0	0	1	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	2
05:30 PM	0	1	0	0	1	0	0	0	0	0	0	0	1	0	1	1	1	0	0	2	4
05:45 PM	0	0	1	0	1	0	1	0	0	1	0	0	0	0	0	0	3	0	0	3	5
Total Volume	0	4	2	0	6	0	1	0	0	1	0	1	1	0	2	1	6	0	0	7	16
% App. Total	0	66.7	33.3	0		0	100	0	0		0	50	50	0		14.3	85.7	0	0		
PHF	.000	.333	.500	.000	.500	.000	.250	.000	.000	.250	.000	.250	.250	.000	.500	.250	.500	.000	.000	.583	.800

Mario Perone, mperone1@verizon.net tel (781) 587-0086 cell (781) 439-4999


N/S: Beaver Street

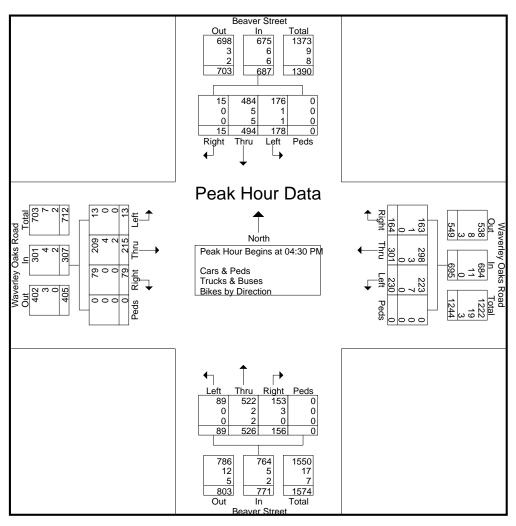
E/W: Waverley Oaks Road (Route 60)

City, State: Waltham, MA Client: Bryant/T. Brayton

File Name : 04759AA Site Code : 216023 Start Date : 9/28/2016

			ver St			1		ey Oak		d			ver St			1	Waverl	•		d	
		Fr	om No	rth			F	rom Ea	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 0	1:00 PM	I to 03:4	45 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins at	03:00 P	M															
03:00 PM	2	85	41	0	128	35	59	43	0	137	38	102	11	0	151	14	56	2	0	72	488
03:15 PM	2	82	43	0	127	33	72	47	0	152	35	114	12	0	161	18	49	0	0	67	507
03:30 PM	3	100	33	0	136	34	88	49	0	171	38	100	16	1	155	11	46	4	0	61	523
03:45 PM	1	87	35	0	123	46	82	41	0	169	41	109	21	0	171	21	63	2	0	86	549
Total Volume	8	354	152	0	514	148	301	180	0	629	152	425	60	1	638	64	214	8	0	286	2067
% App. Total	1.6	68.9	29.6	0		23.5	47.9	28.6	0		23.8	66.6	9.4	0.2		22.4	74.8	2.8	0		
PHF	.667	.885	.884	.000	.945	.804	.855	.918	.000	.920	.927	.932	.714	.250	.933	.762	.849	.500	.000	.831	.941
Cars & Peds	8	351	147	0	506	148	290	180	0	618	150	422	59	1	632	62	207	8	0	277	2033
% Cars & Peds	100	99.2	96.7	0	98.4	100	96.3	100	0	98.3	98.7	99.3	98.3	100	99.1	96.9	96.7	100	0	96.9	98.4
Trucks & Buses	0	2	5	0	7	0	10	0	0	10	2	3	1	0	6	2	7	0	0	9	32
% Trucks & Buses	0	0.6	3.3	0	1.4	0	3.3	0	0	1.6	1.3	0.7	1.7	0	0.9	3.1	3.3	0	0	3.1	1.5
Bikes by Direction	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	2
% Bikes by Direction	0	0.3	0	0	0.2	0	0.3	0	0	0.2	0	0	0	0	0	0	0	0	0	0	0.1

Mario Perone, mperone1@verizon.net tel (781) 587-0086 cell (781) 439-4999


N/S: Beaver Street

E/W: Waverley Oaks Road (Route 60)

City, State: Waltham, MA Client: Bryant/T. Brayton

File Name : 04759AA Site Code : 216023 Start Date : 9/28/2016

		Bea	ver St	reet		1	Vaverl	ey Oak	s Road	i		Bea	ver St	reet		,	Waverl	ey Oak	s Roa	d	
		Fr	om No	rth			F	rom Ea	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	alysis F	From 04	4:00 PM	I to 05:4	15 PM -	Peak 1	of 1														
Peak Hour for	Entire	Interse	ction B	egins at	04:30 P	M															
04:30 PM	4	117	48	0	169	43	72	59	0	174	44	136	20	0	200	22	56	1	0	79	622
04:45 PM	4	122	53	0	179	45	70	50	0	165	40	126	17	0	183	14	50	2	0	66	593
05:00 PM	3	122	43	0	168	35	79	59	0	173	31	121	31	0	183	24	47	4	0	75	599
05:15 PM	4	133	34	0	171	41	80	62	0	183	41	143	21	0	205	19	62	6	0	87	646
Total Volume	15	494	178	0	687	164	301	230	0	695	156	526	89	0	771	79	215	13	0	307	2460
% App. Total	2.2	71.9	25.9	0		23.6	43.3	33.1	0		20.2	68.2	11.5	0		25.7	70	4.2	0		
PHF	.938	.929	.840	.000	.959	.911	.941	.927	.000	.949	.886	.920	.718	.000	.940	.823	.867	.542	.000	.882	.952
Cars & Peds	15	484	176	0	675	163	298	223	0	684	153	522	89	0	764	79	209	13	0	301	2424
% Cars & Peds	100	98.0	98.9	0	98.3	99.4	99.0	97.0	0	98.4	98.1	99.2	100	0	99.1	100	97.2	100	0	98.0	98.5
Trucks & Buses	0	5	1	0	6	1	3	7	0	11	3	2	0	0	5	0	4	0	0	4	26
% Trucks & Buses	0	1.0	0.6	0	0.9	0.6	1.0	3.0	0	1.6	1.9	0.4	0	0	0.6	0	1.9	0	0	1.3	1.1
Bikes by Direction	0	5	1	0	6	0	0	0	0	0	0	2	0	0	2	0	2	0	0	2	10
% Bikes by Direction	0	1.0	0.6	0	0.9	0	0	0	0	0	0	0.4	0	0	0.3	0	0.9	0	0	0.7	0.4

APPENDIX B

Intersection Capacity Analysis

Intersection						
Int Delay, s/veh	0					
int belay, siven	0					
Movement	EBL	EBR	NEL	NET	SWT	SWR
Vol, veh/h	0	0	0	450	512	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	79	90	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	570	569	0
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	1139	569	569	0	-	0
Stage 1	569	-	-	-		-
Stage 2	570	-	-	-	_	-
Critical Hdwy	6.42	6.22	4.12	-		-
Critical Hdwy Stg 1	5.42	-	-	-	_	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	223	522	1003	-	-	-
Stage 1	566	-	-	-	-	-
Stage 2	566	-	-	-		-
Platoon blocked, %				-		-
Mov Cap-1 Maneuver	223	522	1003	-	-	-
Mov Cap-2 Maneuver	223	-	-	-	-	-
Stage 1	566	-	-	-	-	-
Stage 2	566	-	-	-	-	-
Approach	EB		NE		SW	
HCM Control Delay, s	0		0		0	
HCM LOS	A				Ü	
Minor Lane/Major Mvmt	NEL	NET EBLn1	SWT SWR			
Capacity (veh/h)	1003					
HCM Lane V/C Ratio	-					
HCM Control Delay (s)	0	- 0				
HCM Lane LOS	A	- A				
HCM 95th %tile Q(veh)	0					
/ 5 / 5 / 5 (* 6.1)	3					

Int Delay, s/veh	Intersection						
Movement		0					
Vol, veh/h 0 0 0 447 423 0 Conflicting Peds, #/hr 0 - - 0 0 - - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - 0 0 - 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0	<i>J</i> .						
Vol, veh/h 0 0 0 447 423 0 Conflicting Peds, #/hr 0	Movement	EBL	EBR	NEL	NET	SWT	SWR
Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Stop Stop Free Pool Cond Cond Cond Cond Cond Cond Cond The Approximation of the Approximation of the Approximation of the Approximation of the Approximation of the Approximation of the Approximation of the Approximation of the Approximation of the Approximation of the							
Sign Control Stop RT Channelized Stop None Free None Free None Free None RT Channelized None							
RT Channelized - None - None Storage Length 0 - - - - Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Peak Hour Factor 92 92 92 94 89 92 Heavy Vehicles, % 2 2 2 2 2 1 2 Mymt Flow 0 0 0 476 475 0 0 Major/Minor Minor Minor Major Major Major - 1 2 Mornficting Flow All 951 475 475 0 0 0 0 1 475 0							
Storage Length		-	•				
Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 - - 0 - - 0 - - 0 0 0 0 0 0 0 0 0 <t< td=""><td>Storage Length</td><td>0</td><td></td><td>-</td><td></td><td>-</td><td></td></t<>	Storage Length	0		-		-	
Grade, % 0 - - 0 - Peak Hour Factor 92 92 92 94 89 92 Heavy Vehicles, % 2 2 2 2 2 1 2 Major/Minor Minor2 Major1 Major2 Major2 Major3 Major4 Major2 Conflicting Flow All 951 475 475 0 - 0 Stage 1 475 - - - - - - Stage 2 476 -			-	-	0	0	-
Peak Hour Factor 92 92 92 94 89 92 Heavy Vehicles, % 2 2 2 2 2 1 2 Morth Flow 0 0 0 476 475 0 Major1 Minor Major1 Major2 Major1 Major Minor Major1 Major Major1 Major Minor Major1 Major Minor Major1 Major Major1 Major Minor Major1 Major Minor Major2 Conflicting Flow All 951 475 475 0 - 0 0 - 0 0 - 0 0 - 0 0 0 0 - 0 0 0 - - 0 -		0	-	-	0	0	-
Mymt Flow 0 0 0 476 475 0 Major/Minor Minor2 Major1 Major2 Conflicting Flow All 951 475 475 0 - 0 Stage 1 475 -			92	92		89	92
Major/Minor Minor2 Major1 Major2 Conflicting Flow All 951 475 475 0 - 0 Stage 1 475 - - - - 0 Stage 2 476 - - - - - Critical Hdwy 6.42 6.22 4.12 - - - Critical Hdwy Stg 1 5.42 - - - - - Critical Hdwy Stg 2 5.42 - - - - - Critical Hdwy Stg 2 5.42 -	Heavy Vehicles, %	2	2	2	2	1	2
Conflicting Flow All 951 475 475 0 - 0 Stage 1 475		0	0	0	476	475	0
Conflicting Flow All 951 475 475 0 - 0 Stage 1 475							
Conflicting Flow All 951 475 475 0 0 Stage 1 475 - - - - Stage 2 476 - - - - Critical Hdwy 6.42 6.22 4.12 - - - Critical Hdwy Stg 1 5.42 - - - - - - Critical Hdwy Stg 2 5.42 -	Maior/Minor	Minor2		Maior1		Maior2	
Stage 1 475 -			475		0		0
Stage 2 476 -							
Critical Hdwy 6.42 6.22 4.12 - - - Critical Hdwy Stg 1 5.42 - - - - - Critical Hdwy Stg 2 5.42 - - - - - Follow-up Hdwy 3.518 3.318 2.218 - - - Follow-up Hdwy 3.518 3.318 2.218 - - - Pot Cap-1 Maneuver 288 590 1087 - - - Stage 2 625 - - - - - - Platoon blocked, % - <td< td=""><td></td><td></td><td>_</td><td>-</td><td>-</td><td>_</td><td>-</td></td<>			_	-	-	_	-
Critical Hdwy Stg 1 5.42 -			6.22	4.12	_		-
Critical Hdwy Stg 2 5.42 -					-	_	-
Follow-up Hdwy 3.518 3.318 2.218 Pot Cap-1 Maneuver 288 590 1087 Stage 1 626			-	-	-	-	-
Pot Cap-1 Maneuver			3.318	2.218	-	-	-
Stage 1 626 -					-	-	
Stage 2 625 - - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver 288 590 1087 - - Mov Cap-2 Maneuver 288 - - - - Stage 1 626 - - - - Stage 2 625 - - - - Approach EB NE SW HCM Control Delay, s 0 0 0 HCM Los A - - - Minor Lane/Major Mvmt NEL NET EBLn1 SWR Capacity (veh/h) 1087 - - - HCM Lane V/C Ratio - - - - HCM Control Delay (s) 0 - - -					-	-	-
Platoon blocked, %		625	-	-	-		-
Mov Cap-2 Maneuver 288 -					-	-	-
Stage 1 626 -	Mov Cap-1 Maneuver	288	590	1087	-	-	-
Stage 2 625 -	Mov Cap-2 Maneuver	288	-		-	-	-
Approach EB NE SW HCM Control Delay, s 0 0 0 HCM LOS A 0 0 Minor Lane/Major Mvmt NEL NET EBLn1 SWR Capacity (veh/h) 1087 - - - HCM Lane V/C Ratio - - - - HCM Control Delay (s) 0 - 0 -	Stage 1		-	-	-	-	-
HCM Control Delay, s 0 0 0 HCM LOS A 0 0 Minor Lane/Major Mvmt NEL NET EBLn1 SWT SWR SWR Capacity (veh/h) 1087	Stage 2	625	-	-	-	-	-
HCM Control Delay, s 0 0 0 HCM LOS A 0 0 Minor Lane/Major Mvmt NEL NET EBLn1 SWT SWR SWR Capacity (veh/h) 1087							
HCM Control Delay, s 0 0 0 HCM LOS A 0 0 Minor Lane/Major Mvmt NEL NET EBLn1 SWT SWR SWR Capacity (veh/h) 1087	Approach	EB		NE		SW	
Minor Lane/Major Mvmt NEL NET EBLn1 SWT SWR Capacity (veh/h) 1087 - - - HCM Lane V/C Ratio - - - - HCM Control Delay (s) 0 - 0 -							
Minor Lane/Major Mvmt NEL NET EBLn1 SWT SWR Capacity (veh/h) 1087 HCM Lane V/C Ratio HCM Control Delay (s) 0 - 0							
Capacity (veh/h) 1087 HCM Lane V/C Ratio							
Capacity (veh/h) 1087 HCM Lane V/C Ratio	Minor Lane/Major Mvmt	NEL	NET EBLn1	SWT SWR			
HCM Lane V/C Ratio HCM Control Delay (s) 0 - 0							
HCM Control Delay (s) 0 - 0							
HCM 95th %tile Q(veh) 0							

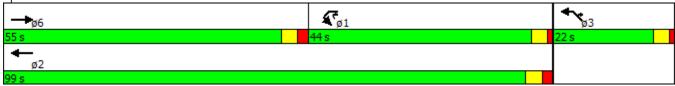
Int Delay, s/veh	Intersection						
Movement		n					
Vol, veh/h 0 0 0 450 512 0 Conflicting Peds, #/hr 0 None N	in Delay, Sivell	U					
Vol, veh/h 0 0 0 450 512 0 Conflicting Peds, #/hr 0		CDI	000	NE	NIET	CUIT	CVVD
Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Stop Stop Free Page 0 0 0 0 0 0 0 0							
Sign Control Stop RT Channelized Stop None Free Free Free Free Free Free Free Free Free RT Channelized - None							
RT Channelized - None None None Storage Length 0 0 0 Veh in Median Storage, # 0 - 0 0 Grade, % 0 - 0 0 0 Peak Hour Factor 92 92 92 79 90 92 Heavy Vehicles, % 2							
Storage Length		Stop	•				
Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 9 92 <		-			ivone	-	
Grade, % 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 9 92 92 92 79 90 92 92 92 18 90 92 92 92 92 92 90 92 92 90 92 90 92 90 92 90 92 90 <		-			-	-	
Peak Hour Factor 92 92 92 79 90 92 Heavy Vehicles, % 2 0							
Heavy Vehicles, %							
Mymt Flow 0 0 0 570 569 0 Major/Minor Minor2 Major1 Major2 Conflicting Flow All 1139 569 569 0 - 0 Stage 1 569 -							
Major/Minor Minor2 Major1 Major2 Conflicting Flow All 1139 569 569 0 - 0 Stage 1 569 -							
Conflicting Flow All	IVIVIIIL I IUVV	U	U	U	570	309	U
Conflicting Flow All 1139 569 569 0 - 0 Stage 1 569 -							
Stage 1 569 -						Major2	
Stage 2 570 -			569	569	0	-	0
Critical Hdwy 6.42 6.22 4.12 - - - Critical Hdwy Stg 1 5.42 - - - - - Critical Hdwy Stg 2 5.42 - - - - - Follow-up Hdwy 3.518 3.318 2.218 - - - Follow-up Hdwy 3.518 3.318 2.218 - - - Pot Cap-1 Maneuver 223 522 1003 - - - Stage 2 566 - - - - - - Mov Cap-1 Maneuver 223 522 1003 - - - - Mov Cap-2 Maneuver 223 522 1003 - - - - Stage 1 566 - - - - - - - Stage 2 566 - - - - - - - - Approach SB NE NE SW - - - - <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>			-	-	-	-	-
Critical Hdwy Stg 1 5.42 - <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>					-	-	-
Critical Hdwy Stg 2 5.42 -			6.22	4.12	-	-	-
Follow-up Hdwy 3.518 3.318 2.218			-	-	-	-	-
Pot Cap-1 Maneuver 223 522 1003 - - - Stage 1 566 - - - - Stage 2 566 - - - - Platoon blocked, % - - - Mov Cap-1 Maneuver 223 522 1003 - - Mov Cap-2 Maneuver 223 - - - Stage 1 566 - - - - Stage 2 566 - - - - Stage 2 566 - - - - Approach SB NE SW HCM Control Delay, s 0 0 0 HCM LOS A Minor Lane/Major Mvmt NEL NET SBLn1 SWT SWR Capacity (veh/h) 1003 - - HCM Lane V/C Ratio - - - HCM Control Delay (s) 0 - 0 - HCM Control Delay (s) 0 - 0 - HCM Control Delay (s) 0 - 0 - HCM Lane LOS A - A -			-		-	-	-
Stage 1 566 -					-	-	-
Stage 2 566 -			522	1003	-	-	-
Platoon blocked, %			-	-	-	-	-
Mov Cap-1 Maneuver 223 522 1003 - - - Mov Cap-2 Maneuver 223 - <td></td> <td>566</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>		566	-	-	-	-	-
Mov Cap-2 Maneuver 223 -						-	-
Stage 1 566 -						-	-
Stage 2 566 -						-	-
Approach SB NE SW HCM Control Delay, s 0 0 0 HCM LOS A 0 0 Minor Lane/Major Mvmt NEL NET SBLn1 SWT SWR SWR Capacity (veh/h) 1003			-	-	-	-	-
HCM Control Delay, s 0 0 0 HCM LOS A O O Minor Lane/Major Mvmt NEL NET SBLn1 SWT SWR SWR Capacity (veh/h) 1003 - HCM Lane V/C Ratio - HCM Control Delay (s) 0 - 0 - HCM Lane LOS A - A -	Stage 2	566	-	-	-	-	-
HCM Control Delay, s							
HCM Control Delay, s 0 0 HCM LOS A O Minor Lane/Major Mvmt NEL NET SBLn1 SWT SWR Capacity (veh/h) 1003 - - - HCM Lane V/C Ratio - - - - HCM Control Delay (s) 0 - 0 - HCM Lane LOS A - A -	Approach	SB		NE.		SW	
Minor Lane/Major Mvmt NEL NET SBLn1 SWT SWR Capacity (veh/h) 1003 - - - HCM Lane V/C Ratio - - - - HCM Control Delay (s) 0 - 0 - HCM Lane LOS A - A -		0		0		0	
Minor Lane/Major Mvmt NEL NET SBLn1 SWT SWR Capacity (veh/h) 1003 - - - HCM Lane V/C Ratio - - - - HCM Control Delay (s) 0 - 0 - HCM Lane LOS A - A -		А					
Capacity (veh/h) 1003							
Capacity (veh/h) 1003	Minor Lane/Maior Mvmt	NEL	NET SBLn1	SWT SWR			
HCM Lane V/C Ratio HCM Control Delay (s) 0 - 0 HCM Lane LOS A - A							
HCM Control Delay (s) 0 - 0 HCM Lane LOS A - A							
HCM Lane LOS A - A							
	HCM 95th %tile Q(veh)	0					

Movement	Intersection						
Movement		0					
Vol. veh/h 0 0 0 447 423 0 Conflicting Peds, #/hr 0	in belay, siven	· ·					
Vol. veh/h 0 0 0 447 423 0 Conflicting Peds, #/hr 0	Movement	SBI	SBR	NFI	NFT	SWT	SWR
Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Stop Stop Free Peach Color Col							
Sign Control Stop Stop Free Rough Veh in Median Storage, # 0 - - 0 0 0 - - 0 0 - - - 0 - <							
RT Channelized							
Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - 0 0 0 476 475 0 0 0 0 3 1 475 0		•					
Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Grade, % 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 - 0 0 475 0 - 0 0 0 475 0 - 0 0 3 1 475 0 - 0 0 0 0 4 475 0 - 0<	Storage Length	-	0	-	-	-	-
Grade, % 0 - - 0 - Peak Hour Factor 92 92 92 94 89 92 Heavy Vehicles, % 2 2 2 2 2 1 2 Mayor/Minor Minor Winor Wajor Major Major Conflicting Flow All 951 475 475 0 - 0 Stage 1 475 - - - - - 0 Stage 2 476 -		0	-	-	0	0	-
Peak Hour Factor 92 92 92 94 89 92 Heavy Vehicles, % 2 2 2 2 2 1 2 Mymrt Flow 0 0 0 476 475 0 Major1 Major2 Major1 Major2 On 16 Adv Major1 Major2 Major1 Major2 On 16 Adv Major1 Major2 Conflicting Flow All 951 475 475 0 - 0 Stage 1 475 - </td <td></td> <td>0</td> <td>-</td> <td>-</td> <td>0</td> <td>0</td> <td>-</td>		0	-	-	0	0	-
Mynt Flow 0 0 0 476 475 0 Major/Minor Minor2 Major1 Major2 Conflicting Flow All 951 475 475 0 - 0 Stage 1 475 -		92	92	92	94	89	92
Major/Minor Minor2 Major1 Major2 Conflicting Flow All 951 475 475 0 - 0 Stage 1 475 -	Heavy Vehicles, %	2	2	2	2	1	2
Conflicting Flow All 951 475 475 0 - 0 Stage 1 475	Mvmt Flow	0	0	0	476	475	0
Conflicting Flow All 951 475 475 0 - 0 Stage 1 475							
Conflicting Flow All 951 475 475 0 - 0 Stage 1 475	Maior/Minor	Minor2		Maior1		Maior2	
Stage 1 475 -			475		0		0
Stage 2							
Critical Hdwy 6.42 6.22 4.12 - - - Critical Hdwy Stg 1 5.42 - - - - - Critical Hdwy Stg 2 5.42 - - - - - Follow-up Hdwy 3.518 3.318 2.218 - - - Pot Cap-1 Maneuver 288 590 1087 - - - Stage 1 626 - - - - - - Stage 2 625 - <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>-</td>				_			-
Critical Hdwy Stg 1 5.42 - <td></td> <td></td> <td>6.22</td> <td>4.12</td> <td>_</td> <td></td> <td>_</td>			6.22	4.12	_		_
Critical Hdwy Stg 2 5.42 - <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td>					-		-
Follow-up Hdwy 3.518 3.318 2.218 Pot Cap-1 Maneuver 288 590 1087 Stage 1 626			-	-	-	-	-
Pot Cap-1 Maneuver 288 590 1087 - - - Stage 1	3 0		3.318	2.218	-	-	-
Stage 1 626 -					-		-
Stage 2 625 -		626	-	-	-	-	-
Mov Cap-1 Maneuver 288 590 1087 - <td>Stage 2</td> <td>625</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Stage 2	625	-	-	-	-	-
Mov Cap-2 Maneuver 288 -	Platoon blocked, %					-	-
Stage 1 626 -			590	1087	-	-	-
Stage 2 625 -			-	-	-	-	-
Approach SB NE SW HCM Control Delay, s 0 0 0 HCM LOS A 0 0 0 Minor Lane/Major Mvmt NEL NET SBLn1 SWT SWR SWR 0			-	-	-	-	-
HCM Control Delay, s	Stage 2	625	-	-	-	-	-
HCM Control Delay, s							
HCM Control Delay, s	Approach	SB		NE		SW	
Minor Lane/Major Mvmt NEL NET SBLn1 SWT SWR Capacity (veh/h) 1087 - - - HCM Lane V/C Ratio - - - - HCM Control Delay (s) 0 - 0 - HCM Lane LOS A - A -							
Minor Lane/Major Mvmt NEL NET SBLn1 SWR Capacity (veh/h) 1087 - - - HCM Lane V/C Ratio - - - - - HCM Control Delay (s) 0 - 0 - - - HCM Lane LOS A - A - - - -						Ŭ	
Capacity (veh/h) 1087		, (
Capacity (veh/h) 1087	Minor Lane/Major Mymt	NEI	NET SBLn1	SWT SWR			
HCM Lane V/C Ratio HCM Control Delay (s) 0 - 0 HCM Lane LOS A - A							
HCM Control Delay (s) 0 - 0 HCM Lane LOS A - A							
HCM Lane LOS A - A							
	HCM 95th %tile Q(veh)	0					

	-	-	~	←	*	4
Lane Group	EBT	EBR	WBL	WBT	NWL	NWR
Lane Configurations	<u>₽</u>	LDIX	YVDL		TAVVE	TVVIX
Volume (vph)	458	107	434	T 315	79	303
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.972	1.00	1.00	1.00	1.00	0.850
FIt Protected	0.972		0.950		0.950	0.650
Satd. Flow (prot)	2055	0		1863		1794
4 /	2000	0	1728	1003	1967	1/94
Flt Permitted	2055	0	0.950	10/2	0.950	1704
Satd. Flow (perm)	2055	0	1728	1863	1967	1794
Right Turn on Red	40	Yes				Yes
Satd. Flow (RTOR)	13					238
Link Speed (mph)	25			25	20	
Link Distance (ft)	191			204	209	
Travel Time (s)	5.2			5.6	7.1	
Peak Hour Factor	0.95	0.84	0.88	0.80	0.82	0.92
Heavy Vehicles (%)	1%	5%	1%	2%	4%	2%
Adj. Flow (vph)	482	127	493	394	96	329
Shared Lane Traffic (%)						
Lane Group Flow (vph)	609	0	493	394	96	329
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	0	rtigiti	Lon	11	26	rtigitt
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
` '	10			10	10	
Two way Left Turn Lane	0.05	0.05	1.04	1.00	0.05	0.05
Headway Factor	0.85	0.85	1.04	1.00	0.85	0.85
Turning Speed (mph)		9	15		15	9
Number of Detectors	2		1	2	1	1
Detector Template	Thru		Left	Thru	Left	Right
Leading Detector (ft)	100		20	100	20	20
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	6		20	6	20	20
Detector 1 Type	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
3 : :	94		0.0	94	0.0	0.0
Detector 2 Position(ft)						
Detector 2 Size(ft)	6 CL Ev			6 CL Ev		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0		_	0.0	_	
Turn Type	NA		Prot	NA	Prot	pt+ov
Protected Phases	6		1	2	3	3 1
Permitted Phases						
Detector Phase	6		1	2	3	3 1
Switch Phase						

	-	-	•	←	*	4
Lane Group	EBT	EBR W	/BL	WBT	NWL	NWR
Minimum Initial (s)	8.0		4.0	12.0	3.0	
Minimum Split (s)	22.0		8.0	17.0	19.0	
Total Split (s)	55.0		4.0	99.0	22.0	
Total Split (%)	45.5%		4%	81.8%	18.2%	
Maximum Green (s)	50.0		0.0	94.0	18.0	
Yellow Time (s)	3.0		3.0	3.0	3.0	
All-Red Time (s)	2.0		1.0	2.0	1.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	5.0		4.0	5.0	4.0	
Lead/Lag	Lead			5.0	4.0	
	Yes		∟ag Yes			
Lead-Lag Optimize?	2.5			2.5	2.0	
Vehicle Extension (s)			2.0	2.5	2.0	
Recall Mode	None	IN(one	Max	None	
Walk Time (s)	7.0				7.0	
Flash Dont Walk (s)	10.0				8.0	
Pedestrian Calls (#/hr)	5				0	
Act Effct Green (s)	38.4		1.7	94.0	9.9	65.5
Actuated g/C Ratio	0.34		.46	0.83	0.09	0.58
v/c Ratio	0.86		.62	0.25	0.56	0.29
Control Delay	46.6	3	0.4	2.6	62.0	4.8
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	46.6	3	0.4	2.6	62.0	4.8
LOS	D		С	Α	Е	Α
Approach Delay	46.6			18.1	17.7	
Approach LOS	D			В	В	
90th %ile Green (s)	49.0	4	1.0	94.0	14.1	
90th %ile Term Code	Gap		lold	MaxR	Gap	
70th %ile Green (s)	43.0		7.0	94.0	11.5	
70th %ile Term Code	Gap		lold	MaxR	Gap	
50th %ile Green (s)	38.6		1.4	94.0	9.9	
50th %ile Term Code	Gap		lold	MaxR	Gap	
30th %ile Green (s)	34.4		5.6	94.0	8.2	
` '						
30th %ile Term Code	Gap		lold	MaxR	Gap	
10th %ile Green (s)	27.7		2.3	94.0	5.9	
10th %ile Term Code	Gap		lold	MaxR	Gap	00
Queue Length 50th (ft)	401		266	45	68	28
Queue Length 95th (ft)	501	#4	470	73	111	86
Internal Link Dist (ft)	111			124	129	
Turn Bay Length (ft)						
Base Capacity (vph)	917		790	1551	313	1253
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.66	C	.62	0.25	0.31	0.26
Intersection Summary						

Intersection Summary


Area Type: Other

Cycle Length: 121

Actuated Cycle Length: 112.9

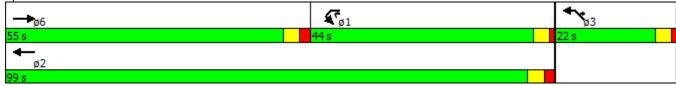
Natural Cycle: 80	
Control Type: Actuated-Uncoordinated	
Maximum v/c Ratio: 0.86	
Intersection Signal Delay: 27.0	Intersection LOS: C
Intersection Capacity Utilization 69.9%	ICU Level of Service C
Analysis Period (min) 15	
90th %ile Actuated Cycle: 117.1	
70th %ile Actuated Cycle: 114.5	
50th %ile Actuated Cycle: 112.9	
30th %ile Actuated Cycle: 111.2	
10th %ile Actuated Cycle: 108.9	
Description: Waverley Oaks Road/Trapelo Road AM Peak	
# 95th percentile volume exceeds capacity, queue may be lor	nger.
Queue shown is maximum after two cycles.	

Splits and Phases: 3:

	-	-	~	←	*	4
Lane Group	EBT	EBR	WBL	WBT	NWL	NWR
Lane Configurations	1→		ሻ	↑	ሻ	7
Volume (vph)	275	65	318	305	145	328
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	16	16	11	12	16	16
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.973	1.00	1.00	1.00	1.00	0.850
Flt Protected	0.770		0.950		0.950	0.000
Satd. Flow (prot)	2095	0	1694	1863	1948	1812
Flt Permitted	2070	0	0.950	1000	0.950	1012
Satd. Flow (perm)	2095	0	1694	1863	1948	1812
Right Turn on Red	2073	Yes	1074	1003	1770	Yes
Satd. Flow (RTOR)	13	1 03				360
, ,	25			25	20	300
Link Speed (mph)	25 191			204	209	
Link Distance (ft)						
Travel Time (s)	5.2	0.01	0.00	5.6	7.1	0.01
Peak Hour Factor	0.86	0.81	0.89	0.96	0.91	0.91
Heavy Vehicles (%)	0%	0%	3%	2%	5%	1%
Adj. Flow (vph)	320	80	357	318	159	360
Shared Lane Traffic (%)						
Lane Group Flow (vph)	400	0	357	318	159	360
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	0			11	26	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	0.85	0.85	1.04	1.00	0.85	0.85
Turning Speed (mph)		9	15		15	9
Number of Detectors	2		1	2	1	1
Detector Template	Thru		Left	Thru	Left	Right
Leading Detector (ft)	100		20	100	20	20
Trailing Detector (ft)	0		0	0	0	0
Detector 1 Position(ft)	0		0	0	0	0
Detector 1 Size(ft)	6		20	6	20	20
Detector 1 Type	CI+Ex					CI+Ex
	CI+EX		CI+EX	CI+Ex	CI+EX	CI+EX
Detector 1 Channel	0.0		0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	0.0
Detector 2 Position(ft)	94			94		
Detector 2 Size(ft)	6			6		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Prot	NA	Prot	pt+ov
Protected Phases	6		1	2	3	3 1
Permitted Phases						
Detector Phase	6		1	2	3	3 1
Switch Phase						0 1
JWIICH FHASE						

	-	\neg	~	•	*	4
Lane Group	EBT	EBR	WBL	WBT	NWL	NWR
Minimum Initial (s)	8.0		4.0	12.0	3.0	
Minimum Split (s)	22.0		8.0	17.0	19.0	
Total Split (s)	55.0		44.0	99.0	22.0	
Total Split (%)	45.5%		36.4%	81.8%	18.2%	
Maximum Green (s)	50.0		40.0	94.0	18.0	
Yellow Time (s)	3.0		3.0	3.0	3.0	
All-Red Time (s)	2.0		1.0	2.0	1.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	5.0		4.0	5.0	4.0	
Lead/Lag	Lead		Lag	0.0		
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	2.5		2.0	2.5	2.0	
Recall Mode	None		None	Max	None	
Walk Time (s)	7.0		NOTIC	IVIUN	7.0	
Flash Dont Walk (s)	10.0				8.0	
Pedestrian Calls (#/hr)	10.0				0.0	
Act Effet Green (s)	27.3		62.7	94.1	13.5	80.3
	0.23		0.54	0.81	0.12	0.69
Actuated g/C Ratio	0.23		0.54	0.81	0.12	0.69
v/c Ratio	52.6			3.3	66.6	
Control Delay			19.7			1.4
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	52.6		19.7	3.3	66.6	1.4
LOS	D		В	A	E	Α
Approach Delay	52.6			11.9	21.4	
Approach LOS	D			В	С	
90th %ile Green (s)	37.3		52.7	94.0	18.0	
90th %ile Term Code	Gap		Hold	MaxR	Max	
70th %ile Green (s)	31.2		58.8	94.0	16.2	
70th %ile Term Code	Gap		Hold	MaxR	Gap	
50th %ile Green (s)	27.2		62.8	94.0	13.8	
50th %ile Term Code	Gap		Hold	MaxR	Gap	
30th %ile Green (s)	23.5		66.5	94.0	11.6	
30th %ile Term Code	Gap		Hold	MaxR	Gap	
10th %ile Green (s)	18.3		71.7	94.0	8.4	
10th %ile Term Code	Gap		Hold	MaxR	Gap	
Queue Length 50th (ft)	277		151	45	117	0
Queue Length 95th (ft)	343		281	82	189	35
Internal Link Dist (ft)	111			124	129	
Turn Bay Length (ft)					,	
Base Capacity (vph)	906		911	1503	300	1415
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductin	0		0	0	0	0
Reduced v/c Ratio	0.44		0.39	0.21	0.53	0.25
REGULEU V/L KAIIU	U.44		0.39	U.Z I	0.53	0.25
Intersection Summary						

Intersection Summary


Area Type: Other

Cycle Length: 121

Actuated Cycle Length: 116.6

Natural Cycle: 60	
,	
Control Type: Actuated-Uncoordinated	
Maximum v/c Ratio: 0.80	
Intersection Signal Delay: 25.2	Intersection LOS: C
Intersection Capacity Utilization 54.9%	ICU Level of Service A
Analysis Period (min) 15	
90th %ile Actuated Cycle: 121	
70th %ile Actuated Cycle: 119.2	
50th %ile Actuated Cycle: 116.8	
30th %ile Actuated Cycle: 114.6	
10th %ile Actuated Cycle: 111.4	
Description: Waverley Oaks Rd/Trapelo Rd PM Peak	

Splits and Phases: 3:

	₩	\mathbf{x}	1	F	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ኻ	f)		ሻ	ħβ		ሻ	∱ ∱		ች	^	7
Volume (vph)	147	415	8	67	510	174	4	204	64	155	209	115
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	11	12	11	12	13	12	11	12	12	12	16
Storage Length (ft)	0		0	90		80	100		200	0		0
Storage Lanes	1		0	1		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00
Frt		0.996			0.961			0.964				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1806	0	1646	3426	0	1444	3227	0	1736	1881	1777
Flt Permitted	0.950			0.950			0.950			0.339		
Satd. Flow (perm)	1770	1806	0	1646	3426	0	1444	3227	0	619	1881	1777
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			50			35				143
Link Speed (mph)		30			30			35			35	
Link Distance (ft)		293			491			565			255	
Travel Time (s)		6.7			11.2			11.0			5.0	
Peak Hour Factor	0.82	0.95	0.67	0.67	0.85	0.82	0.50	0.80	0.80	0.81	0.90	0.87
Heavy Vehicles (%)	2%	1%	12%	6%	1%	2%	25%	4%	5%	4%	1%	3%
Adj. Flow (vph)	179	437	12	100	600	212	8	255	80	191	232	132
Shared Lane Traffic (%)												
Lane Group Flow (vph)	179	449	0	100	812	0	8	335	0	191	232	132
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.04	1.00	1.04	1.00	0.96	1.00	1.04	1.00	1.00	1.00	0.85
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (ft)	20	100		20	100		20	100		20	100	20
Trailing Detector (ft)	0	0		0	0		0	0		0	0	0
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	0
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	20
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	Direct	0.0		Donat	0.0		Devel	0.0			0.0	Г
Turn Type	Prot	NA		Prot	NA		Prot	NA		pm+pt	NA	Free
Protected Phases	3	6		7	2		1	8		5	4	

	₩.	\mathbf{x}	À	F	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Permitted Phases										4		Free
Detector Phase	3	6		7	2		1	8		5	4	
Switch Phase												
Minimum Initial (s)	6.0	8.0		6.0	8.0		6.0	8.0		6.0	8.0	
Minimum Split (s)	10.0	27.0		10.0	27.0		10.0	26.0		10.0	26.0	
Total Split (s)	20.0	41.0		20.0	41.0		20.0	26.0		20.0	26.0	
Total Split (%)	18.7%	38.3%		18.7%	38.3%		18.7%	24.3%		18.7%	24.3%	
Maximum Green (s)	16.0	36.0		16.0	36.0		16.0	22.0		16.0	22.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.0		1.0	2.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	5.0		4.0	5.0		4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	2.0		2.0	2.0		2.0	1.5		2.0	2.0	
Recall Mode	Max	Max		None	None		None	None		None	Max	
Walk Time (s)		7.0			7.0			7.0			7.0	
Flash Dont Walk (s)		15.0			15.0			15.0			15.0	
Pedestrian Calls (#/hr)		1			1			1			0	
Act Effct Green (s)	16.4	37.0		9.9	27.9		6.2	13.6		29.8	28.1	87.4
Actuated g/C Ratio	0.19	0.42		0.11	0.32		0.07	0.16		0.34	0.32	1.00
v/c Ratio	0.54	0.59		0.54	0.72		0.08	0.63		0.52	0.38	0.07
Control Delay	42.9	26.6		50.3	29.1		46.0	37.7		27.5	26.9	0.1
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	42.9	26.6		50.3	29.1		46.0	37.7		27.5	26.9	0.1
LOS	D	С		D	С		D	D		С	С	Α
Approach Delay		31.3			31.4			37.9			20.8	
Approach LOS		С			С			D			С	
90th %ile Green (s)	16.0	36.4		15.6	36.0		6.6	22.0		16.0	31.4	
90th %ile Term Code	MaxR	Hold		Gap	Max		Gap	Ped		Max	Hold	
70th %ile Green (s)	16.0	36.0		11.7	31.7		0.0	14.2		15.7	33.9	
70th %ile Term Code	MaxR	MaxR		Gap	Hold		Skip	Gap		Gap	Hold	
50th %ile Green (s)	16.0	36.0		9.6	29.6		0.0	12.0		12.6	28.6	
50th %ile Term Code	MaxR	MaxR		Gap	Hold		Skip	Gap		Gap	Hold	
30th %ile Green (s)	16.0	36.0		7.9	27.9		0.0	10.1		10.1	24.2	
30th %ile Term Code	MaxR	MaxR		Gap	Hold		Skip	Gap		Gap	Hold	
10th %ile Green (s)	16.0	36.0		0.0	16.0		0.0	10.9		7.1	22.0	
10th %ile Term Code	MaxR	MaxR		Skip	Hold		Skip	Hold		Gap	MaxR	
Queue Length 50th (ft)	90	187		53	186		4	83		78	97	0
Queue Length 95th (ft)	174	389		84	281		12	122		127	200	0
Internal Link Dist (ft)		213			411			485			175	
Turn Bay Length (ft)				90			100					
Base Capacity (vph)	332	764		309	1475		270	858		420	604	1777
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.54	0.59		0.32	0.55		0.03	0.39		0.45	0.38	0.07
Intersection Summary												

	Oll								
Area Type:	Other								
Cycle Length: 107									
Actuated Cycle Length: 87.4									
Natural Cycle: 75									
Control Type: Actua	ated-Uncoordinated								
Maximum v/c Ratio	o: 0.72								
Intersection Signal	Delay: 29.9	Intersection LOS: C							
Intersection Capac	ity Utilization 58.2%	ICU Level of Service B							
Analysis Period (m	in) 15								
90th %ile Actuated	Cycle: 107								
70th %ile Actuated	Cycle: 94.6								
50th %ile Actuated	50th %ile Actuated Cycle: 87.2								
30th %ile Actuated Cycle: 81.1									
10th %ile Actuated Cycle: 67									
Description: Waver	Description: Waverley Oaks Rd/Beaver St AM Peak								

Splits and Phases: 7: Beaver St.

	y	×	À	~	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	ሻ	ĥ		ሻ	∱ }		ሻ	↑ 1≽		ሻ	1	7
Volume (vph)	131	341	9	48	361	135	14	164	43	130	172	122
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	11	12	11	12	13	12	11	12	12	12	16
Storage Length (ft)	0		0	90		80	100		200	0		0
Storage Lanes	1		0	1		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00
Frt		0.995			0.960			0.969				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1776	0	1586	3380	0	1687	3341	0	1719	1792	1794
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	1776	0	1586	3380	0	1687	3341	0	1719	1792	1794
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			51			28				152
Link Speed (mph)		30			30			35			35	
Link Distance (ft)		293			491			565			255	
Travel Time (s)		6.7			11.2			11.0			5.0	
Peak Hour Factor	0.89	0.81	0.56	0.80	0.85	0.89	1.00	1.00	1.00	0.88	0.78	0.80
Heavy Vehicles (%)	2%	3%	0%	10%	2%	4%	7%	1%	2%	5%	6%	2%
Adj. Flow (vph)	147	421	16	60	425	152	14	164	43	148	221	152
Shared Lane Traffic (%)												
Lane Group Flow (vph)	147	437	0	60	577	0	14	207	0	148	221	152
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	Ŭ		12	Ü		12	Ŭ		12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.04	1.00	1.04	1.00	0.96	1.00	1.04	1.00	1.00	1.00	0.85
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (ft)	20	100		20	100		20	100		20	100	20
Trailing Detector (ft)	0	0		0	0		0	0		0	0	0
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	0
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	20
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	Free
Protected Phases	3	6		7	2		1	8		5	4	

	₩	\mathbf{x}	À	*	×	₹	7	×	~	Ĺ	×	*~
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Permitted Phases												Free
Detector Phase	3	6		7	2		1	8		5	4	
Switch Phase												
Minimum Initial (s)	6.0	8.0		6.0	8.0		6.0	8.0		6.0	8.0	
Minimum Split (s)	10.0	27.0		10.0	27.0		10.0	26.0		10.0	26.0	
Total Split (s)	20.0	41.0		20.0	41.0		20.0	26.0		20.0	26.0	
Total Split (%)	18.7%	38.3%		18.7%	38.3%		18.7%	24.3%		18.7%	24.3%	
Maximum Green (s)	16.0	36.0		16.0	36.0		16.0	22.0		16.0	22.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	1.0	2.0		1.0	2.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	5.0		4.0	5.0		4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	2.0		2.0	2.0		2.0	1.5		2.0	2.0	
Recall Mode	Max	Max		None	None		None	None		Max	Max	
Walk Time (s)		7.0			7.0			7.0			7.0	
Flash Dont Walk (s)		15.0			15.0			15.0			15.0	
Pedestrian Calls (#/hr)		0			1			1			0	
Act Effct Green (s)	16.2	36.4		8.1	25.9		6.2	10.9		16.2	29.3	86.4
Actuated g/C Ratio	0.19	0.42		0.09	0.30		0.07	0.13		0.19	0.34	1.00
v/c Ratio	0.44	0.58		0.41	0.55		0.12	0.47		0.46	0.36	0.08
Control Delay	38.7	25.2		47.7	25.3		43.9	34.1		39.3	25.6	0.1
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	38.7	25.2		47.7	25.3		43.9	34.1		39.3	25.6	0.1
LOS	D	С		D	С		D	С		D	С	Α
Approach Delay		28.6			27.4			34.7			22.0	
Approach LOS		С			С			С			С	
90th %ile Green (s)	16.0	36.0		12.0	32.0		7.0	22.0		16.0	31.0	
90th %ile Term Code	MaxR	MaxR		Gap	Hold		Gap	Ped		MaxR	Hold	
70th %ile Green (s)	16.0	36.0		9.0	29.0		0.0	9.8		16.0	29.8	
70th %ile Term Code	MaxR	MaxR		Gap	Hold		Skip	Gap		MaxR	Hold	
50th %ile Green (s)	16.0	36.0		7.6	27.6		0.0	8.5		16.0	28.5	
50th %ile Term Code	MaxR	MaxR		Gap	Hold		Skip	Gap		MaxR	Hold	
30th %ile Green (s)	16.0	36.0		6.3	26.3		0.0	8.0		16.0	28.0	
30th %ile Term Code	MaxR	MaxR		Gap	Hold		Skip	Min		MaxR	Hold	
10th %ile Green (s)	16.0	36.0		0.0	16.0		0.0	8.0		16.0	28.0	
10th %ile Term Code	MaxR	MaxR		Skip	Hold		Skip	Min		MaxR	Hold	
Queue Length 50th (ft)	70	173		31	117		7	48		71	89	0
Queue Length 95th (ft)	153	309		68	188		29	85		153	156	0
Internal Link Dist (ft)		213			411			485			175	
Turn Bay Length (ft)				90			100					
Base Capacity (vph)	331	749		297	1454		316	881		322	607	1794
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.44	0.58		0.20	0.40		0.04	0.23		0.46	0.36	0.08
Intersection Summary												

Area Type:	Other								
Cycle Length: 107									
Actuated Cycle Leng	Actuated Cycle Length: 86.4								
Natural Cycle: 75									
Control Type: Actuat	ed-Uncoordinated								
Maximum v/c Ratio:	0.58								
Intersection Signal D	elay: 27.2	Intersection LOS: C							
Intersection Capacity		ICU Level of Service A							
Analysis Period (min) 15								
90th %ile Actuated C									
70th %ile Actuated C	,								
50th %ile Actuated C									
30th %ile Actuated C									
10th %ile Actuated C	ycle: 73								
Splits and Phases:	7: Beaver St.								
4	No.	T at	 ✓ ₈₄						

APPENDIX C

Crash Data Summary

Project: Traffic Impact Analysis

Waltham High School

Waltham, Massachusetts

BAI Project No. 216023

Person No.							
0	Operator						
Р	Passenger						
U	Unknown						

Crash Type				
Α	Angle			
ВС	Bicycle			
НО	Head-on			
DEER	Deer			
OBJ	Object			
PED	Pedestrian			
RE	Rear-End			
SW	Side-swipe			

Project: Traffic Impact Analysis

Waltham High School

Waltham, Massachusetts

BAI Project No. 216023

Summary of Crash Data for the Years 2013, 2014, 2015, 2016

Year	Property Damage Only	Injury	Fatal	Total
2013	11	6	0	17
2014	4	1	0	5
2015	8	3	0	11
2016	6	0	0	6

Project: Traffic Impact Analysis Waltham High School

Waltham, Massachusetts

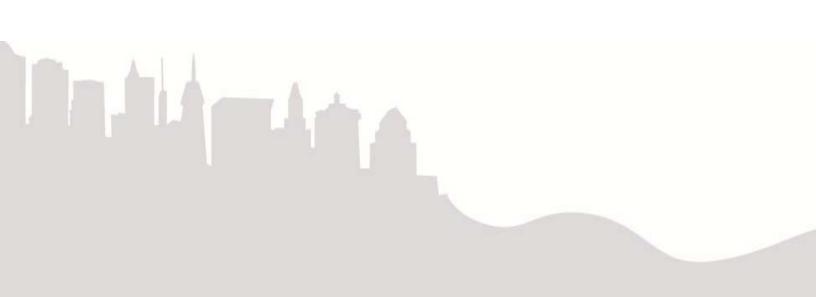
BAI Project No. 216023

Crash Data for the Years 2013, 2014, 2015, 2016

Crash No.	Report No.	Vehicle No.	Date	Direction of Travel*	Intersection/Crash Location	Person No.	No. of Injuries	Fatalities	Accident Type	Pavement Condition	Weather	Lighting	Military Time	Day
1	1300000046	1	1/14/2013	WEST	309 WAVERLEY OAKS ROAD, 30' WEST OF CHAPEL ROAD	0	0	0	ОВЈ	WET	CLOUDY	DAYLIGHT	0919	MONDAY
2	1300000152	1	2/11/2013	WEST	319 WAVERLEY OAKS ROAD AT CHAPEL ROAD	0	0	0	RE	SLUSH	rain	DAYLIGHT	0930	MONDAY
		2		WEST	319 WAVERLET OARS ROAD AT CHAFLE ROAD	0	0	0						
3	1300000225	1	3/5/2013	WEST	307 WAVERLEY OAKS ROAD, 30' WEST OF CHAPEL	0	0	0	RE	DRY	CLOUDY	DAYLIGHT	0840	TUESDAY
		2		WEST	ROAD	0	0	0						
		3		WEST		0	0	0						
4	1300000235	1	3/7/2013	EAST	411 WAVERLEY OAKS ROAD, 100' EAST OF UPTON	0	1	0	А	WET	SNOW	DAYLIGHT	1603	THURSDAY
-	100000007	2	0/01/0010	EAST	ROAD 271 WAVERLEY OAKS ROAD, 400' SOUTHWEST OF	O/P	0	0	D.E.	DDV	CLOUDY	DAVIDUE	100/	TI II IDCD AV
5	1300000297	1	3/21/2013	WEST	271 WAVERLEY OAKS ROAD, 400 SOUTHWEST OF CHAPEL ROAD	0	0	0	RE	DRY	CLOUDY	DAYLIGHT	1236	THURSDAY
	1300000325	2	3/29/2013	WEST WEST	411 WAVERLEY OAKS ROAD, 100' EAST OF UPTON	O/3P	1	0	^	DRY	CLEAR	DAYLIGHT	1548	FRIDAY
6	1300000325	2	3/29/2013	WEST	ROAD	O/3P	0	0	А	DRT	CLEAR	DAYLIGHT	1548	FRIDAY
7	1300000328	Z	4/1/2013	WEST	411 WAVERLEY OAKS ROAD, 100' EAST OF UPTON	0	1	0	RE	DRY	CLEAR	DAYLIGHT	0913	MONDAY
	1300000328	2	4/1/2013	WEST	ROAD	0	1	0	NL	DKI	CLLAN	DATEIGITI	0913	MONDAT
8	1300000444	1	5/1/2013	WEST	411 WAVERLEY OAKS ROAD, 100' EAST OF UPTON	O/2P	0	0	Α	DRY	CLEAR	DAYLIGHT	1738	WEDNESDAY
0	1000000444	2	3/1/2010	WEST	ROAD	0	0	0	/\	DICI	CLL/III	DATEIOTTI	1700	WEDINESDAT
9	1300000467	1	5/8/2013	WEST	411 WAVERLEY OAKS ROAD, 100' EAST OF UPTON	0	1	0	RE	DRY	CLOUDY	DAYLIGHT	1412	WEDNESDAY
,	1000000107	2	0/0/2010	WEST	ROAD	0	0	0	IXL	DICI	CLOODI	D/ (TEIOTTI	1-112	TTEDITESDITI
10	1300000512	1	5/17/2013	SOUTH	502 WAVERLY OAKS ROAD,140' SOUTHWEST OF	0	0	0	RE	DRY	CLEAR	DAYLIGHT	1644	FRIDAY
		2	-,,	SOUTH	SHIRLEY ROAD	0	0	0						
11	1300001051	1	10/2/2013	SOUTH	530 WAVERLEY OAKS ROAD, 400' SOUTH OF WAVERLEY	0	0	0	RE	DRY	CLEAR	DAYLIGHT	1532	WEDNESDAY
		2		SOUTH	OAKS ROAD AND TRAPELO ROAD	0	0	0						
12	1300001056	1	10/4/2013	WEST	433 7447 (EDIEV OAKS DOAD 4001 FAST OF CHARE	0	1	0	RE	WET	CLOUDY	DAYLIGHT	1422	FRIDAY
		2		WEST	411 WAVERLEY OAKS ROAD, 400' EAST OF CHAPEL ROAD	0	1	0						
		3		WEST	KOAD	0	0	0						
13	1300001079	1	10/12/2013	WEST	360 WAVERLEY OAKS ROAD, 340' EAST OF CHAPEL	0	1	0	Α	DRY	CLOUDY	DAYLIGHT	1213	SATURDAY
		2		WEST	ROAD	0	0	0						
		3		EAST		O/P	1	0						
14	1300001128	1	10/27/2013	EAST	411 WAVERLEY OAKS ROAD, 100' EAST OF UPTON	O/P	0	0	Α	DRY	CLEAR	DARK-LIGHTED	1824	SUNDAY
		2		WEST	ROAD	O/P	0	0						
15	1300001130	1	10/28/2013	WEST	307 WAVERLEY OAKS ROAD, 30' WEST OF CHAPEL	O/P	0	0	RE	DRY	CLEAR	DAYLIGHT	1343	MONDAY
		2		WEST	ROAD	0	0	0						
16	1300001369	1	12/18/2013	WEST	411 WAVERLEY OAKS ROAD, 100' EAST OF UPTON	0	0	0	НО	WET	CLEAR	DAYLIGHT	1550	WEDNESDAY
1.7	1300001370	2	10/10/0012	EAST	ROAD 411 WAVERLEY OAKS ROAD, 100' EAST OF UPTON	O/P	0	0	RE	VA/ET	CLEAR	DUSK	1622	VA/EDNIECDAY
17	1300001370	2	12/18/2013	WEST WEST	411 WAVERLEY OAKS ROAD, 100 EAST OF UPTON ROAD	0	0	0	KE	WET	CLEAR	DUSK	1622	WEDNESDAY
18	1400000282	Z	3/19/2014	WEST	KOAD	0	0	0	RE	DRY	CLEAR	DAYLIGHT	0911	WEDNESDAY
10	1400000262	2	3/19/2014	WEST	355 WAVERLEY OAKS ROAD, 220' EAST OF CHAPEL	0	0	0	NL	DKI	CLLAN	DATEIGITI	0911	WEDINESDAT
		3		WEST	ROAD	0	0	0						
19	1400000490	1	5/14/2014	SOUTH	271 WAVERLEY OAKS ROAD, 400' SOUTHWEST OF	0	0	0	RE	DRY	CLOUDY	DAYLIGHT	1019	WEDNESDAY
· · · · ·	1-100000470	2	5,1-1,2014	SOUTH	CHAPEL ROAD	0	0	0	IXE	טוו	250001	DATEOTT	1017	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
20	1400000575	1	6/6/2014	EAST	411 WAVERLEY OAKS ROAD, 100' EAST OF UPTON	O/P	0	0	A	DRY	CLEAR	DAYLIGHT	0810	FRIDAY
20		2	3, 0, 20.1	NORTH	ROAD	0	0	0	, · ·	5111	OLL, III	37.112.01.11	00.0	
21	1400000975	1	10/9/2014	SOUTH		0	0	0	RE	DRY	CLEAR	DAYLIGHT	1719	THURSDAY
		2		SOUTH	271 WAVERLEY OAKS ROAD, 600' NORTH OF BEAVER	O/P	0	0						
		3		SOUTH	STREET	0	0	0						

Project: Traffic Impact Analysis Waltham High School

Waltham, Massachusetts


BAI Project No. 216023

Crash Data for the Years 2013, 2014, 2015, 2016

Crash No.	Report No.	Vehicle No.	Date	Direction of Travel*	Intersection/Crash Location	Person No.	No. of Injuries	Fatalities	Accident Type	Pavement Condition	Weather	Lighting	Military Time	Day
22	1400001227	1	12/12/2014	NORTH	411 WAVERLEY OAKS ROAD, 100' EAST OF UPTON	0	1	0	А	DRY	CLEAR	DARK-LIGHTED	1747	FRIDAY
		2		EAST	ROAD	0	0	0						
23	1500000034	1	1/9/2015	WEST	411 WAVERLEY OAKS ROAD, 400' EAST OF CHAPEL	0	0	0	RE	DRY	CLEAR	DAYLIGHT	1556	FRIDAY
		2		WEST	ROAD	O/P	1	0						
24	1500000098	1	1/24/2015	WEST	510 WAVERLEY OAKS ROAD, 50' SOUTHWEST OF SHIRLEY ROAD	O/2P	0	0	ОВЈ	SNOW	SNOW	DAYLIGHT	0956	SATURDAY
25	1500000306	1	3/5/2015	WEST	411 WAVERLEY OAKS ROAD, 400' EAST OF CHAPEL ROAD	0	1	0	PED	DRY	CLEAR	DARK-LIGHTED	1825	THURSDAY
26	1500000358	1	3/24/2015	EAST	411 WAVERLEY OAKS ROAD, 400' EAST OF CHAPEL ROAD	0	0	0	DEER	DRY	CLEAR	DAWN	0610	TUESDAY
27	1500000578	1	6/1/2015	NORTH	271 WAVERLEY OAKS ROAD, 400' SOUTHWEST OF	0	0	0	RE	WET	CLOUDY	DAYLIGHT	1159	MONDAY
		2		NORTH	CHAPEL ROAD	0	0	0						
		3		NORTH	CHAPEL ROAD	0	0	0						
28	1500000769	1	7/19/2015	SOUTH	Intersection of waverley oaks road and trapelo road	O/P	1	0	ОВЈ	DRY	CLEAR	DAYLIGHT	1027	SUNDAY
29	1500000822	1	8/4/2015	WEST	319 WAVERLEY OAKS ROAD AT CHAPEL ROAD	0	0	0	SW	WET	CLEAR	DAYLIGHT	1643	TUESDAY
		2		WEST	319 WAVERLEY OAKS ROAD AT CHAPEL ROAD	0	0	0						
30	1500001255	1	12/2/2015	WEST	307 WAVERLEY OAKS ROAD, 30' WEST OF CHAPEL	0	0	0	RE	WET	RAIN	DAYLIGHT	1121	WEDNESDAY
		2		WEST	ROAD	0	0	0						
31	1500001335	1	12/18/2015	WEST	307 WAVERLEY OAKS ROAD, 30' WEST OF CHAPEL	0	0	0	Α	DRY	CLOUDY	DAYLIGHT	1710	FRIDAY
		2		EAST	ROAD	0	0	0						
32	1500001336	1	12/16/2015	WEST	411 WAVERLEY OAKS ROAD, 400' EAST OF CHAPEL ROAD	0	0	0	OBJ	DRY	CLOUDY	DAYLIGHT	1243	WEDNESDAY
33	1500001377	1	12/29/2015	SOUTH	412 WAVERLEY OAKS ROAD, 400' WEST OF UPTON	0	0	0	А	WET	RAIN	DAYLIGHT	1249	TUESDAY
		2		WEST	ROAD	0	0	0						
34	1600000087	1	1/26/2016	WEST	355 WAVERLEY OAKS ROAD, 220' EAST OF CHAPEL	0	0	0	RE	WET	CLOUDY	DAYLIGHT	0953	TUESDAY
		2		WEST	ROAD	0	0	0						
		3		WEST		0	0	0						
35	1600000253	1	3/16/2016	PARKED	271 WAVERLEY OAKS ROAD, 600' NORTH OF BEAVER	0	0	0	SW	DRY	CLOUDY	DAYLIGHT	1214	WEDNESDAY
		2		SOUTH	STREET	0	0	0						
36	1600000315	1	4/4/2016	WEST	307 WAVERLEY OAKS ROAD, 30' WEST OF CHAPEL ROAD	0	0	0	ОВЈ	SNOW	SNOW	DAYLIGHT	0904	MONDAY
37	1600000396	1	4/27/2016	WEST	411 WAVERLEY OAKS ROAD, 100' EAST OF UPTON	O/2P	0	0	А	DRY	CLEAR	DARK-LIGHTED	2108	WEDNESDAY
-		2		SOUTH	ROAD	0	0	0						
38	1600000570	1	6/20/2016	WEST	411 WAVERLEY OAKS ROAD, 100' EAST OF UPTON	0	0	0	Α	DRY	CLEAR	DAYLIGHT	1626	MONDAY
		2		WEST	ROAD	0	0	0						
39	1600000682	1	7/20/2016	EAST		0	0	0	RE	DRY	CLEAR	DAYLIGHT	0922	WEDNESDAY
		2		EAST	PARKVIEW ROAD, 550' EAST OF CHAPEL ROAD	0	0	0						
		3		EAST		0	0	0						
						TOTAL	13	0						

APPENDIX D

Speed Data

04759Aspeed

Site Code: 216023

Transportation Data Corporation

Mario Perone, mperone1@verizon.net tel (781) 587-0086 cell (781) 439-4999

Waverley Oaks Road (Route 60) west of Chapel Road

City, State: Waltham, MA Client: Bryant/T. Brayton

Eastbound

	<u>-asibouri</u>	u													
	Start	1	16	21	26	31	36	41	46	51	56	61	66	71	
_	Time	15	20	25	30	35	40	45	50	55	60	65	70	75	Total
	09/28/16	0	0	0	3	14	9	4	1	0	0	0	0	0	31
	01:00	0	0	0	2	2	3	1	1	0	0	0	0	0	9
	02:00	0	0	0	1	6	5	2	1	0	0	0	0	0	15
	03:00	0	0	0	1	4	4	1	1	1	0	0	0	0	12
	04:00	0	0	0	1	6	10	7	2	1	0	0	0	0	27
	05:00	0	1	1	8	44	35	15	3	0	1	0	0	0	108
	06:00	6	2	22	48	111	90	24	3	0	0	0	0	0	306
	07:00	21	11	65	102	175	108	30	3	0	0	0	0	0	515
	08:00	35	48	120	199	152	73	17	2	0	0	0	0	0	646
	09:00	31	29	70	133	130	89	15	1	0	0	0	0	0	498
	10:00	9	2	24	71	141	108	22	3	0	0	0	0	0	380
	11:00	10	3	19	66	136	103	23	5	0	0	0	0	0	365
	12 PM	14	18	36	73	168	107	18	7	1	0	0	0	0	442
	13:00	17	10	21	99	132	111	24	3	0	0	0	0	0	417
	14:00	15	1	22	81	188	116	33	4	1	0	0	0	0	461
	15:00	24	2	20	102	222	135	34	2	2	0	1	0	0	544
	16:00	40	16	41	119	223	150	18	1	2	1	0	0	0	611
	17:00	36	8	45	155	286	102	9	1	0	0	0	0	0	642
	18:00	28	5	26	117	233	81	25	1	0	0	0	1	0	517
	19:00	8	2	19	60	123	92	23	3	0	0	0	0	0	330
	20:00	4	1	6	33	106	73	21	1	1	0	0	0	0	246
	21:00	1	0	1	17	89	51	12	2	0	0	0	0	0	173
	22:00	1	0	3	15	47	42	18	2	0	0	0	0	0	128
	23:00	1	1	0	7	18	27	13	1	0	0	0	0	0	68
_	Total	301	160	561	1513	2756	1724	409	54	9	2	11	11	0	7491
	Percent	4.0%	2.1%	7.5%	20.2%	36.8%	23.0%	5.5%	0.7%	0.1%	0.0%	0.0%	0.0%	0.0%	

Daily 15th Percentile: 25 MPH

50th Percentile: 32 MPH 85th Percentile: 38 MPH 95th Percentile: 41 MPH

 Mean Speed(Average):
 32 MPH

 10 MPH Pace Speed:
 31-40 MPH

 Number in Pace:
 4480

 Percent in Pace :
 59.8%

 Number of Vehicles > 35 MPH :
 2200

 Percent of Vehicles > 35 MPH :
 29.4%

Grand 301 160 561 1513 2756 1724 409 54 9 2 1 1 0 7491 Total

Overall 15th Percentile : 25 MPH 50th Percentile : 32 MPH 50th Percentile : 32 MPH

Percent of Vehicles > 35 MPH:

85th Percentile: 32 MPH 95th Percentile: 38 MPH 95th Percentile: 41 MPH

29.4%

 Mean Speed(Average):
 32 MPH

 10 MPH Pace Speed:
 31-40 MPH

 Number in Pace:
 4480

 Percent in Pace:
 59.8%

 Number of Vehicles > 35 MPH:
 2200

04759Aspeed

Transportation Data Corporation

Mario Perone, mperonel@verizon.net tel (781) 587-0086 cell (781) 439-4999

Waverley Oaks Road (Route 60) west of Chapel Road

Client: Bryant/T. Brayton

Site Code: 216023 City, State: Waltham, MA

Westbour	nd	· , · · ·												
Start	1	16	21	26	31	36	41	46	51	56	61	66	71	
Time	15	20	25	30	35	40	45	50	55	60	65	70	75	Total
09/28/16	0	0	0	3	6	8	19	0	1	0	0	0	0	37
01:00	0	0	0	1	7	7	2	0	1	0	0	0	0	18
02:00	1	0	0	0	5	4	0	0	0	0	0	0	0	10
03:00	0	0	0	0	2	4	2	0	0	1	0	0	0	9
04:00	0	0	1	1	7	9	11	2	0	0	0	0	0	31
05:00	0	0	1	0	7	23	25	3	2	0	1	0	0	62
06:00	10	0	3	5	46	119	47	7	1	1	1	0	0	240
07:00	23	2	11	35	123	216	66	7	0	0	0	0	0	483
08:00	31	3	15	77	175	170	33	2	0	0	0	0	0	506
09:00	23	3	27	112	163	140	29	3	0	0	0	0	0	500
10:00	15	0	7	41	103	139	51	6	0	0	0	0	0	362
11:00	5	0	9	21	106	181	58	5	1	0	0	0	0	386
12 PM	17	0	12	48	148	188	42	6	0	0	0	0	0	461
13:00	13	1	14	35	136	159	36	1	2	0	0	0	0	397
14:00	11	2	9	26	128	203	49	5	0	0	1	0	0	434
15:00	33	2	25	56	177	226	59	2	0	0	1	0	0	581
16:00	31	6	25	105	204	217	45	4	0	0	0	0	1	638
17:00	44	4	37	127	248	175	30	4	0	1	0	1	0	671
18:00	28	5	17	77	222	216	37	5	0	0	1	0	0	608
19:00	5	1	6	20	150	158	41	4	0	0	0	0	0	385
20:00	4	1	5	8	69	107	43	5	1	0	0	0	0	243
21:00	2	1	2	11	45	94	22	3	0	0	0	0	0	180
22:00	0	0	0	6	30	67	22	3	0	1	0	0	0	129
23:00	0	11	0	1	21	45	17	3	1	0	0	0	0	89
Total	296	32	226	816	2328	2875	786	80	10	4	5	1	1	7460
Percent	4.0%	0.4%	3.0%	10.9%	31.2%	38.5%	10.5%	1.1%	0.1%	0.1%	0.1%	0.0%	0.0%	

Daily 15th Percentile: 28 MPH

50th Percentile: 35 MPH 85th Percentile: 39 MPH 95th Percentile: 43 MPH

Mean Speed(Average) : 10 MPH Pace Speed : 34 MPH 31-40 MPH Number in Pace : 5203

Percent in Pace : 69.7% Number of Vehicles > 35 MPH: 3762 Percent of Vehicles > 35 MPH: 50.4%

Grand 296 32 226 2328 786 5 1 1 7460 Total

43 MPH

28 MPH Overall 15th Percentile: 50th Percentile: 35 MPH 85th Percentile: 39 MPH

> Mean Speed(Average): 34 MPH 10 MPH Pace Speed: 31-40 MPH Number in Pace : 5203

69.7% Percent in Pace : Number of Vehicles > 35 MPH: 3762 Percent of Vehicles > 35 MPH: 50.4%

95th Percentile:

04759Avolume

Site Code: 216023

Transportation Data Corporation

Mario Perone, mperone1@verizon.net tel (781) 587-0086 cell (781) 439-4999

Waverley Oaks Road (Route 60) west of Chapel Road City, State: Waltham, MA

Client: Bryant/T. Brayton

15 7 3 6 2 2 2 2 3 7 2 5 1 3 3 4 4 2 4 6 7 10 10 10 10 10 10 10 10 10 10 10 10 10	7 121 3 123 6 116 2 108 2 112 2 104 3 93 7 117 2 114 5 111 1 120 3 150 3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35	13 5 10 9 9 1 4 4 3 4 1 2 0 3 2 4 0 8 8 15 9	103 141 116 101 114 83 104 96 98 121 103 112 136 139 147 160 153 150	. A.M 28 12 13 15 11 3 6 7 10 6 6 3 3 6 6 4 14	186 262 239 217 222 195 208 189 215 235 214 232 286 276 269 295 299	Thu	* * * * * * * * * * * * *	. P.M. * * * * * * * * * * * * * * * * * *	A.M * * * * * * * * * * * * *	. P.M. * * * * * * * * * * * * *	A.M. * * * * * * * * * * * * *	P.M. * * * * * * * * * * * * *
7 3 6 2 2 2 3 7 2 5 1 3 3 4 4 6 6 7 10 10 16 16 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	7 121 3 123 6 116 2 108 2 112 2 104 3 93 7 117 2 114 5 111 1 120 3 150 3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 167	5 10 9 9 1 4 4 3 4 1 2 0 3 2 4 0 8 8 15 9	141 116 101 114 83 104 96 98 121 103 112 136 139 147 160 153 150	12 13 15 11 3 6 7 10 6 3 3 3 6 6	262 239 217 222 195 208 189 215 235 214 232 286 276 269 295		* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * * * * *
3 6 2 2 2 3 7 2 5 1 3 3 4 4 6 6 7 10 16	3 123 6 116 2 108 2 112 2 104 3 93 7 117 2 114 5 111 1 120 3 150 3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 167	10 9 9 1 4 4 3 4 1 2 0 3 2 4 0 8 8 15 9	116 101 114 83 104 96 98 121 103 112 136 139 147 160 153 150	13 15 11 3 6 7 10 6 6 3 3 6 6	239 217 222 195 208 189 215 235 214 232 286 276 269 295 299		* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * *	******
6 2 2 2 3 3 7 7 2 2 5 5 1 3 3 4 4 6 6 7 10 16 25	6 116 2 108 2 112 2 104 3 93 7 117 2 114 5 111 1 120 3 150 3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 167	9 9 1 4 4 3 4 1 2 0 3 2 4 0 8 8 15 9 6	101 114 83 104 96 98 121 103 112 136 139 147 160 153 150	15 11 3 6 7 10 6 3 3 6 6 6	217 222 195 208 189 215 235 214 232 286 276 269 295 299		* * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * *	***
2 2 3 7 2 5 1 3 3 4 2 4 6 6 7 10 16	2 108 2 112 2 104 3 93 7 117 2 114 5 111 1 120 3 150 3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 164	9 1 4 3 4 1 2 0 3 2 4 0 8 8 15 9 6	114 83 104 96 98 121 103 112 136 139 147 160 153 150	11 3 6 7 10 6 3 3 6 6 6	222 195 208 189 215 235 214 232 286 276 269 295 299		* * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * *	* * * * * * * * *	t t t t t t
2 2 3 7 2 5 1 3 3 4 2 4 6 6 7 10 16	2 108 2 112 2 104 3 93 7 117 2 114 5 111 1 120 3 150 3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 164	1 4 4 3 4 1 2 0 3 2 4 0 8 8 15 9	114 83 104 96 98 121 103 112 136 139 147 160 153 150	11 3 6 7 10 6 3 3 6 6 6	222 195 208 189 215 235 214 232 286 276 269 295 299		* * * * * * * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * *	t t t t t t
2 2 3 7 2 5 1 3 3 4 2 4 6 7 10 16	2 112 2 104 3 93 7 117 2 114 5 111 1 120 3 150 3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 164	4 4 3 4 1 2 0 3 2 4 0 8 8 8 15 9	104 96 98 121 103 112 136 139 147 160 153 150 172 164	3 6 7 10 6 6 3 3 6 6 6	208 189 215 235 214 232 286 276 269 295 299		* * * * * * * * *	* * * * * * * *	* * * * * *	* * * * * * *	* * * * * *	4 4 4 4
2 3 7 2 5 1 3 4 2 4 6 7 10 16 25	2 104 3 93 7 117 2 114 5 111 1 120 3 150 3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 164	4 4 3 4 1 2 0 3 2 4 0 8 8 8 15 9	104 96 98 121 103 112 136 139 147 160 153 150 172 164	6 7 10 6 6 3 3 6 6 6	208 189 215 235 214 232 286 276 269 295 299		* * * * * * * *	* * * * * * * *	* * * * *	* * * * * *	* * * * * *	t t t
3 7 2 5 1 3 3 4 2 4 6 7 10 16	3 93 7 117 2 114 5 111 1 120 3 150 3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 164	4 3 4 1 2 0 3 2 4 0 8 8 8 15 9	96 98 121 103 112 136 139 147 160 153 150	7 10 6 6 3 3 6 6 6	189 215 235 214 232 286 276 269 295 299		* * * * *	* * * * * *	* * * *	* * * *	* * * *	1
7 2 5 1 3 3 4 2 4 6 7 10 16 25	7 117 2 114 5 111 1 120 3 150 3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 164	3 4 1 2 0 3 2 4 0 8 8 15 9	98 121 103 112 136 139 147 160 153 150	10 6 6 3 3 6 6 6	215 235 214 232 286 276 269 295 299		* * * *	* * * *	* * * *	* * *	* * *	,
2 5 1 3 3 4 2 4 6 7 10 16 25	2 114 5 111 1 120 3 150 3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 164	4 1 2 0 3 2 4 0 8 8 15 9	121 103 112 136 139 147 160 153 150	6 6 3 3 6 6 6 4	235 214 232 286 276 269 295 299		* * *	* *	* *	* *	* *	1
5 1 3 3 4 2 4 6 7 10 16 25	5 111 1 120 3 150 3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 164	1 2 0 3 2 4 0 8 8 15 9	103 112 136 139 147 160 153 150	6 3 3 6 6 6 4	214 232 286 276 269 295 299		* *	* *	*	*	*	1
1 3 3 4 2 4 6 7 10 16 25	1 120 3 150 3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 164	2 0 3 2 4 0 8 8 15 9	112 136 139 147 160 153 150 172 164	3 3 6 6 6 4	232 286 276 269 295 299		* *	* *	*	*	*	
3 3 4 2 4 6 7 10 16 25	3 150 3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 164	0 3 2 4 0 8 8 15 9	136 139 147 160 153 150 172 164	3 6 6 6	286 276 269 295 299		*	*	*	*		
3 4 2 4 6 7 10 16 25	3 137 4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 164	3 2 4 0 8 8 15 9	139 147 160 153 150 172 164	6 6 6 4	276 269 295 299		*	*				
4 2 4 6 7 10 16 25	4 122 2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 164	2 4 0 8 8 15 9	147 160 153 150 172 164	6 6 4	269 295 299				•		*	,
2 4 6 7 10 16 25	2 135 4 146 6 152 7 160 10 154 16 137 25 167 35 164	4 0 8 8 15 9	160 153 150 172 164	6 4	295 299		*		*	*	*	,
4 6 7 10 16 25	4 146 6 152 7 160 10 154 16 137 25 167 35 164	0 8 8 15 9	153 150 172 164	4	299				*			,
6 7 10 16 25	6 152 7 160 10 154 16 137 25 167 35 164	8 8 15 9	150 172 164				*	*		*	*	
7 10 16 25	7 160 10 154 16 137 25 167 35 164	8 15 9 6	172 164	14			*	*	*	*	*	1
10 16 25	10 154 16 137 25 167 35 164	15 9 6	164		302		*	*	*	*	*	,
16 25	16 137 25 167 35 164	9 6	-	15	332		*	*	*	*	*	,
25	25 167 35 164	6		25	318		*	*	*	*	*	,
	35 164		181	25	318		*	*	*	*	*	1
	35 164		174	31	341		*	*	*	*	*	,
აა		14	164	49	328		*	*	*	*	*	1
32		33	153	65	328		*	*	*	*	*	1
44	44 158	43	198	87	356		*	*	*	*	*	1
68		52	142	120	274		*	*	*	*	*	1
79		63	135	142	272		*	*	*	*	*	,
115		82	133	197	223		*	*	*	*	*	y.
111		109	132	220	218		*	*	*	*	*	,
118		117	86	235	172		*	*	*	*	*	4
121		123	89	244	182		*	*	*	*	*	,
165		134	79	299	144		*	*	*	*	*	,
			-				*	*	*	*	*	,
145		132	55	277	131				*	*	*	
154		120	77	274	149		*	*	*	*	*	,
157		132	45	289	98		*	*	*	*	*	,
190		122	66	312	111							
149		136	41	285	93		*	*	*	*	*	,
113		136	41	249	86		*	*	*	*	*	1
120		126	50	246	97		*	*	*	*	*	,
117		102	49	219	78		*	*	*	*	*	
102		119	39	221	74		*	*	*	*	*	
102	02 35	82	30	184	65		*	*	*	*	*	•
106	06 26	75	33	181	59		*	*	*	*	*	
70		86	27	156	59		*	*	*	*	*	
	84 21	91	27	175	48		*	*	*	*	*	
84		93	29	175	47		*	*	*	*	*	
		99	19	198	35		*	*	*	*	*	
82		104	14	205	27		*	*	*	*	*	
82 99		2645	4821	5559	9404		0	0	0	0	0	(
82 99 101	7/07											,
82 99 101 2914				,-	1303						U	
82 99 101 2914	,,,, 50.076	11.1/0	JZ.Z /0				0.070	0.070	0.070	0.070		
82 99 101 2914	45 05 45	08.30	04.20	08.15	05:15							
82 99 101 2914 19.5%	1h (1h-14E					-	-	-	-	-	-	
82 99 101 2914 19.5% 08:15						-	-	-	-	-	-	
82 99 101 2914 19.5% 08:15 650	50 664	0.967	0.954	0.929	0.950							
	19.5	7497 19.5% 30.6% 08:15 05:15	7497 7 19.5% 30.6% 17.7% 08:15 05:15 08:30 650 664 526 0.855 0.949 0.967	7497 7466 19.5% 30.6% 17.7% 32.2% 08:15 05:15 08:30 04:30 650 664 526 691 0.855 0.949 0.967 0.954	7497 7466 14 19.5% 30.6% 17.7% 32.2% 08:15 05:15 08:30 04:30 08:15 650 664 526 691 1160 0.855 0.949 0.967 0.954 0.929	7497 7466 14963 19.5% 30.6% 17.7% 32.2% 08:15 05:15 08:30 04:30 08:15 05:15 650 664 526 691 1160 1353 0.855 0.949 0.967 0.954 0.929 0.950	7497 7466 14963 19.5% 30.6% 17.7% 32.2% 08:15 05:15 08:30 04:30 08:15 05:15 - 650 664 526 691 1160 1353 - 0.855 0.949 0.967 0.954 0.929 0.950	7497 7466 14963 19.5% 30.6% 17.7% 32.2% 0.0% 08:15 05:15 08:30 04:30 08:15 05:15 - - 650 664 526 691 1160 1353 - -	7497 7466 14963 0 19.5% 30.6% 17.7% 32.2% 0.0% 08:15 05:15 08:30 04:30 08:15 05:15 - - - 650 664 526 691 1160 1353 - - - 0.855 0.949 0.967 0.954 0.929 0.950	7497 7466 14963 0 19.5% 30.6% 17.7% 32.2% 0.0% 0.0% 0.0% 0.0% 08:15 05:15 08:30 04:30 08:15 05:15 -	7497 7466 14963 0 0 19.5% 30.6% 17.7% 32.2% 0.0% 0.0% 0.0% 0.0% 08:15 05:15 08:30 04:30 08:15 05:15 - - - - - 650 664 526 691 1160 1353 - - - - -	7497 7466 14963 0 0 0 0 19.5% 30.6% 17.7% 32.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 08:15 05:15 08:30 04:30 08:15 05:15 -

04759Avolume Site Code: 216023

Transportation Data Corporation

Mario Perone, mperone1@verizon.net tel (781) 587-0086 cell (781) 439-4999

Waverley Oaks Road (Route 60) west of Chapel Road City, State: Waltham, MA

Client: Bryant/T. Brayton

Start	28-Sep-16	EB		Hour	Totals	WB		Hour	Totals	Combined	Totals
Time	Wed	Morning Af	ternoon		Afternoon	Morning A	fternoon		Afternoon	Morning A	Afternoon
12:00		15	83	•		13	103	•			
12:15		7	121			5	141				
12:30		3	123			10	116				
12:45		3 6	116	31	443	9	101	37	461	68	904
01:00		2 2	108			9	114				
01:15		2	112			1	83				
01:30		2 3	104			4	104				
01:45		3	93	9	417	4	96	18	397	27	814
02:00		7	117			3	98				
02:15		2	114			4	121				
02:30		5	111			1	103				
02:45		1	120	15	462	2	112	10	434	25	896
03:00		3	150			0	136				
03:15		3	137			3	139				
03:30		4	122			2	147				
03:45		4 2	135	12	544	4	160	9	582	21	1126
04:00		4	146			0	153	•			•
04:15		6	152			8	150				
04:30		7	160			8	172				
04:45		10	154	27	612	15	164	31	639	58	1251
05:00		16	137		012	9	181	01	000	00	1201
05:15		25	167			6	174				
05:30		35	164			14	164				
05:45		32	175	108	643	33	153	62	672	170	1315
06:00		44	158	100	043	43	198	02	072	170	1313
06:00		68	132			52	142				
06:13		79					135				
		19	137	200	F47	63 82	133	240	000	F.4C	4405
06:45		115	90	306	517		133	240	608	546	1125
07:00		111 118	86			109	132				
07:15		118	86			117	86				
07:30		121	93	E45	000	123	89	400	000	000	740
07:45		165	65	515	330	134	79	483	386	998	716
08:00		145	76			132	55				
08:15		154	72			120	77				
08:30		157	53	0.10	0.40	132	45	=00	0.40	4450	400
08:45		190	45	646	246	122	66	506	243	1152	489
09:00		149	52			136	41				
09:15		113	45			136	41				
09:30		120	47			126	50				
09:45		117	29	499	173	102	49	500	181	999	354
10:00		102	35			119	39				
10:15		102	35			82	30				
10:30		106	26			75	33				
10:45		70	32	380	128	86	27	362	129	742	257
11:00		84	21			91	27				
11:15		82	18			93	29				
11:30		99	16			99	19				
11:45		101	13	366	68	104	14	387	89	753	157
Total		2914	4583			2645	4821			5559	9404
Combined		7497				7466				14963	3
Total		1431				7-100				14300	,
Percentag	0.0%										
e	0.070										
Total		2914	4583			2645	4821			5559	9404
Percent		38.9%	61.1%			35.4%	64.6%			37.2%	62.8%
ADT	ΑD	OT 14,963	AA	DT 14,963							

APPENDIX E

Supplemental Plans

TRAFFIC SIGNAL PLAN LOCATION: TRAPELO ROAD AT CITY OF WALTHAM WAVERLEY OAKS ROAD TRAFFIC COMMISSION DATE APPROVED: PERMIT NO. B-1342 DATE APPROVED: 8/12/75 ROAD TRAPELO SERVICE CONNECTION

CITY OF WALTHAM TRAFFIC COMMISSION

TRAFFIC SIGNAL SEQUENCE AND TIMING CHART

													SIGN	NAL #	! T-1	1	RE	VISIO	N # 1
INTERSECTION OF: TRAPELO RD. &	WAVF	RLEY OAKS	RD.					SYS	STEM	NAME	: NOI			142.0	PRE	EMPT:	NON	Ε	
MODE: PRE-TIMED [], FULLY-AC	T [XX], SEMI-AC	TC [], P	PED.	PB [X	(X]	CO	ORDIN	ATION	: WIR	RΕ [], T	BCU					H.S.
		SE NO.→		Ø 1			Ø 2)		8	3		0 4	1			T		FLASH
STREET NAMES	DIR.	HOUSING	1	2	3	4	5	6	7	8	9	10	11	12					
TRAPELO ROAD	WB	A, B, C	GV	GV	GV	GV	Y 4	R	R	R	R	R	R	R		-			Y
TRAPELO ROAD	WB	D	GL	YL	RL	RL	RL	RL	RL	RL	RL	RL	RL	RL	<u> </u>				Y
TRAPELO ROAD	EB	E, F, G	R	R	R	G	Υ	R	R	R	R	R	R	R		-			Y
WAVERLEY OAKS ROAD	NB	Н, Ј	R	R	R	R	R	R	GL	Y	R	GL	Y	R					R
WAVERLEY OAKS ROAD	NB	K, L	G	G 3	G	G	G 3	G	G	g 3	R	R	R	R					Y
																二			
PED. XING WAVERLEY OAKS		R, S	DW	DW	DW	w/FDW	DW	DW	DW	DW	DW	DW	DW	DW					OUT
PED. XING WAVERLEY OAKS		T, U	DW	DW	DW	DW	DW	DW	DW	DW	DW	W/FDW	DW	DW			L		OUT
						Τι	IMING	IN S	SECON	DS							·		
INITIAL INTERVAL			4			8			3										
VEHICLE EXTENSION			2			2.5		l l	2										
MINIMUM GREEN																	-		1
MAXIMUM GREEN NO. 1						50			16		2								ł
MAXIMUM GREEN NO. 2															-			ļ	
OTHER INTERVAL		3	1 :	7/10	3	2		3	1	7/8	3	1		-			-		
RECALL			OFF			ON		1	OFF			OFF					L	L	

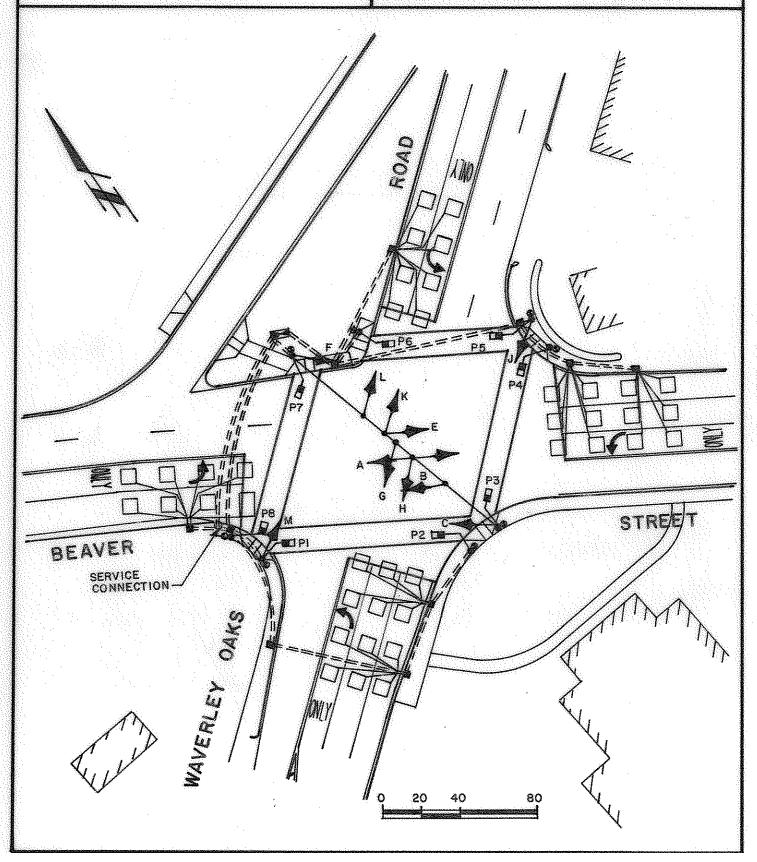
APPROVED BY TRAFFIC COMMISSION ON	CHANGES INSTALLED ON	PREPARED	BY:	JET	date	1/25/90
ATTEST:CLERK	CHANGES INSTALLED BY:					

NOTES: 1. Any phase not called will be skipped. Signal indications will not change if the assigned right of way does not change during the next phase called.

2. If a permissive turn phase follows a protected turn phase for the same approach then a green arrow must be cleared with a yellow arrow.

FILENAME: TRAWAVO1

^{3.} If phase 4 is next, G becomes Y.


^{4.} If going from phase 2 to phase 1, Y becomes GV.

TRAFFIC SIGNAL PLAN

CITY OF WALTHAM
TRAFFIC COMMISSION

LOCATION: BEAVER STREET AT WAVERLEY OAKS ROAD

DATE APPROVED: TC 4/17/90

CITY OF WALTHAM TRAFFIC COMMISSION

SIGNAL # B-4

TRAFFIC SIGNAL SEQUENCE AND TIMING CHART

. REVISION # 1

INTERSECTION OF: BEAVER S	STREET A	T WAVERLEY	OAKS F	ROAD (REVISEI	D)			***************************************			v Nami			PREEMP			
	SEMI-ACT	. [], FUL	Y-ACT.	[XX],	PED.	PB. [), DI	JAL SE	J. []	COORD	MOITANI	: WIR	E []		TBC	U[]	
draw heavy vertical lines between phases	PHASE	NO>	(1			Ф 2		(3		(þ 4	-				丟
STREET NAMES	DIR.	HOUSING	1	2	3	4	5	6	7	8	9	10	11	12				FLASH
BEAVER STREET	E. BD.	A	G	Y	R	G/QL	Y/YL	R	R	R	R	R	R	R				Y
BEAVER STREET	£. BO.	8,C	G	Y	R	G	Y	R	R	R	R	R	R	R				Y
BEAVER STREET	W. BO.	D,E,M	G	Y	R	R	R	R	R	R	R	R	R	R			-	Y
WAVERLEY OAKS ROAD	S. BD.	· · · · · · · · · · · · · · · · · · ·	R	R	R	R	R	R	G	Υ	R	G/QL	Y/YL	R				R
WAVERLEY OAKS ROAD	S. BO.	KT	R	R	R	R	R	R	C	Y	R	G	Y	R				R
WAVERLEY OAKS ROAD	N. BD.	F,G,H	R	R	R	R	R	R	G	Υ	R	R	R	R				R
																	}	
									TIM	NG IN	SECON	DS .						
INTIAL INTERVAL			8			2			8			2						
VEHICLE EXTENSION			2			2			2			2						
MINIMUM GREEN																		ONLY
MAXIMUM GREEN NO. 1			30			5			20			10						SAERGENCY ONLY
MAXIMUM GREEN NO. 2			40			15			25			10						WERGE
OTHER INTERVALS				3	2		3	2		3	2		3	2				
RECALL																		

NOTE: 1. Any Phase not called will be skipped. Signal indications will not change if the assigned right of way does not change during the next Phase called.

2. South BD. Waverley Oaks Road Fire Calls Phase 4; East BD. Beaver Street Fire Calls Phase 2.

4/17/90 date

CHANGES INSTALLED ON

3/27/90

PREPARED BY LMW

4/10/90

APPROVED BY TRAFFIC COMMISSION ON 4, ATTEST LEARN SLEEN LAND CLERK

BY GWC

filename: TIMSEQ\BEAVWAVR.DWG

COPIES: TR. COMMISSION

TRAFFIC ENG

Arrows

Phase Vehicle Basic Timing Data

Date 1/31/2008

Time 8:50:13

Other's Are Clearance

Intersection Name

BEAVER ST & WAVERLY OAKS

Source

Database

Phase	1	2	3	4	5	6	7	8
Minimum Green	2 Q	8	2 6	8	2 🤡	8	2 Ψ	8
Passage	1.52.0	2.0	1.5 3.0	2.0	1.5 2.0	2.0	1.5 20	2.0 1,5
Maximum 1	1615	36	16	18 20	16	36	16	22
Maximum 2	16	32	1620	18	16	32	16	22
Yellow Change	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Red Clearance	1.0	2.0	1.0	1.0	1.0	2.0	1.0	1.0

CALLOGRAM CHARLES AND AND AND AND ADDRESS OF THE PARTY OF								
Phase	9	10	11	12	13	14	15	16
Minimum Green	0	0	0	0	0	0	0	0
Passage	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum 1	0	0	0	0	0	0	0	0
Maximum 2	0	0	0	0	0	0	0	0
Yellow Change	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Red Clearance	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

640 George Washington Hwy Building C, Suite 100 Lincoln, RI 02865 401.722.7660

www.bryant-engrs.com

Revised January 3, 2017 November 7, 2016 BAI #216023

TO: Erin Prestileo, P.E.

SMMA

FROM: Todd E. Brayton, P.E.

REFERENCE: Waltham High School

Former Fernald School Campus

Waltham, Massachusetts Existing Traffic Conditions

This memorandum has been prepared at the request of Symmes Maini and McKee Associates, Inc. to summarize the existing traffic conditions in connection with its study of the proposed relocation of Waltham High School on Jack's Way to the former Fernald School campus on Chapel Road in Waltham, Massachusetts. The study analyzes the existing traffic that may be impacted by the proposed development of the site and discusses transportation impacts in the vicinity of the site.

Study Area

The project site is located within the southern portion of the former Fernald Campus which can be accessed by Chapel Road in Waltham, as shown in Figure No. 1.

General access will be off Waverley Oaks Road and will utilize an existing portion of Chapel Road for access to and from the site. Traffic volumes are high on Waverley Oaks Road, which is classified as an Urban Principal Arterial, as presented in the online Road Inventory Interactive Map, which is based on the Year-End 2014 Road Inventory File maintained by the Massachusetts Office of Transportation Planning. By definition, an arterial highway emphasizes a high level of mobility for through traffic while providing access to local roadways. Land use in the area is primarily residential and institutional.

A THE RESIDENCE AND A STATE OF THE PARTY OF

A secondary access may be developed off Trapelo Road, potentially using Cherry Lane. Cherry Lane is north of the proposed relocation site. Cherry Lane connects to Pine Street which intersects with Chapel Road.

Chapel Road and Waverley Oaks Road Intersection

Waverley Oaks Road at Chapel Road is a two-lane, two-way bituminous roadway, approximately 29 feet in width with one 13-foot northeast bound travel lane, one 14-foot southwest bound travel lane, and one-foot shoulders on both sides of the roadway. Waverley Oaks Road, west of Chapel Road, has bituminous sidewalk, utility poles, and granite curb on both sides of the roadway. Waverley Oaks Road, east of Chapel Road, has bituminous sidewalk and granite curb on the north side, and grass, granite curb, and utility poles on the south side of the roadway. The speed limit is posted at 35 mph on Waverley Oaks Road.

There are two roadways separated by a grassed island that connect Chapel Road with Waverley Oaks Road. On the north side of the island, the roadway is a two-lane, two-way bituminous roadway, approximately 18 feet in width. On the south side of the island, the roadway is a two-lane, two-way bituminous roadway, approximately 20 feet in width. Chapel Road to the northeast of its intersection with Waverley Oaks Road is a two-way bituminous roadway, approximately 28 feet in width that allows traffic to enter and exit the former Fernald School campus. There is a retaining wall on the east side and grass on the west side. The speed limit is not posted on Chapel Road in the vicinity of the intersection. Currently, Chapel Road is gated and does not allow access from Waverley Oaks Road.

Revised January 3, 2017 November 7, 2016 Page 3 of 9

Surrounding Intersections

The signalized intersection of Waverley Oaks Road and Trapelo Road is located to the northeast of the proposed school location. Waverley Oaks Road at its intersection with Trapelo Road is a two-lane, two-way bituminous roadway, approximately 46 feet in width consisting of one 20-foot southwest bound travel lane and one 16-foot northeast bound left turn lane, separated by a 6 foot grass median island with one-foot shoulders on both sides of the roadway and median. There is a channelized right turn lane for northeast bound traffic, which is approximately 18 feet wide with a one-foot left shoulder. The speed limit at the intersection is posted at 20 mph on Waverley Oaks Road. Waverley Oaks Road to the south of the intersection consists of a two-lane, two-way bituminous roadway, approximately 44 feet in width consisting of one 19-foot southwest bound travel lane, one 23-foot northeast bound travel lane, and one-foot shoulders on both sides of the roadway. There are concrete sidewalks, utility poles and granite curb on both sides of the roadway. The speed limit is posted at 35 mph on Waverley Oaks Road.

Trapelo Road to the west of its intersection with Waverley Oaks Road is a two-lane, two-way bituminous roadway, approximately 33 feet in width with one 16-foot eastbound travel lane, and one 17-foot westbound travel lane with no marked shoulders. Trapelo Road to the east of its intersection with Waverley Oaks Road is a three-lane, two-way bituminous roadway, approximately 35 feet in width with one 11-foot westbound left turn lane, one 12-foot westbound through travel lane, and one 12-foot eastbound travel lane with no marked shoulders. The speed limit is posted at 25 mph on Trapelo Road. There are concrete sidewalks, utility poles, and granite curb on the south side of the roadway. There is grass, guardrails, utility poles, and granite curb on the north side of the roadway.

The signalized intersection of Waverley Oaks Road and Beaver Street is located to the southwest of the proposed school location. To the north of the intersection Waverley Oaks Road is a three-lane, two-way bituminous roadway approximately 48 feet in width consisting of one 22-foot northeast bound travel lane, one 12-foot southwest bound left turn lane, one 12-foot southwest bound through lane and one-foot shoulders on both sides of the roadway. There is a channelized right turn lane for southwest bound traffic, which is approximately 19 feet wide with one-foot shoulders. To the south of the intersection Waverley Oaks Road is a four-lane, two-way bituminous roadway, approximately 60 feet in width consisting of one 20-foot southwest bound travel lane, one 11-foot northeast bound left turn lane, one 13-foot northeast bound shared through and right turn travel lane, one 14-foot northeast bound through travel lane, and one-foot shoulders on both sides of the roadway. There are bituminous sidewalks and granite curb on both sides of the roadway. The curb ramps and the walk through on the right turn channelizing island are concrete. There are utility poles on the south side of the roadway to the north of the intersection on Waverley Oaks Road. There are utility poles on both sides of the roadway to the south of the intersection on Waverley Oaks Road. The speed limit is posted at 35 mph on Waverley Oaks Road.

Beaver Street to the west of its intersection with Waverley Oaks Road is a four-lane, two-way bituminous roadway, approximately 53 feet in width with one 15-foot northwest bound travel lane, one 13-foot northwest bound travel lane, one 12-foot southeast bound left turn lane, one 11-foot

Revised January 3, 2017 November 7, 2016 Page 4 of 9

southeast bound shared through and right turn travel lane, and one-foot shoulders on both sides of the roadway. Beaver Street to the east of its intersection with Waverley Oaks Road is a four-lane, two-way bituminous roadway, approximately 52 feet in width with one 14-foot southeast bound travel lane, one 11-foot northwest bound left turn lane, one 12-foot northwest bound travel lane, one 13-foot northwest bound shared through and right turn travel lane, and one-foot shoulders on both sides of the roadway. The speed limit is not posted, however, there is a "thickly settled" warning sign with an advisory 30 mph warning sign. There are bituminous sidewalks and granite curb on the both sides of the roadway. There are utility poles on the south side of the roadway.

Data Collection

Traffic turning movement counts were conducted at the intersections of Waverley Oaks Road and Chapel Road, Waverley Oaks Road and Beaver Street, and Waverley Oaks Road and Trapelo Road, between the hours of 6:00 and 10:00 A.M. and 1:00 and 6:00 P.M. on September 28, 2016.

The A.M. peak hour and P.M. peak hour calculated in a previous traffic impact analysis for Waltham High School site were used to evaluate the impact of moving the school to the former Fernald School location. The calculated school A.M. peak hour is 7:00 to 8:00. The school P.M. peak hour is 2:00 to 3:00.

Pertinent field observations including location of existing utilities, posted speed limits, traffic control devices, etc. were made on October 3, 2016. Crash data for the period from January 1, 2013 through September 27, 2016 was obtained from the Waltham Police Department. In addition, traffic speed data using road tubes was acquired on Waverley Oaks Road in the vicinity of Chapel Road on September 28, 2016.

Existing Traffic Volumes

Existing traffic volumes for the study area were developed from traffic data obtained by Transportation Data Corporation (TDC).

The total 24-hour two-way traffic volume (from the road tube counts) on Waverley Oaks Road in the vicinity of Chapel Road is approximately 14,950 vehicles per day (vpd).

The school hours for the existing Waltham High School are from 7:30 A.M. to 2:00 P.M. The school A.M. peak hour, which as indicated previously occurred between 7:00 and 8:00, will be used for the analysis of the driveway and adjacent intersections. Waverley Oaks Road at Chapel Road has two-way traffic volume of 962 vehicles during this hour. The school P.M. peak hour was measured between 2:00 and 3:00. Waverley Oaks Road at Chapel Road has two-way traffic volume of 869 vehicles during this hour. There was no traffic on Chapel Road since it was gated and closed.

The two-way traffic volumes on Waverley Oaks Road and Trapelo Road were 382 vehicles and 1,314 vehicles respectively, during the school A.M. peak hour. The two-way traffic volumes on Waverley Oaks Road and Trapelo Road were 473 vehicles and 963 vehicles respectively, during the school P.M. peak hour.

Revised January 3, 2017 November 7, 2016 Page 5 of 9

The two-way traffic volumes on Waverley Oaks Road and Beaver Street were 751 vehicles and 1,321 vehicles respectively, during the school A.M. peak hour. The two-way traffic volumes on Waverley Oaks Road and Beaver Street were 645 vehicles and 1,025 vehicles respectively, during the school P.M. peak hour.

Capacity Analysis

Capacity analyses in this report focus on the peak hours of traffic volume for the high school because they represent the most critical periods for operations and have the highest capacity requirements. If traffic operates at acceptable levels of service during the peak hours, then it will operate at acceptable levels during the remaining hours of the day.

The intersection capacity analysis was prepared using the <u>Highway Capacity Manual</u> (HCM), 2010 edition, published by the Transportation Research Board. The analysis utilizes the concept of Level of Service. The term "level of service" is defined as a qualitative measure describing operational conditions within a traffic stream based on service measures such as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience. There are six levels of service utilized for the analysis. They are given letter designations from A to F, with Level of Service A representing the most favorable operating conditions and Level of Service F the least. Level of Service F is assigned to the movement if the volume-to-capacity ratio for the movement exceeds 1.0, regardless of the control delay. The level of service criteria for both unsignalized and signalized intersections is shown in Table No. 1.

The computer software, Synchro8, was utilized to perform the capacity analysis for the study area.

Table No. 1
Level of Service Criteria
Source: Highway Capacity Manual, 2010

Level Of	Average Total Dela	y (Second/Vehicle)
Service	Unsignalized Intersection	Signalized Intersection
Α	≤10	≤10
В	>10 and ≤15	>10 and ≤20
С	>15 and ≤25	>15 and ≤35
D	>25 and ≤35	>35 and ≤55
Е	>35 and ≤50	>55 and ≤80
F	>50	>80

Signalized intersection capacity analysis for the intersections of Waverley Oaks Road and Trapelo Road and Waverley Oaks Road and Beaver Street, was undertaken using the school A.M. and school P.M. peak hour traffic volumes under no-build conditions in 2016. A summary of the existing 2016 level of service for these intersections is shown in Table Nos. 2 and 3 for the school A.M. and school P.M. peak hour, respectively.

Table No. 2
School A.M. Peak Hour - Level of Service Summary
Signalized Intersections

0.9	Illersections
Intersection/ Critical Movement	Level of Service (Delay- Second/Vehicle) No-Build (2016)
Waverley Oaks Road/Trapelo Roa	\ /
Overall Intersection Northeast Bound Approach Northeast Bound Right Lane Eastbound Approach Westbound Approach Westbound Left Lane	C (27.0) E (62.0) A (4.8) D (46.6) A (2.6) C (30.4)
Waverley Oaks Road/Beaver Stree	
Overall Intersection Southwest Bound Approach Southwest Bound Left Lane Southwest Bound Right Lane Northeast Bound Approach Northeast Bound Left Lane Southeast Bound Approach Southeast Bound Left Lane Northwest Bound Approach Northwest Bound Left Lane	C (29.9) C (26.9) C (27.5) A (0.1) D (37.7) D (46.0) C (26.6) D (42.9) C (29.1) D (50.3)

Table No. 3
School P.M. Peak Hour - Level of Service Summary
Signalized Intersections

3	IIICIGOCIIOIIG
Intersection/ Critical Movement	Level of Service (Delay- Second/Vehicle) No-Build (2016)
Waverley Oaks Road/Trapelo Roa	\ /
Overall Intersection Northeast Bound Approach Northeast Bound Right Lane Eastbound Approach Westbound Approach Westbound Left Lane	C (25.2) E (66.6) A (1.4) D (52.6) A (3.3) B (19.7)
Waverley Oaks Road/Beaver Stree	et
Overall Intersection Southwest Bound Approach Southwest Bound Left Lane Southwest Bound Right Lane Northeast Bound Approach Northeast Bound Left Lane Southeast Bound Approach Southeast Bound Left Lane Northwest Bound Approach Northwest Bound Approach	C (27.2) C (25.6) D (39.3) A (0.1) C (34.1) D (43.9) C (25.2) D (38.7) C (25.3) D (47.7)

Revised January 3, 2017 November 7, 2016 Page 7 of 9

The signalized intersection capacity analysis shows that the intersection of Waverley Oaks Road and Trapelo Road operates at LOS C during the school A.M. peak hour and P.M. peak hour. The approaches/lanes operate at acceptable levels of service, with the exception of the northeast bound approach, which operates at LOS E during the A.M and P.M. peak hours.

The signalized intersection capacity analysis shows that the intersection of Waverley Oaks Road and Beaver Street operates at LOS C during the school A.M. peak hour and P.M. peak hour. Each of the approaches operates at an acceptable level of service.

Unsignalized intersection capacity analysis for the intersection of Waverley Oaks Road and Chapel Road was undertaken using the school A.M. and school P.M. peak hour traffic volumes under nobuild conditions in 2016. A summary of the existing 2016 level of service for this intersection is shown in Table Nos. 4 and 5 for the school A.M. and school P.M. peak hour, respectively. Since there were no turning vehicles, into or out or Chapel Road, there is no delay associated with the existing intersection.

Table No. 4
School A.M. Peak Hour - Level of Service Summary
Unsignalized Intersections

Intersection/ Critical Movement	Level of Service (Delay- Second/Vehicle) No-Build (2016) A.M.
Waverley Oaks Road/Chapel Road	d
Southeast bound Approach Northwest bound Approach	A (0.0) A (0.0)

Table No. 5
School P.M. Peak Hour - Level of Service Summary
Unsignalized Intersections

Intersection/ Critical Movement	Level of Service (Delay- Second/Vehicle)	
Cilical Movement	No-Build (2016) P.M.	
Waverley Oaks Road/Chapel Road	d	
Southeast bound Approach Northwest bound Approach	A (0.0) A (0.0)	

Safety Analysis

The geometric configurations of the intersections affected by traffic generated by the proposed improvements were examined with regard to safe stopping sight distance using principles presented in <u>A Policy on Geometric Design of Highways and Streets</u>, 2011, of the American Association of State Highway and Transportation Officials (AASHTO). AASHTO provides recommendations for necessary sight distance at intersections.

Revised January 3, 2017 November 7, 2016 Page 8 of 9

A design speed of 40 mph was utilized for Waverley Oaks Road in the vicinity of Chapel Road based on the observed 85th percentile speeds of 38 mph for the eastbound and 39 mph for the westbound traffic. The minimum safe stopping sight distance for roadways with a design speed of 40 mph is 305 feet, as required by AASHTO, Table 3-1. Stopping Sight Distance on Level Roadways, P. 3-4. The driveway will be evaluated for sight distance when the proposed driveway location is determined.

Crash History

Crash data for the study area was obtained from the Waltham Police Department for the period from January 1, 2013 through September 27, 2016. There were 39 crashes within the study area of the site, as shown in Table No. 6. Of the 39 crashes, two crashes occurred at the intersection of Chapel Road and Waverley Oaks Road. These crashes included one sideswipe crash and one rear-end crash. One of the crashes occurred on wet pavement, one with slush on pavement, and none of these crashes resulted in injury. In the data received, only one crash occurred at the intersection of Trapelo Road and Waverley Oaks Road and none occurred at the intersection of Beaver Street and Waverley Oaks Road. It is likely that the data received did not include all of the crashes at these locations.

Table No. 6
Summary of Crashes
Source: Waltham Police Department

Crash Location	January 1, 2013 through September 27, 2016
Intersection of Waverley Oaks Road and Chapel Road	2
Intersection of Waverley Oaks Road and Beaver Street	0
Waverley Oaks Road between Beaver Street and 307/309 Waverley Oaks Road Driveway	5
307/309 Waverley Oaks Road Driveway	6
Waverley Oaks Road between Chapel Road and 411 Waverley Oaks Road Southwest Driveway	3
411 Waverley Oaks Road Southwest Driveway	5
Waverley Oaks Road between 411Waverley Oaks Road Southwest and Northeast Driveway	2
411 Waverley Oaks Road Northeast Driveway	12
Waverley Oaks Road between 411 Waverley Oaks Road Northeast Driveway and Trapelo Road	3
Intersection of Waverley Oaks Road and Trapelo Road	1
TOTAL	39

Revised January 3, 2017 November 7, 2016 Page 9 of 9

There were five crashes on Waverley Oaks Road between Beaver Street and 307/309 Waverley Oaks driveway. These crashes included four rear-end crashes and one sideswipe crash. One of these crashes occurred on wet pavement and none of these crashes resulted in injury.

There were six crashes at the 307/309 Waverley Oaks Road driveway. These crashes included three rear-end crashes, one angle crash, and two involved hitting an object. Two of these crashes occurred on wet pavement, one with snow on the pavement, and none of these crashes resulted in injury.

There were three crashes on Waverley Oaks Road between Chapel Road and the 411 Waverley Oaks Road southwest driveway. These crashes included two rear-end crashes and one angle crash. One of these crashes occurred on wet pavement and one crash resulted in injury.

There were five crashes at the 411 Waverley Oaks Road southwest driveway. These crashes included two rear-end crashes, one crash involved hitting an object, one crash involved hitting a deer, and one crash involved hitting a pedestrian. One of these crashes occurred on wet pavement and three crashes resulted in injury.

There were two crashes on Waverley Oaks Road between the 411 Waverley Oaks Road southwest and northeast driveways. These crashes included one rear-end crash and one angle crash. One of these crashes occurred on wet pavement and none of these crashes resulted in injury.

There were twelve crashes at the 411 Waverley Oaks Road northeast driveway. These crashes included eight angle crashes, three rear-end crashes, and one head on crash. Three of these crashes occurred on wet pavement and five of these crashes resulted in injury.

There were three crashes on Waverley Oaks Road between the 411 Waverley Oaks Road northeast driveway and Trapelo Road. These crashes included two rear-end crashes and one crash involved hitting an object. One of these crashes occurred with snow on the pavement and none of these crashes resulted in injury.

There was one crash at the intersection of Waverley Oaks Road and Trapelo Road. It was a crash that involved hitting an object and resulted in an injury.

The traffic counts, intersection capacity analysis, crash data summary, speed data, and supplemental plans can be found in the appendices.

TEB:RB Enclosures

APPENDIX K6

Wetland Resource Evaluation
Walter E. Fernald Developmental Center
200 Trapelo Road
October 3, 2016

PROJECT LOCATION

The project site includes portions of an approximately 150 acre parcel containing the Walter E. Fernald Developmental Center. The site is accessed from Trapelo Road and Waverly Oaks Road. It presently contains numerous buildings, most abandoned, roadways and infrastructure which supported the original facility. The project site is generally bounded by Clematis Brook to the south and west, Waverly Oaks Road to the south and east, the existing property boundary to the north and Pine Street to the east.

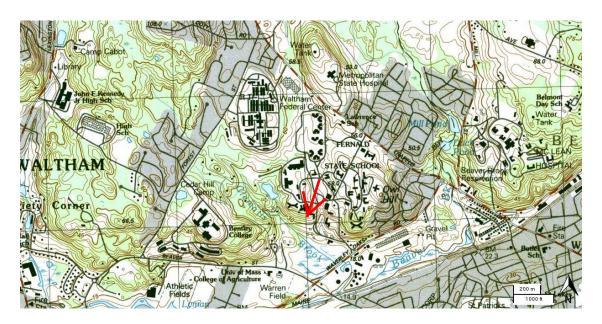


Fig. 1: USGS Topographic Quadrangle - Site Locus

DELINEATION METHODS

Rimmer Environmental Consulting (REC) conducted field inspections on September 28-29, 2016 to determine the location and extent of wetland resources subject to jurisdiction under the Mass. Wetlands Protection Act (MGL Ch. 131 s. 40) within the project area. Wetland resources were delineated in accordance with the procedures described in the Massachusetts Wetlands Protection Act Regulations (310 CMR 10.00). Numbered sequences of flags were placed in the field to delineate the boundary between wetland and upland resources. The presence of 50% wetland vegetation as well as other indicators of wetland hydrology were used to identify wetland resources.

RESULTS

The site slopes steeply from northeast to southwest toward Clematis Brook and its associated wetlands. From the eastern project limit at Pine Street, there is a stream which flows through the site south to its confluence with Clematis Brook. The southeastern portion of the site also contains wetlands associated with Clematis Brook. The following is a description of each wetland resource:

Wetland A/B: This wetland system includes the stream described above that flows through the site from Pine Street southwest to Clematis Brook. It contains a well-defined, rocky channel and was observed to be flowing along approximately half of its length with the remaining portions of the channel dry. The banks average 2-4 feet in height and are well defined by scour and changes in slope. Much of the bank to this stream contains no associated vegetated wetland, but in some areas where the topography is less steep, there are scrub shrub wetlands dominated by small American elm (*Ulmus americana*), red maple (*Acer rubrum*) spicebush (*Lindera benzoin*), multiflora rose (*Rosa multiflora*) and poison ivy (*Toxicodendron radicans*).

Wetland flags A1-A50 and B1-B47 delineate the landward most limits of either Inland Bank resource or Bordering Vegetated Wetland, whichever is furthest from the channel. The channel was observed dry south of flag A28.

The stream is indicated on the USGS topographic map as an intermittent stream. USGS StreamStats indicates it contains a drainage area of approximately 0.37 square miles. It is therefore presumed that this stream is not regulated as a river under the 310 CMR 10.58, but rather as Inland Bank with associated Bordering Vegetated Wetland (BVW). A 100-foot buffer zone extends from the limits of the A/B series flags.

Wetlands C/D: This is the wetland along the southeastern portion of the site that extends from Clematis Brook. Flags C1-C50 include the wetlands northwest of the A/B series described above and flags D1-D25 delineate the wetlands to the southeast out to Waverly Oaks Road. It contains a similar vegetative community as the A/B series. The southeastern portion follows along the toe of an old railroad bed that passes through the site.

Wetland E: This is a narrow depression east of the D-series flags that contains a hydrologic connection to the D Series via an old culvert under the railroad bed. It contains primarily red maple, American elm, silky dogwood (*Cornus amomum*), glossy buckthorn (*Frangula alnus*), sensitive fern (*Onoclea sensibilis*) and poison ivy. This wetland was delineated by flags E1-E21 and is regulated as Bordering Vegetated Wetland due to its hydrologic connection to the D series.

Wetland F: This is a second depression, elongated northwest to southeast is located immediately east of a small berm which separates it from the E series wetland. The wetland is bounded by steep slopes and the small berm making it hydrologically isolated from the other wetlands and waterbodies on site. Although there was no surface water at the time of inspection, water staining on the trees, mostly red maple, indicates sustained ponding to depths of 6-8 inches. This wetland may be large enough to meet the minimum ¼ acre feet of annual flooding to qualify as Isolated Land Subject to Flooding (ILSF) pursuant to 310 CMR 10.57.

Hydrologic calculations would be required to determine whether Wetland F provides this minimum flood storage volume. There is no associated 100-foot buffer zone to ILSF. It is possible that this wetland may provide some vernal pool habitat, though this could not be determined at the time of year the inspection was conducted.

Clematis Brook: The portion of Clematis Brook which passes southeast of the site is indicated as a perennial stream on the USGS topographic quadrangle included as Figure 1 above. It is therefore considered to be a river pursuant to 310 CMR 10.58. The boundary of Riverfront Area is the limit of mean annual high water (MAHW) and was determined by bankfull indicators as described in 310 CMR 10.58 including changes in slope and evidence of scour. Portions of the easterly bank to this brook where it passes near the site were delineated. In these areas, MAHW is well defined by changes in slope and was delineated as follows:

Bank 1 - Bank 4: beginning near flag C28 and extending southeast to where the channel terminates in a large marsh/scrub shrub swamp. It is at this point where the flow discharges into braided channel with no single defined channel present. No further delineation of MAHW based on bankfull indicators could be made in this area as annual flooding extends throughout this area in multiple channels and presumably floods up to the wetland boundary described as the D-series above.

Bank 100-Bank 113: extending northwest near flag C28 to where the channel enters the property at the northwestern property line.

The brook is located off-site, but portions of the 200 foot Riverfront Area measured from MAHW extend into the western portion of the project site. It was observed to be flowing in the areas delineated at the time of the delineation.

Bordering Land Subject to Flooding (BLSF): This resource includes the land subject to floodwaters rising from rivers, streams, ponds and lakes and is generally determined by reference to the most recent flood maps published by FEMA. At this location, FEMA indicates that the southeastern portion of the project area is within the 100-year flood plain up to elevation 51 NGVD88. It appears from Figure 2 below that the mapped floodplain encompasses most if not all of the D, E and F series wetlands. The portion of the mapped floodplain that extends beyond the limits of the flagged wetland would be regulated as BLSF pursuant to 310 CMR 10.57. There is no associated buffer zone to BLSF.

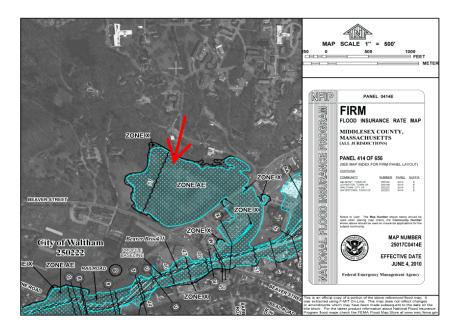


Figure 2: FEMA Flood Map

Other Resources

The project locations are not within Priority Habitat or Estimated Habitat of Rare Wetlands Wildlife and not within certified vernal pools as determined by reference to data provided by the Mass. Division of Fisheries and Wildlife – Natural Heritage and Endangered Species Program available on MassGIS.

DEP Bordering Vegetated Wetland (310 CMR 10.55) Delineation Field Form

Applica	ant: <u>City of Waltham</u> Prepared by: Rimmer Environmental Project location: Fernald Site DEP File #:
~	
Check a	all that apply:
\boxtimes	Vegetation alone presumed adequate BVW boundary: fill out section I only
	Vegetation and other indicators of hydrology used to delineate BVW boundary: fill out sections I and II
	Method other than dominance test used (attach additional information)

Section I. Vegetation: Observation plot Number: wetTransect number: C3Date of delineation: 9/29/16

A. Sample layer and plant species (by common name/scientific name)	B. Percent cover (or basal area)	C. Percent Dominance	D. Dominant Plant (yes or no)	E. Wetland Indicator Category*
Tree green ash/Fraxinus pensylvanica	63	100	Υ	FACW*
Groundcover false nettle/Boehmeria cylindrica rough goldenrod/Solidago rugosa	20.5 20.5	50 50	Y Y	OBL* FAC*

Use an asterisk to mark wetland indicator plants: species listed in the Wetlands Protection Act (MGL c. 131, s. 40); plants in the genus *Sphagnum*; plants listed as FAC, FAC+, FAC+, FACW, FACW+, or OBL; or plants with physiological or morphological adaptations. If any plants are identified as wetland indicator plants due to physiological or morphological adaptations, describe the adaptation next to the asterisk.

T 7 4 4 •		
Vacatatian	CONC	Incion
Vegetation	COHO	lusivii.

Number of dominant wetland indicator plants: 3 Number of dominant non-wetland plants: 0

Is the number of dominant wetland plants equal to or greater than the number of dominant non-wetland plants? \boxtimes yes \square no

Section II. Indicators of Hydrology

Hydric Soil Interpretation	Other Indicators of Hydrology: (check all that	apply and desc	ribe)
1. Soil Survey	Site inundated:		
Is there a published soil survey for this site? Title/date:	☐ Depth to free water in observation hole: _☐ Water marks:		
Map number: Soil type mapped: Hydric soil inclusions:	Drift lines: Sediment deposits:		
Are field observations consistent with soil survey? yes no Remarks: 2. Soil description Horizon Depth Matrix Color Mottles Color	 ☑ Drainage patterns in BVW:	aerial photo,	other):
Remarks	Vegetation and Hydrology Conclusion	Yes	No
3. Other	Number of wetland indicator plants >number of non-wetland indicator plants:	\boxtimes	
Conclusion: Is soil hydric? yes no	Wetland hydrology present: Hydric soil present		
	Other indicators of hydrology present:		
	Sample location is in a BVW	\boxtimes	

DEP Bordering Vegetated Wetland (310 CMR 10.55) Delineation Field Form

Applicant:	City of Waltham	Prepared by: Rimmer Environmental	_Project location:Fernald Site_DEP File #:
Check all tha	t apply:		
☐ Veget	ation alone presumed adec	quate BVW boundary: fill out section I o	only
⊠ Veget	Vegetation and other indicators of hydrology used to delineate BVW boundary: fill out sections I and II		
Method	od other than dominance to	est used (attach additional information)	
Section I. Ve	getation: Observati	on plot Number: <u>upl</u> Transect number: <u>C3</u>	Date of delineation: <u>9/29/16</u>

A. Sample layer and plant species (by common name/scientific name)	B. Percent cover (or basal area)	C. Percent Dominance	D. Dominant Plant (yes or no)	E. Wetland Indicator Category*
Groundcover				
Burdock/Artium minus	20.5	33	Υ	FACU
garlic mustard/Alliaria petiolata	20.5	33	Υ	FACU
virginia creeper/Parthenocissus quinquefolia	10.5	16	N	FACU
pigweed/Chenopodium album	10.5	16	N	FACU

Use an asterisk to mark wetland indicator plants: species listed in the Wetlands Protection Act (MGL c. 131, s. 40); plants in the genus *Sphagnum*; plants listed as FAC, FAC+, FAC-, FACW, FACW+, or OBL; or plants with physiological or morphological adaptations. If any plants are identified as wetland indicator plants due to physiological or morphological adaptations, describe the adaptation next to the asterisk.

Vegetation conclusion:
Number of dominant wetland indicator plants:0 Number of dominant non-wetland plants: 2
Is the number of dominant wetland plants equal to or greater than the number of dominant non-wetland plants? \Box yes \Box no

Section II. Indicators of Hydrology

ydric Soil Interpretation Other Indicators of Hydrology: (check all that apply and de			cribe)		
1. Soil Survey	Site inundated:				
Is there a published soil survey for this site?	Depth to free water in observation hole:				
Title/date: Map number: Soil type mapped: Hydric soil inclusions:					
Are field observations consistent with soil survey? yes no Remarks:	Drainage patterns in BVW:				
2. Soil description Horizon Depth Matrix Color Mottles Color	Oxidized rhizospheres: Water-stained leaves:				
C 0-8 10YR 4/5	☐ Recorded data(stream, lake, or tidal gauge;☐ Other:	aerial photo,	other):		
Remarks	Vegetation and Hydrology Conclusion	Yes	No		
3. Other fill	Number of wetland indicator plants >number of non-wetland indicator plants:				
Conclusion: Is soil hydric? ☐ yes ☒ no	Wetland hydrology present: Hydric soil present				
	Other indicators of hydrology present:				
	Sample location is in a BVW				

DEP Bordering Vegetated Wetland (310 CMR 10.55) Delineation Field Form

Applica	ant: <u>City of Waltham</u> Prepared by: Rimmer Environmental Project location: Fernald Site DEP File #:
Check a	all that apply:
\boxtimes	Vegetation alone presumed adequate BVW boundary: fill out section I only
	Vegetation and other indicators of hydrology used to delineate BVW boundary: fill out sections I and II
	Method other than dominance test used (attach additional information)

Section I. Vegetation: Observation plot Number: wetTransect number: D18Date of delineation: 9/29/16

A. Sample layer and plant species (by common name/scientific name)	B. Percent cover (or basal area)	C. Percent Dominance	D. Dominant Plant (yes or no)	E. Wetland Indicator Category*
Tree American elm/Ulmus americana shrub	20.5	100	Υ	FACW*
silky dogwood/Cornus amomum groundcover	20.5	100	Υ	FACW*
tall blue lettuce/Lactuca biennis	20.5	100	Υ	FAC*

Use an asterisk to mark wetland indicator plants: species listed in the Wetlands Protection Act (MGL c. 131, s. 40); plants in the genus *Sphagnum*; plants listed as FAC, FAC+, FAC+, FACW, FACW+, or OBL; or plants with physiological or morphological adaptations. If any plants are identified as wetland indicator plants due to physiological or morphological adaptations, describe the adaptation next to the asterisk.

T 7 4 4 •	1	
Vegetation	CONC	liicion•
v czcianon	COLLC	lusivii.

Number of dominant wetland indicator plants: 3 Number of dominant non-wetland plants: 0

Is the number of dominant wetland plants equal to or greater than the number of dominant non-wetland plants? \boxtimes yes \square no

Section II. Indicators of Hydrology

Hydric Soil Interpretation Other Indicators of Hydrology: (check all that apply and			ribe)		
1. Soil Survey	Site inundated:				
Is there a published soil survey for this site? Title/date:	☐ Depth to free water in observation hole: _ ☐ Water marks:				
Map number: Soil type mapped: Hydric soil inclusions:	Drift lines: Sediment deposits:				
Are field observations consistent with soil survey? yes no Remarks:	Drainage patterns in BVW:Oxidized rhizospheres:				
 Soil description Horizon Depth Matrix Color Mottles Color 	Water-stained leaves:				
O 8-0" 10YR 2/1	Recorded data(stream, lake, or tidal gauge;Other:	_			
Remarks	Vegetation and Hydrology Conclusion	Yes	No		
3. Other histic epidepdon	Number of wetland indicator plants <u>></u> number of non-wetland indicator plants:				
Conclusion: Is soil hydric? ⊠ yes □ no	Wetland hydrology present: Hydric soil present				
	Other indicators of hydrology present:	\boxtimes			
	Sample location is in a BVW				

DEP Bordering Vegetated Wetland (310 CMR 10.55) Delineation Field Form

Applic	cant <u>:</u>	City of Waltham	Prepared by: Rimmer Environmental	Project location:Fernald Site_DEP File #:
Check	all tha	t apply:		
\boxtimes	Veget	ation alone presumed a	dequate BVW boundary: fill out section I	only
	Veget	ation and other indicate	ors of hydrology used to delineate BVW b	oundary: fill out sections I and II
	Metho	od other than dominanc	e test used (attach additional information)	

Section I. Vegetation: Observation plot Number: <u>upl</u>Transect number: <u>D18</u>Date of delineation: <u>9/29/16</u>

A. Sample layer and plant species (by common name/scientific name)	B. Percent cover (or basal area)	C. Percent Dominance	D. Dominant Plant (yes or no)	E. Wetland Indicator Category*
Tree				0 V
sugar maple/Acer saccharum	20.5	20	Υ	FACU
red oak/Quercus rubra	63	75	Υ	FACU
Groundcover				
Asiatic bittersweet/Celastrus orbiculatus	10.5	100	U	UPL

Use an asterisk to mark wetland indicator plants: species listed in the Wetlands Protection Act (MGL c. 131, s. 40); plants in the genus *Sphagnum*; plants listed as FAC, FAC+, FAC+, FACW, FACW+, or OBL; or plants with physiological or morphological adaptations. If any plants are identified as wetland indicator plants due to physiological or morphological adaptations, describe the adaptation next to the asterisk.

T 7 4 4 •	1	
Vegetation	CONC	Incion
v cgctauon	COHO	lusivii.
0		

Number of dominant wetland indicator plants: 0 Number of dominant non-wetland plants: 3

Is the number of dominant wetland plants equal to or greater than the number of dominant non-wetland plants? \square yes \square n

Section II. Indicators of Hydrology

ydric Soil Interpretation Other Indicators of Hydrology: (check all that apply and de			cribe)		
1. Soil Survey	Site inundated:				
Is there a published soil survey for this site?	Depth to free water in observation hole:				
Title/date: Map number: Soil type mapped: Hydric soil inclusions:					
Are field observations consistent with soil survey? yes no Remarks:	Drainage patterns in BVW:				
2. Soil description Horizon Depth Matrix Color Mottles Color	Oxidized rhizospheres: Water-stained leaves:				
C 0-8 10YR 4/5	☐ Recorded data(stream, lake, or tidal gauge;☐ Other:	aerial photo,	other):		
Remarks	Vegetation and Hydrology Conclusion	Yes	No		
3. Other fill	Number of wetland indicator plants >number of non-wetland indicator plants:				
Conclusion: Is soil hydric? ☐ yes ☒ no	Wetland hydrology present: Hydric soil present				
	Other indicators of hydrology present:				
	Sample location is in a BVW				

DEP Bordering Vegetated Wetland (310 CMR 10.55) Delineation Field Form

Applica	ant: City of Waltham Prepared by: Rimmer Environmental Project location: Fernald Site DEP File #:
Check a	all that apply:
	Vegetation alone presumed adequate BVW boundary: fill out section I only
\boxtimes	Vegetation and other indicators of hydrology used to delineate BVW boundary: fill out sections I and II
	Method other than dominance test used (attach additional information)

Section I. Vegetation: Observation plot Number: <u>wet</u>Transect number: <u>E2</u>Date of delineation: <u>9/29/16</u>

A. Sample layer and plant species (by common name/scientific name)	B. Percent cover (or basal area)	C. Percent Dominance	D. Dominant Plant (yes or no)	E. Wetland Indicator Category*
Tree red maple/Acer rubrum Sapling	38	100	Υ	FAC*
green ash/Fraxinus pensylvanica shrub	38	100	Υ	FACW*
silky dogwood/Cornus amomum	20.5	100	Υ	FACW*

Use an asterisk to mark wetland indicator plants: species listed in the Wetlands Protection Act (MGL c. 131, s. 40); plants in the genus *Sphagnum*; plants listed as FAC, FAC+, FAC+, FACW, FACW+, or OBL; or plants with physiological or morphological adaptations. If any plants are identified as wetland indicator plants due to physiological or morphological adaptations, describe the adaptation next to the asterisk.

T 7 4 4 •	1	
Vegetation	CONC	liicion•
v czcianon	COLLC	lusivii.

Number of dominant wetland indicator plants: 3 Number of dominant non-wetland plants: 0

Is the number of dominant wetland plants equal to or greater than the number of dominant non-wetland plants? \boxtimes yes \square no

Section II. Indicators of Hydrology

Hydric Soil Interpretation		Other Indicators of Hydrology: (check all that apply and describe)		
1. Soil Survey		Site inundated:		
Is there a published soil survey for this site? Title/date: Map number: Soil type mapped: Hydric soil inclusions:		Depth to free water in observation hole: Water marks:		
		Drift lines: Sediment deposits:		
Are field observations consistent with soil survey? yes no Remarks: 2. Soil description Horizon Depth Matrix Color Mottles Color		Drainage patterns in BVW:Oxidized rhizospheres:		
		Water-stained leaves:		
A B	0-6" 10YR 2/1 6-10" 10YR 4/2 10YR 5/8	Recorded data(stream, lake, or tidal gauge; aerial photo, other):Other:		
Remarks		Vegetation and Hydrology Conclusion	Yes	No
3. Other refusal 10" Conclusion: Is soil hydric? ⊠ yes □ no		Number of wetland indicator plants <u>></u> number of non-wetland indicator plants:		
		Wetland hydrology present: Hydric soil present		
		Other indicators of hydrology present:	\boxtimes	
		Sample location is in a BVW		

DEP Bordering Vegetated Wetland (310 CMR 10.55) Delineation Field Form

Applica	ant: <u>City of Waltham</u> Prepared by: <u>Rimmer Environmental</u> Project location: <u>Fernald Site</u> DEP File #:
Check	all that apply:
	Vegetation alone presumed adequate BVW boundary: fill out section I only
\boxtimes	Vegetation and other indicators of hydrology used to delineate BVW boundary: fill out sections I and II
	Method other than dominance test used (attach additional information)

Section I. Vegetation: Observation plot Number: <u>upl</u>Transect number: <u>E2</u>Date of delineation: <u>9/29/16</u>

A. Sample layer and plant species (by common name/scientific name)	B. Percent cover (or basal area)	C. Percent Dominance	D. Dominant Plant (yes or no)	E. Wetland Indicator Category*
Tree				
red maple/Acer rubrum	85.5	100	Υ	FAC*
Sapling				
white ash/Fraxinus americana	20.5	100	Υ	FACU
groundcover				
asiatic bittersweet/Celastrus orbiculatus	10.5	22	Υ	UPL
virginia creeper/Parthenocissus quinquefolia	38	78	Υ	FACU

Use an asterisk to mark wetland indicator plants: species listed in the Wetlands Protection Act (MGL c. 131, s. 40); plants in the genus *Sphagnum*; plants listed as FAC, FAC+, FAC-, FACW, FACW+, or OBL; or plants with physiological or morphological adaptations. If any plants are identified as wetland indicator plants due to physiological or morphological adaptations, describe the adaptation next to the asterisk.

Vegetation conclusion:	
Number of dominant wetland indicator plants:1 Number of dominant non-wetland plants: 3	
Is the number of dominant wetland plants equal to or greater than the number of dominant non-wetland plants? \(\sim\) ves \(\sim\) no	

Section II. Indicators of Hydrology

Hydric Soil Interpretation	Other Indicators of Hydrology: (check all that	apply and desc	ribe)				
1. Soil Survey	Site inundated:						
Is there a published soil survey for this site? Title/date:	Depth to free water in observation hole: _ Water marks:						
Map number: Soil type mapped: Hydric soil inclusions:	Drift lines: Sediment deposits:						
Are field observations consistent with soil survey? yes no Remarks:	Drainage patterns in BVW: Oxidized rhizospheres:						
2. Soil descriptionHorizon Depth Matrix Color Mottles Color	Water-stained leaves:						
A 0-4" 10YR 2/2 B 4-12" 10YR 5/2	Recorded data(stream, lake, or tidal gauge;Other:	aerial photo,	other):				
Remarks	Vegetation and Hydrology Conclusion	Yes	No				
3. Other soil is fill material	Number of wetland indicator plants >number of non-wetland indicator plants:		\boxtimes				
Conclusion: Is soil hydric? ☐ yes ☒ no	Wetland hydrology present: Hydric soil present						
	Other indicators of hydrology present:						
	Sample location is in a BVW						

Casey-Brenner, Colette

From:

Finnegan, Lorraine < lfinnegan@smma.com>

Appending K7

Sent: Friday, March 10, 2017 9:51 AM

To: Mayor

Cc: Drew Echelson (drewechelson@walthampublicschools.org); Project, Mail

Subject: FW: Former Fernald School - Environmental (pnum: 16030)

Attachments: Fernald Phase II Report.pdf

Mayor

Please find attached the Phase II exploration testing and results for the Fernald Site.

The results are good news for the City, no new reportable conditions with respect to soil or groundwater were identified.

Please keep in mind that an Activity and Use Limitation (AUL) is recorded at the Middlesex Registry of Deeds for RTN 3-13467 for a 123 foot by 145 foot area beneath and to the south of the power plant. Any soil disturbance in this area will need to be conducted in accordance with the AUL. Additionally, if this area is to be re-developed for use as an office, store, residence, school or daycare, then further response actions would be required relative to existing soil contamination to allow for such uses.

Please let me know if you have any questions Thanks Lorraine

Lorraine B. Finnegan, AIA, LEED AP BD+C, MCPPO Principal | Director of K-12 Studio | Project Manager

SMMA | Symmes Maini & McKee Associates 1000 Massachusetts Avenue, Cambridge, MA 02138 t: 617.520.9468 | m: 781.640.3756 lfinnegan@smma.com | Profile

LinkedIn | Twitter | Instagram

We Design Places.com

March 7, 2017

Ms. Lorraine Finnegan Symmes Maini & McKee Associates, Inc. 1000 Massachusetts Avenue Cambridge, MA 02138

Re: Phase II Subsurface Investigation

Power Plant and Maintenance Buildings Walter E. Fernald School, Waltham, Massachusetts

Dear Ms. Finnegan:

CDW Consultants, Inc. (CDW) is pleased to provide you with this summary of soil and groundwater sampling and analyses at certain portions of the above referenced property (herein after, "the Site"). The Site consists of areas located adjacent to the former power plant (Building #26) and the former maintenance building (Building #124), both located on the southern portion of the Walter E. Fernald School property.

Summary of Previous Releases

Power Plant Building

The power plant was shut down in April 2014. A stream runs north to south along the western side of the power plant building. Several releases of fuel oil are documented for the former power plant building and are summarized below.

Release Tracking Number (RTN) 3-10367 was assigned by the Massachusetts Department of Environmental Protection (MassDEP) to a release of approximately 300 gallons of #6 fuel oil from the spill box to the ground surface after routine filling of the underground storage tanks (USTs) located to the west of power plant (Building #26) on December 29, 1993. Fuel oil flowed over the nearby retaining wall into the brook west of the power plant resulting in free phase floating oil and stained debris in several standing pools as far as 300 feet downgradient/south of the power plant. Sorbent booms and a containment barrier were placed in the brook to prevent further migration of the oil. Approximately 150 gallons of separate phase oil was removed from the brook using a vacuum truck, and petroleum contaminated debris was removed from the brook. The MassDEP Searchable Site Website indicates that a Class C-1 Response Action Outcome (RAO) Statement, documenting that a condition of No Substantial Hazard and a Temporary Solution had been achieved for the RTN 3-10367, was submitted to MassDEP on June 28, 2002, but this report was not available for review on the Searchable Site Website. A June 25, 2002 Phase III – Remedial Action Plan/Class C RAO for RTN 3-31467 states that RTN 3-10367 "is addressed by this Phase II Comprehensive Site Assessment."

RTN 3-13467 was assigned to a release of #6 fuel on February 20, 1996 after oil was observed in the vicinity of the concrete retaining wall and within the adjacent stream to the west of the power plant (Building #26). Absorbent pads and booms were deployed at the base of the retaining wall and in the stream. The three #6 fuel oil USTs located to the west of Building #26 were replaced between July and December 1996. Approximately 1,000 cubic yards of soil and 15,000 gallons of groundwater were removed from the Site. Following these remedial activities, a non-aqueous phase #6 fuel oil at a thickness of greater that 0.5 inches was observed within two monitoring wells within the basement of Building #26 in 1998. Separate phase product was still present in monitoring wells at a thickness greater than 0.5 inches as of March 2002. Quarterly groundwater gauging was conducted in 7 monitoring wells between August 2003 and May 2007; no measurable non-aqueous phase liquid (NAPL) was identified in any of the wells between January 2006 and May 2007. Based on the results of soil and groundwater sampling data and a Stage I Environmental Screening, a Class A-3 RAO Statement was submitted to MassDEP for RTN 3-13467 on March 21, 2008. The report documented that a condition of No Significant Risk and a Permanent Solution had been achieved for RTN 3-13467 utilizing a Method 1 Risk Characterization relying on an Activity and Use Limitation (AUL) to limit future use of a 123 foot by 145 foot area beneath and to the south of Building #36. The AUL prohibits use of this area as an office, store, residence, school, or child day care; the cultivation of fruits and vegetables destined for human consumption and recreational activities such as baseball, swimming, fishing, and hiking; and leisure activities such as picnicking, sunbathing, and entertaining. The AUL also prohibits the relocation of contaminated soils within the AUL area without a Licensed Site Professional (LSP) Opinion and requires that any subsurface activity which may result in direct contact with, disturbance, or relocation of contaminated soil between 2 and 15 feet be conducted under a Soil Management Plan.

RTN 3-11878 was assigned to a release of approximately 30 gallons of #6 fuel oil during filling of one of the three USTs on November 21, 1997. This release occurred to the paved area west of the power plant (Building #26) and the adjacent stream. Absorbent booms were initially placed on the ground and across the stream at several locations to contain the oil and absorbent materials were utilized to capture the oil from the pavement and along the brook. Impacted sediment was also removed from the brook. A Class A-1 RAO Statement was submitted to MassDEP on January 23, 1995 indicating that RTN 3-11878 had been remediated to background conditions.

RTN 3-15149 was assigned on May 30, 1997 as the result of a photoionization detector (PID) reading over 100 ppm during headspace analysis of a sample collected from the bottom of a tank excavation during removal of a 1,000-gallon gasoline UST located to the north of the power plant (Building #26). Based on laboratory results for soil samples collected from the extent of the tank grave, a Class B-1 RAO Statement was submitted to MassDEP on June 30, 1997. The Statement established that a condition of No Significant Risk and a Permanent Solution had been achieved for RTN 3-15149 utilizing a Method 1 Risk Characterization, but that background conditions were not achieved.

RTN 3-15442 was assigned for a release of approximately 100 gallons of #6 fuel oil when the fuel line from a fuel delivery truck became disconnected during fuel oil delivery to the USTs west of the power plant on August 19, 1997. Approximately 50 gallons of the released oil migrated down a concrete retaining wall into the dry drainage stream bed located west of the power plant. Initially absorbent materials were placed on the driveway and absorbent booms were placed downstream of the impacted portion of the stream bed and in the driveway to prevent additional fuel oil migration into the stream.

Approximately 15 cubic yards of soil were excavated from the stream bed and from beneath the driveway and disposed of off-site. A Class A-2 RAO Statement was submitted to MassDEP on October 24, 1997. The Statement indicated that a condition of No Significant Risk and a Permanent Solution had been achieved for RTN 3-15442 utilizing a Method 2 Risk Characterization, but that background conditions were not achieved.

Maintenance Building

RTN 3-10725 was assigned on March 22, 1994 when MassDEP was notified of a threat of release due to failed UST tank tightness tests for two 4,000-gallon gasoline tanks located to the east of the "farm & grounds building" (Building #124). The tanks were subsequently removed and approximately 120 cubic yards of impacted soil was disposed of off-site. Based on the results of post-remedial soil and groundwater sampling, a Class A-2 RAO Statement was submitted to MassDEP on June 21, 2000. The Statement indicated that a condition of No Significant Risk and a Permanent Solution had been achieved for the RTN 3-10725 utilizing a Method 1 Risk Characterization, but that background conditions were not achieved.

Summary of Geotechnical Investigation

On Friday October 28, 2016, CDW observed geotechnical borings by others. During that investigation, evidence of petroleum contamination was observed in soil from two soil borings. Boring number 11 was located near the southwestern corner of the former power plant building. Boring number 6 was located along the entrance driveway of the campus adjacent to and east of the former maintenance facility.

Soil samples were collected for laboratory analysis from depths where petroleum contamination appeared to be present. A soil sample was collected from a depth of 14 to 16 feet in Boring 11 (B11-S8). A soil sample was collected from 2 to 4 feet in Boring 6 (B6-S2). The samples were analyzed by New England ChromaChem for Extractable Petroleum Hydrocarbons (EPH) and Volatile Petroleum Hydrocarbons (VPH). The soil sample from B6-S2 reported detectable concentrations of EPH below applicable Massachusetts Contingency Plan (MCP) Reportable Concentrations (RCs). Sample B-11/S-8 reported all three EPH fractions at concentrations above applicable MCP RCs (RCS-1).

Based on these findings, further assessment was warranted to evaluate the nature and extent of the identified contamination, as well as the potential risks to public health, safety, welfare, and/or to the environment.

Soil and Groundwater Classifications

The results of laboratory soil and groundwater analyses were compared with RCs to identify any reporting conditions.

The selection of a soil classification of RCS-1, as defined in the MCP, 310 CMR 40.0361(1)(a), for the comparison of RCs, is applicable to the Site because the sampling locations are located within the property boundaries of a school and within 500 feet of a residence.

The selection of a groundwater classification of RCGW-2, as defined in the MCP, 310 CMR 40.0362, for the purpose of identifying RCs is applicable because groundwater at the Site is not located in a current or potential drinking water source area. A Priority Resource Map is included as Figure 5.

January and February 2017 Subsurface Investigation

Soil Borings and Monitoring Well Installation

On January 31 and February 1, 2017, CDW advanced eight soil borings (CDW-B1 through CDW-B8) at the Site. The soil borings were advanced using a direct push 6610DT drill rig, to evaluate subsurface soils and groundwater in areas surrounding the two geotechnical borings. Soil samples were collected continuously in all borings in acetate sleeves and classified on-site. CDW's subcontractor, Technical Drilling Services, Inc. of Sterling, MA completed the advancement of the soil borings and installation of monitoring wells.

The boring locations were chosen to assess the areas around geotechnical borings B-11 and B-6 where petroleum compounds were detected in October 2016. Borings CDW-B1 through CDW -B4 were placed around boring B-11 at the former power plant. CDW-B4 was placed on the opposite side of the stream to determine if any migration of oil had occurred. Borings CDW-B5 through CDW-B8 were placed symmetrically around boring B-6 at the former maintenance facility.

Two-inch diameter monitoring wells were installed to a depth of 15 feet in boring CDW-B1 and to 10 feet in CDW-B2. Borings CDW-B3 and CDW-B4 were advanced to 10 feet without refusal. Borings CDW-B5, CDW-B6, and CDW-B8 encountered refusal at 9 feet and boring CDW-B7 encountered refusal at 10 feet. Two-inch diameter monitoring wells were installed in CDW-B7 and CDW-B8. The wells were constructed with various lengths (between 4 and 10 feet) of two-inch diameter slotted PVC well screen and a solid PVC riser. Uniformly graded sand was placed around the well screen up to two feet above the screen. Two feet of bentonite grout was placed above the sand, followed by native fill to grade. A protective roadway box was installed at grade. Figure 2 presents the locations of the soil borings and monitoring wells.

Soils encountered during drilling consisted primarily of tan and gray sand with some gravel. Some fill materials consisting of coal and ash were observed in the 3-5 foot depth in two samples at the former power plant and one sample at the former maintenance building. Some clay was observed around 8 feet in some of the borings. Refusal was encountered in all four of the borings completed at the former maintenance facility. Bedrock was not observed during drilling. Appendix C presents the soil boring logs.

CDW developed two newly installed wells (CDW-B1MW and CDW-B2MW) and three existing wells (CMW-2, B-11, and MW-1) at the power plant with disposable bailers after installation. Well MW-4 at the maintenance garage was also developed. Wells CDW-B7MW and CDW-B8MW were dry upon installation and could not be developed.

Soil Sampling and Field Screening

Soil samples were field screened for total organic volatiles (TOVs) using the headspace method. A PID equipped with a 10.6 eV lamp calibrated to isobutylene was used. The soil headspace readings ranged from non-detect to 14.5 parts per million by volume (PPMV). The highest PID reading was detected in boring CDW-B1MW at a depth of 11-12 feet. The results of soil screening are summarized in Table 1.

One soil sample from each boring was submitted to ESS Laboratories for analyses for EPH including target polycyclic aromatic hydrocarbons (PAHs). The results detected EPH fractions in 5 of the 8 samples and PAHs in 3 of the 8 samples analyzed. The highest concentrations of EPH were found in the 11-13 foot sample at boring CDW-B1MW. One PAH, benzo(a)pyrene in CDW-B2 exceeded applicable Reportable Concentrations (RCs). Low concentrations of EPH fractions were detected in only one of the samples collected from the maintenance building. The results of EPH and PAH soil analyses are included in Table 2.

One sample, CDW-B7, was analyzed for Volatile Organic Compounds (VOCs) by EPA Method 8260. The results showed only acetone detected at a concentration well below the applicable RC. The results of VOC analyses are included in Table 3.

Two composite soil samples were analyzed for MCP14 Metals. One sample from the top foot of each of the four borings at the former power plant was composited, and one sample from the top foot of the four borings at the former maintenance garage was composited. The results showed several metals detected at concentrations typical of natural soils. None of the concentrations exceeded applicable RCs. The composite sample from the former power plant was also analyzed for polychlorinated biphenyls (PCBs). No PCBs were detected. The results of metals and PCB analyses are included in Table 4.

Groundwater Sampling and Analyses

On February 7, 2017, CDW personnel collected groundwater samples from the 2 newly installed monitoring wells (CDW-B1MW and CDW-B2MW) and 3 existing monitoring wells (MW-4, B-11, and MW-1). Two of the wells (CDW-B7MW and CDW-B8MW were dry and could not be sampled. Sampling was conducted using a peristaltic pump. Depth to groundwater at the power plant ranged from 2.24 to 10.21 below ground surface (BGS). Groundwater at the maintenance building was measured at 6.09 feet BGS. All five samples were submitted to ESS Laboratories for analysis for EPH including target PAHs. Two of the samples were also analyzed for VPH including target VOCs, VOCs by EPA Method 8260, and dissolved MCP 14 Metals.

The results showed EPH and several PAHs detected in two of the wells (CDWB-2MW and B-11) at the former power plant. Dissolved barium and zinc were also detected in groundwater; dissolved barium was present in MW-4, the well sampled to the east of the maintenance building, and dissolved barium and zinc were present in CDW-B1MW, the well sampled to the west of the power plant. None of the detected concentrations of any of the contaminants exceeded applicable Reportable Concentrations for GW-2 classified groundwater. No VPH or VOCs were detected in any of the samples.

Groundwater Elevation and Flow Survey

On February 7, 2017, all accessible monitoring wells were gauged for depth to groundwater and the presence of NAPL using an oil/water probe. NAPL was not detected in any of the wells.

On February 28, 2017, the relative elevations of the top of all new and existing monitoring well casings at the power plant building were surveyed relative to a post column located near the smoke stack. The data

Groundwater appears to flow to the southwest, parallel with and towards the adjacent brook. Groundwater gauging and elevation data is included in Table 1. A groundwater contour map is included as Figure 4.

Evaluation of Regulatory Obligations

Power Plant Building

Concentrations of all three EPH fractions exceeded applicable RCs in boring B-11 during the October 2016 geotechnical investigation. These concentrations (16,500 mg/kg for C9-C18 Aliphatics and 5,430 mg/kg for C19-C36 Aliphatics) were comparable to those collected in October 1996. Individual concentrations of EPH remaining in place after regulatory closure of RTN 3-13467 in March 2008 (October 1996 data) were 10,000 mg/kg and 15,000 mg/kg for C9-C18 Aliphatics and C19-C36 Aliphatics. Recent sampling for PAHs showed that one PAH (benzo(a)pyrene) was detected above the MCP RC in CDW-B2MW. Coal was visually observed in this sample. In accordance with 310 CMR 40.0317(9), releases of oil and/or hazardous material related to coal, coal ash or wood ash, excluding wood ash resulting from the combustion of lumber or wood products that have been treated with chemical preservatives are exempt from reporting. The detected concentrations of EPH, several PAHs and two dissolved metals in groundwater were all below applicable MCP RCs. Therefore, it is the opinion of CDW that no new reportable conditions with respect to soil or groundwater were identified, and that the conditions of EPH encountered are consistent with the Response Action Outcome Statement for RTN 3-13467 that was filed in 2008.

Maintenance Building

The detected concentrations of EPH in two soil samples collected at the maintenance building were below applicable MCP RCs and are consistent with concentrations detected previously in that area. The detected concentrations of one dissolved metal in groundwater was below applicable MCP RCs. Therefore, it is the opinion of CDW that no new reportable conditions with respect to soil or groundwater were identified at the maintenance building, and that the conditions of EPH encountered are consistent with the Response Action Outcome Statement for RTN 3-10725 that was filed in June 2000.

Conclusions & Recommendations

Based on the results of the recent subsurface investigation including soil and groundwater analyses, CDW provides the following observations and recommendations:

Observations

- On October 28, 2016, CDW observed geotechnical borings by others. During that investigation, evidence of petroleum contamination was observed in soil from two soil borings. Soil samples were collected for laboratory analysis from depths where petroleum contamination appeared to be present. The soil sample from B6-S2, to the east of the maintenance building, reported detectable concentrations of EPH below applicable Massachusetts Contingency Plan (MCP) Reportable Concentrations (RCs). Sample B-11/S-8, collected to the southwest of the power plant, reported all three EPH fractions at concentrations above applicable MCP RCs (RCS-1).
- In January and February 2017, CDW advanced eight soil borings and completed four of the borings as monitoring wells to determine the extent of contamination identified and whether a new reportable condition exists related to the October 2016 laboratory results. Four of the wells were completed at the former power plant and four were completed at the former maintenance building. Two of the borings at each building were converted to 2-inch diameter monitoring wells. Analyses of soil for EPH and PAHs showed the highest concentrations in borings completed near geotechnical boring at the former power plant. Metals were detected at background concentrations and PCBs were not detected. None of the detected concentrations of EPH, VOCs, or metals exceeded applicable Reportable Concentrations. The detected concentration of the PAH benzo(a)pyrene in soil was determined to be exempt from reporting due to the presence of coal.
- Groundwater sampling was completed in February 2017 which included two new wells and three
 existing wells. All five wells were sampled for EPH and PAHs. Two wells were sampled for
 VPH, VOCs, and dissolved metals. The results showed EPH and several PAHs detected in two of
 the 5 wells, barium detected in both wells sampled for metals and zinc detected in one well. None
 of the detected concentrations exceeded applicable RCs.
- Groundwater was measured at approximately 6 feet BGS in one well at the maintenance garage and between approximately 2 and 10 feet in the wells at the power plant building. Groundwater was determined to be flowing in a southwesterly direction parallel with and towards the adjacent brook.
- The power plant building is listed as having several MassDEP RTNs for releases of fuel oil. All of the releases have achieved regulatory closure under the MCP. An AUL is in place for RTN 3-13467 due to soils with residual concentrations of EPH. The EPH concentrations found in the October 2016 geotechnical boring B-11 and January 2017 borings are similar in magnitude to those documented as left in place under RTN 3-13467.
- The maintenance building is listed as a MassDEP disposal site under RTN 3-10725 which achieved regulatory closure under the MCP in June 2000. The EPH concentrations found in the October 2016 geotechnical boring B-6 and January 2017 borings are similar in magnitude to those documented under RTN 3-10725.

Recommendations

- The concentrations of recently detected petroleum in soil are similar in magnitude and location to those detected previously. Therefore, there are no new MCP reporting obligations relative to the detected petroleum.
- An AUL is recorded at the Middlesex Registry of Deeds for RTN 3-13467 at the power plant. Therefore, in accordance with 310 CMR 40.1067, a Release Abatement Measure (RAM) is required to be filed with MassDEP to manage any soil that will be generated for off-site disposal or recycling, if the volume of soil exceeds 100 cubic yards for oil contaminated soil.
- In accordance with the existing AUL, if the area of the AUL (a 123 foot by 145 foot area beneath and to the south of the power plant) is expected to be re-developed for use as an office, store, residence, school or daycare, then further response actions would be required relative to existing soil contamination. Modifications to or termination of the AUL may be applicable based on those response actions.
- In accordance with the Obligations and Conditions of the AUL, a Soil Management Plan (SMP) and Health and Safety Plan (HASP) are required prior to earthwork at the Site.

CDW is pleased to assist you on this project and hope this information sufficiently addresses your concerns at this time. Please do not hesitate to contact me if you have any questions.

Very truly yours,

CDW CONSULTANTS, INC.

Brian J. Miller, LSP Project Manager CDW CONSULTANTS, INC.

Lauren Konetzny, LSP Project Manager

Lauren Konetynig

Attachment A: Figure 1 – Site Location Map

Figure 2 - Sampling Locations Former Power Plant

Figure 3- Sampling Locations Former Maintenance Building Figure 4 - Groundwater Contour Map Former Power Plant

Figure 5 - Priority Resource Map

Attachment B: Table 1 - Groundwater Gauging and Elevation Data

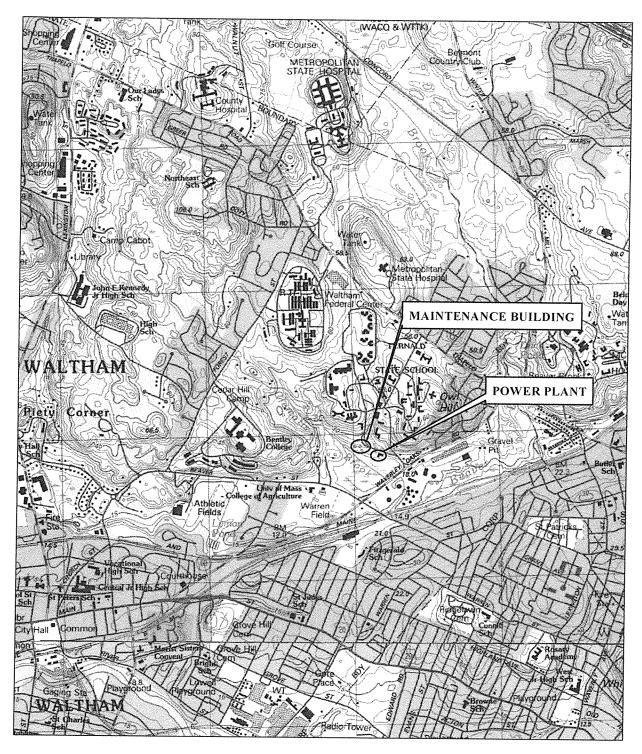
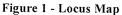
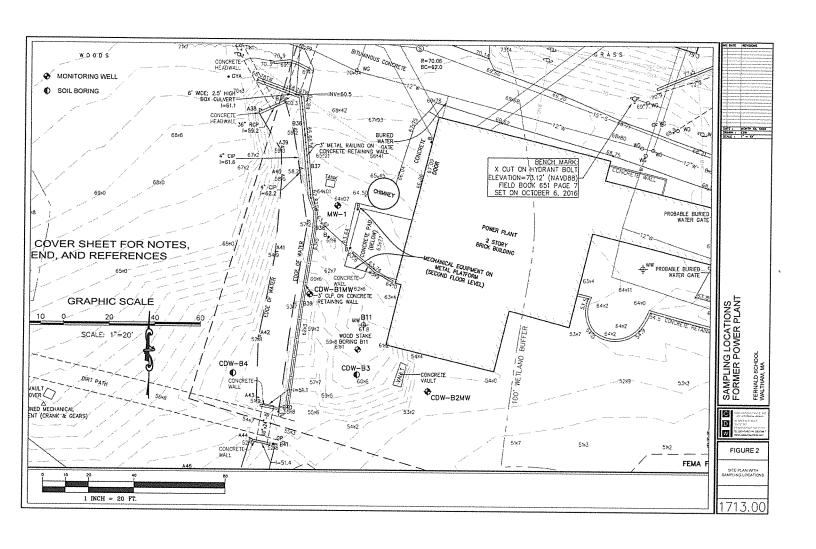

Table 2 – Soil Analyses Results - EPH and PAHs Table 3 – Soil Analyses Results - VPH and VOCs Table 4 – Soil Analyses Results - Metals and PCBs

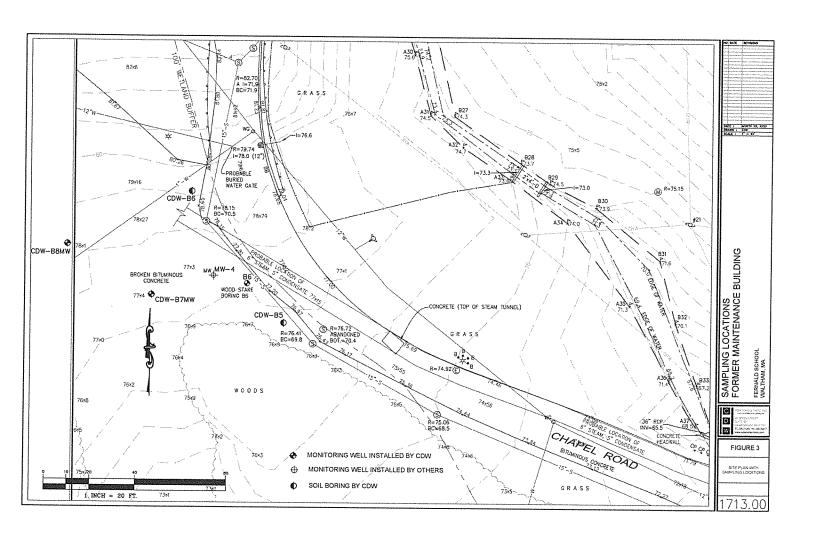
Table 5 - Groundwater Analyses Results - EPH, PAHS, Dissolved Metals

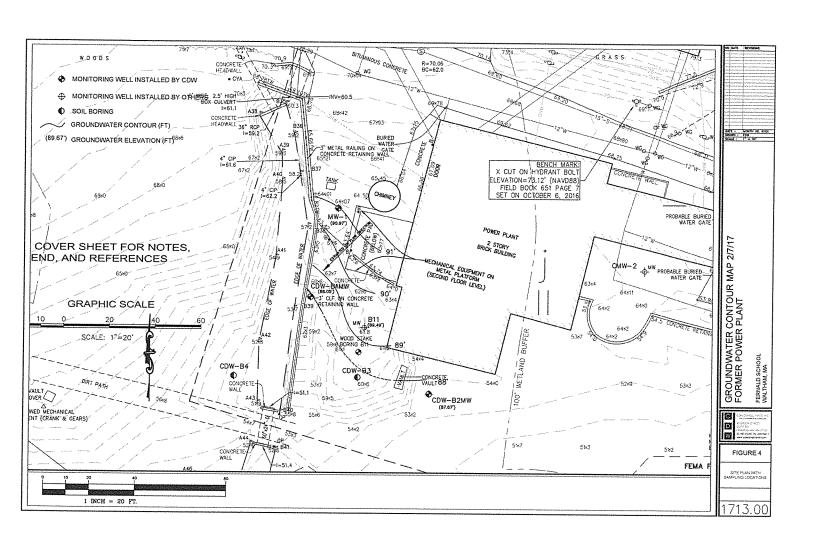
Attachment C: Soil Boring Logs and Well Construction Diagrams

Attachment D: Laboratory Reports and Chain of Custody Records

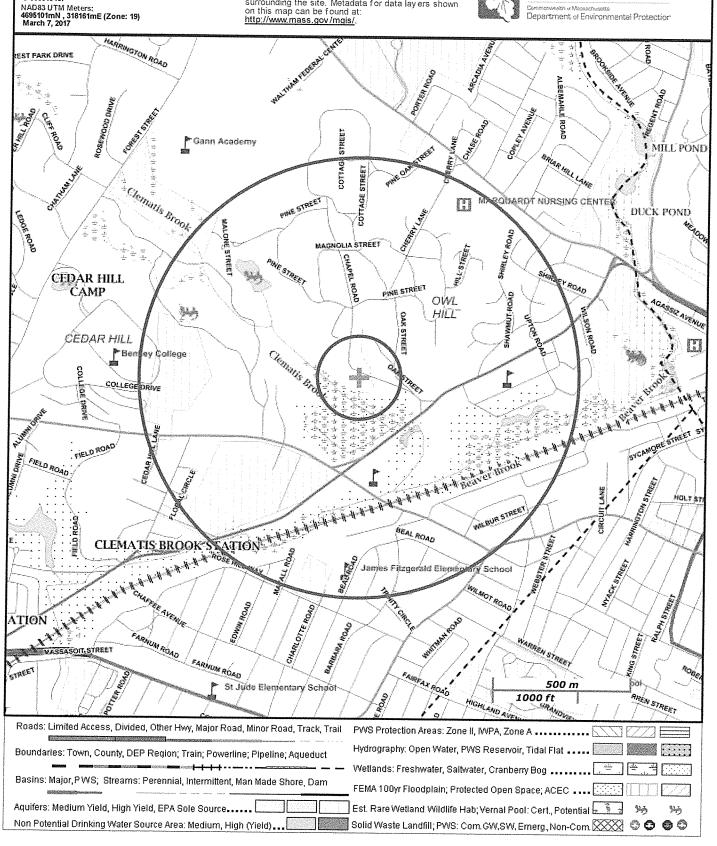

ATTACHMENT A FIGURES




POWER PLANT & MAINTENANCE BUILDING FORMER FERNALD SCHOOL 200 TRAPELO ROAD WALTHAM, MASSACHUSETTS



SOURCE: MASSGIS SCALE: 1 inch = 2,083 feet



MassDEP - Bureau of Waste Site Cleanup FIGURE 5 **PRIORITY** Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions RESOURCE MAP

Site Information: FERNALD CENTER CHAPEL ROAD WALTHAM, MA 3-000013467 surrounding the site. Metadata for data layers shown on this map can be found at:

ATTACHMENT B TABLES

Table 1 Groundwater Gauging and Elevation Data Fernald School, Waltham, MA February 7, 2017

Power Plant								
Well ID	Well Elevation	Depth to Water	Groundwater Elevation					
B-11	99.04	9.55	89.49					
MW-1	98.93	7.96	90.97					
CDW-B1MW	98.26	10.21	88.05					
CDW-B2MW	89.91	2.24	87.67					
Brook at Bridge	87.93		87.93					
Brook at Headwall	94.88	_	94.88					

NOTES:

- 1. < = Not detected above the lab reporting limits shown
- 2. NT = Not tested. ND = Not Detected, NA = Not Applicable
- 3. Bold = Above Applicable MCP RCs
- 4. Brook Elevation Data Collected on February 28, 2017

Table 2 Soil Analyses Results - EPH and PAHs Fernald School, Waltham, MA

		September 1		ower Plant		apatentistenistei	AUGUANGORA	Ma	intenance Buile	lino	egymidely i present
Sample Designation Sample Date	MCP Reportable Concentrations S-1	B-11/S-8 (14-16') 10/28/2016	CDW-B1 (11-13') 01/31/2017	CDW-B2 (1-3') 01/31/2017	CDW-B3 (2-4') 01/31/2017	CDW-B4 (3-5') 01/31/2017	B-6/S-2 (2-4') 42671	CDW-B5 (5-7') 01/31/2017	CDW-B6 (5-7') 01/31/2017	CDW-B7 (5-7)	
Total Organic Vapors (ppmv)		NT	14,5	0,1	0	0.9	NT NT	0	0113112011	02/01/2017	02/01/2017
EPH (mg/kg)			i de la compania del compania del compania de la compania del compania del compania de la compania de la compania de la compania de la compania de la compania del compania		s Carec Application (1999)			<u> </u>	1	0.1	1 0
C9-C18 Aliphatics	1,000	16,500	304	20.7	<16.6	<17.6	<105	<16	0.000.000.000.000.000.000.000.000.000	President Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar	United States of the State of t
C19-C36 Aliphatics	3,000	5,430	716	30.5	60.7	<17.6	<74	<16	<15.6	<17.2	<16.5
C11-C22 Aromatics	1,000	3,790	417	126	61.4	19.6	118	<16	28.2	<17.2	<16.5
2-Methylnaphthalene	0.7	16.7	<0.23	0.25	<0.22	<0.23	<0.2		24.9	<17.2	<16.5
Acenaphthene	4	<0,2	< 0.46	<0.49	<0.44	<0.47		<0.21	<0.21	<0.23	<0.22
Naphthalene	4	8,27	<0.46	<0.49	<0.44	<0.47	<0,2	<0.43	<0.42	<0.46	<0,44
Phenanthrene	10	<0.2	<0.46	1.32	<0.44		<0.2	<0.43	<0.42	<0.45	<0.44
Acenaphthylene	1 1	<0.2	<0.23	< 0.24	<0.44	<0.47	<0.2	<0,43	<0.42	<0,46	< 0.44
Anthracene	1,000	<0.2	<0.46	<0.49		<0.23	<0,2	<0.21	<0.21	<0.23	<0.22
Benzo(a)anthracene	7,700	<0.2	<0.46	2.72	<0.44	<0.47	<0,2	<0.43	<0.42	<0.46	<0.44
Benzo(a)pyrene	2	<0.2	<0.46	2.72	<0.44	<0.47	<0.2	<0.43	<0.42	<0.46	<0.44
Benzo(b)fluoranthene	7	<0.2	<0.46		<0.44	<0.47	<0.2	<0.43	<0.42	<0.46	<0.44
Benzo(g,h,i)perylene	1,000	<0.2		3.66	<0.44	<0.47	<0.2	< 0.43	<0.42	< 0.46	<0.44
Benzo(k)fluoranthene	70	<0.2	<0.46	1,83	<0.44	<0,47	<0.2	<0.43	<0.42	<0.46	< 0.44
Chrysene	70		<0.46	1.37	<0.44	<0.47	<0.2	< 0.43	<0.42	<0.46	< 0.44
Dibenzo(a,h)Anthracene	0.7	<0.2	<0.46	3.06	<0.44	<0.47	<0,2	< 0.43	< 0.42	< 0.46	<0,44
Fluoranthene		<0.2	<0.23	0,48	<0.22	<0,23	<0.2	<0.21	< 0.21	<0.23	<0.22
Fluorene	1,000	<0.2	<0.46	3,71	0.45	<0.47	<0.2	<0.43	< 0.42	< 0.46	<0.44
	1,000	<0.2	<0.46	<0.49	<0.44	<0.47	<0.2	< 0.43	<0.42	<0.46	< 0.44
ndeno(1,2,3-cd)Pyrene	1 ./	<0.2	<0.46	2.03	<0.44	< 0.47	<0.2	< 0.43	<0.42	< 0.46	< 0.44
Pyrene FOTES:	1,000	<0.2	0.60	3.50	<0.44	<0.47	<0.2	< 0.43	<0.42	< 0.46	< 0.44

NOTES:

1. < = Not detected above the lab reporting limits shown

2. NT = Not tested. ND = Not Detected, NA = Not Applicable

3. Bold = Above Applicable MCP RCs

CDW CONSULTANTS, INC.

Table 3 Soil Analyses Results - VPH and VOCs Fernald School, Waltham, MA

Cossolo Designati	I MODE	Power Plant		ce Building
Sample Designation	MCP Reportable	B-11/S-8 (14-16')		CDW-B7 (5-7')
Sample Date	Concentrations S-1	10/28/2016	10/28/2016	02/01/2017
Total Organic Vapors (ppmv)		NT	NT	0.1
VPH (mg/kg)	T 488			
C5-C8 Aliphatics	100	13.1	<5	NT
C9-C12 Aliphatics	1,000	888	<5	NT
C9-C10 Aromatics	100	12.7	<5	NT
VOCs (mg/kg)	Т			2000
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	0.1	NT	NT	<0.0054
1,1,2,2-Tetrachloroethane	30	NT	NT	<0.0054
1,1,2-Trichloroethane	0.005	NT	NT	<0.0022
1,1-Dichloroethane	0.1	NT	NT	<0.0054
1,1-Dichloroethene	0.4	NT	NT	<0.0054
	3	NT	NT	<0.0054
1,1-Dichloropropene	NA	NT	NT	<0.0054
1,2,3-Trichlorobenzene	NA 100	NT	NT	<0.0054
1,2,3-Trichloropropane	100	NT	NT	<0.0054
1,2,4-Trichlorobenzene	2	NT	NT	<0.0054
1,2,4-Trimethylbenzene	1,000	NT	NT	<0.0054
1,2-Dibromo-3-Chloropropane	10	NT	NT	<0.0054
1,2-Dibromoethane	0.1	NT	NT	<0.0054
1,2-Dichlorobenzene	9	NT	NT	<0.0054
1,2-Dichloroethane	0.1	NT	NT	<0.0054
1,2-Dichloropropane	0.1	NT	NT	<0.0054
1,3,5-Trimethylbenzene	10	NT	NT	<0.0054
1,3-Dichlorobenzene	3	NT	NT	<0.0054
1,3-Dichloropropane	500	NT	NT	<0.0054
1,4-Dichlorobenzene	0.7	NT	NT	<0.0054
1,4-Dioxane	0.2	NT	NT	<0.109
2,2-Dichloropropane	NA	NT	NT	<0.0054
2-Butanone	4	NT	NT	<0.0109
2-Chlorotoluene	100	NT	NT	<0.0054
2-Hexanone	100	NT	NT	<0.0109
4-Chlorotoluene	NA	NT	NT	<0.0054
4-Isopropyltoluene	100	NT	NT	<0.0054
4-Methyl-2-Pentanone	0.4	NT	NT	<0.0109
Acetone	6	NT	NT	0.0148
Benzene	2	<0.05	<0.05	<0.0054
Bromobenzene	100	NT	NT	<0.0054
Bromochloromethane	NA	NT	NT	<0.0054
Bromodichloromethane	0.1	NT	NT	<0.0054
Bromoform	0.1	NT	NT	<0.0054
Bromomethane	0.5	NT	NT	<0.0109
Carbon Disulfide	100	NT	NT	<0.0054
Carbon Tetrachloride	5	NT	NT	<0.0054
Chlorobenzene	1	NT	NT	<0.0054
Chloroethane	100	NT	NT	< 0.0109
Chloroform	0.2	NT	NT	< 0.0054
Chloromethane	100	NT	NT	<0.0109
sis-1,2-Dichloroethene	0.1	NT	NT	<0.0054
sis-1,3-Dichloropropene	0.01	NT	NT	<0.0054
Dibromochloromethane	0.005	NT	NT	<0.0022

Table 4
Soil Analyses Results - Metals and PCBs
Fernald School, Waltham, MA

		Power Plant	Maintenance Building
Sample Designation	MCP Reportable	Comp B1 to B4 (0-1')	Comp B5 to B8 (0-1')
Sample Date	Concentrations S-1	01/31/2017	02/01/2017
Total Organic Vapors (ppmv)		0.1	0
Total Metals (mg/kg)			
Antimony	20	<0.5	<0.43
Arsenic	20	<2.51	2.61
Barium	1,000	19.4	20.5
Beryllium	90	0.45	0.43
Cadmium	70	<0.5	< 0.43
Chromium	100	7.09	6.50
Lead	200	23.1	20.1
Mercury	20	0.050	0.092
Nickel	600	6.16	5.70
Selenium	400	<0.5	< 0.43
Silver	100	<0.5	< 0.43
Thallium	8	<0.5	< 0.43
Vanadium	400	14.9	16.4
Zinc	1,000	34.3	29.9
PCBs (mg/kg)			
Aroclor 1016	1	<0.055	NT
Aroclor 1221	1	<0.055	NT
Aroclor 1232	1	<0.055	NT
Aroclor 1242	1	<0.055	NT
Aroclor 1248	1	<0.055	NT
Aroclor 1254	1	<0.055	NT
Aroclor 1260	1	<0.055	NT
Aroclor 1262	1	<0.055	NT
Aroclor 1268	1	<0.055	NT

NOTES:

- 1. < = Not detected above the lab reporting limits shown
- 2. NT = Not tested. ND = Not Detected, NA = Not Applicable
- 3. Bold = Above Applicable MCP RCs

Table 3 Soil Analyses Results - VPH and VOCs Fernald School, Waltham, MA

		Power Plant	Maintenand	e Building
Sample Designation	MCP Reportable	B-11/S-8 (14-16')	B-6/S-2 (2-4')	CDW-B7 (5-7')
Sample Date	Concentrations S-1	10/28/2016	10/28/2016	02/01/2017
Dibromomethane	500	NT	NT	< 0.0054
Dichlorodifluoromethane	1,000	NT	NT	< 0.0109
Diethyl Ether	100	NT	NT	< 0.0054
Di-isopropyl ether	100	NT	NT	< 0.0054
Ethyl tertiary-butyl ether	NA	NT	NT	< 0.0054
Ethylbenzene	40	<0.726	< 0.05	<0.0054
Hexachlorobutadiene	30	NT	NT	<0.0054
Isopropylbenzene	1,000	NT	NT	<0.0054
Methyl tert-Butyl Ether	0.1	<0.05	< 0.05	< 0.0054
Methylene Chloride	0.1	NT	NT	< 0.0109
Naphthalene	4	7.55	< 0.05	< 0.0054
n-Butylbenzene	100	NT	NT	<0.0054
n-Propylbenzene	100	NT	NT	<0.0054
sec-Butylbenzene	100	NT	NT	<0.0054
Styrene	3	NT	NT	<0.0054
tert-Butylbenzene	100	NT	NT	<0.0054
Tertiary-amyl methyl ether	NA	NT	NT	<0.0054
Tetrachloroethene	1	NT	NT	<0.0054
Tetrahydrofuran	500	NT	NT	<0.0054
Toluene	30	<0.05	< 0.05	<0.0054
trans-1,2-Dichloroethene	1	NT	NT	<0.0054
trans-1,3-Dichloropropene	0.01	NT	NT	<0.0054
Trichloroethene	0.3	NT	NT	<0.0054
Trichlorofluoromethane	1,000	NT	NT	<0.0054
Vinyl Chloride	0.7	NT	NT	<0.0109
Xylene O	100	1,1	<0.05	<0.0054
Xylene P,M	100	0.946	<0.05	<0.0109
Xylenes (Total)	100	2.05	<0.05	<0.0109

NOTES:

- 1. < = Not detected above the lab reporting limits shown
- 2. NT = Not tested. ND = Not Detected, NA = Not Applicable
- 3. Bold = Above Applicable MCP RCs

Table 5 Groundwater Analyses Results - EPH, PAHs, Dissolved Metals Fernald School, Waltham, MA

			Power F	Plant		Maintenance Building
Sample Designation Sample Date	MCP Reportable Concentrations GW-2	CDW-B2MW 2/7/2017	CDW-B1MW 2/7/2017	B-11 2/7/2017	MW-1 2/7/2017	MW-4 2/7/2017
EPH (ug/l)						LITTEOTT
C9-C18 Aliphatics	5,000	<93	<105	<94	<93	<106
C19-C36 Aliphatics	50,000	209	<105	105	<93	<106
C11-C22 Aromatics	5,000	<93.5	<105	<94.3	<93.5	<106
PAHs (ug/l)					00.0	1 100
2-Methylnaphthalene	2,000	<0.47	<0.53	<0.47	<0.47	<0.53
Acenaphthene	6,000	0.70	<0.21	0.35	<0.19	<0.21
Naphthalene	700	< 0.47	<0.53	<0.47	< 0.47	<0.53
Phenanthrene	10,000	1.91	<0.53	2.36	< 0.47	<0.53
Acenaphthylene	40	0.25	<0.21	<0.19	<0.19	<0.21
Anthracene	30	0.62	<0.21	0.62	<0.19	<0.21
Benzo(a)anthracene	1,000	4.21	<0.21	0.92	<0.19	<0.21
Benzo(a)pyrene	500	4.54	<0.11	0.83	<0.09	<0.11
Benzo(b)fluoranthene	400	7.70	<0.21	0.99	<0.19	<0.21
Benzo(g,h,i)perylene	20	3.99	<0.21	0.53	< 0.19	<0.21
Benzo(k)fluoranthene	100	2.08	<0.21	0.34	<0.19	<0.21
Chrysene	70	4.90	<0.21	0.95	<0.19	<0.21
Dibenzo(a,h)Anthracene	40	1.10	<0.21	<0.19	<0.19	<0.21
Fluoranthene	200	6.72	<0.21	2.07	<0.19	<0.21
Fluorene	40	<0.19	<0.21	0.40	<0.19	<0.21
Indeno(1,2,3-cd)Pyrene	100	4.12	<0.21	0.55	<0.19	<0.21
Pyrene	20	5.94	<0.21	1.79	<0.19	<0.21
Dissolved Metals	,				5.10	1 -0.21
Barium	50,000	NT I	28	NT I	NT	32.4
Zinc	900	NT	29.3	NT	NT	<25

NOTES:

CDW CONSULTANTS, INC.

^{1. &}lt;= Not detected above the lab reporting limits shown
2. NT = Not tested. ND = Not Detected, NA = Not Applicable

^{3.} Bold = Above Applicable MCP RCs

ATTACHMENT C

BORING LOGS AND WELL COONSTRUCTION DIAGRAMS

CDW Consultants, Inc.

Project No.: 1713 Client: SMMA BORING ID: CDW-B1MW Total Depth: 15 ft 200 Trapelo Rd, Waltham Location: Logged By: AMS Date Started: 1/31/2017 Completed: 1/31/2017 Contractor: TDS Ground El. Casing ID: Sheet #: 1 6610 DT Geoprobe Remarks:

Ð	T	Samp	ıle		7		1 E
Depth (Feet)	Type & Num.	Blows per 6 Inches	Depth Range	Recovery	PID Hdspace (ppmv)	Sample Description	Well Diagram
-1 -2 -3 -4	S1 S2		0'-5'	30"	0	tan fine SAND, little medium sand, trace coarse sand with pebbles; dry See Above See Above	
-6 -7 -8 -9			5'-10'	36"	0	tan fine SAND, little medium sand, trace coarse sand gray angular gravel; wet	
-10 -11 -12	S3		10'-15' 36" -		14.5	See Above See Above gray silty fine SAND, little gravel, trace clay; moist to wet	
-13 -14 -15					0.8	gray silty fine SAND, little gravel, trace clay with 1" brown medium sand seam; wet End of Boring at 15 feet, No Refusal	
-16 -17 -18							THE RESERVE THE PROPERTY OF TH
-19 -20	ate	Groundw Time	vater Mea				
		3 11115	pehil io	Jouna	water	Measuring Point Overburden: SAND, TILL Rock: NA Well Depth: 15' Boring: 15'	

CDW Consultants, Inc.

Project No.: 1713 Client: SMMA BORING ID: CDW-B2MW Total Depth: 15 ft Location: 200 Trapelo Rd, Waltham Logged By: AMS Date Started: 1/31/2017 TDS Completed: 1/31/2017 Contractor: Casing ID: 1 Ground El. Sheet #: Remarks: 6610 DT Geoprobe

£	T	Sam	ole	······	T		Γ
Depth (Feet)	Type & Num.	Blows per 6 Inches	Depth Range	Recovery	PID Hdspace (ppmv)	Sample Description	
0	S1				 		\mathbf{T}
]				
-1			4			tan medium to fine SAND, dry	
-2			1		0.1	with pebbles; wet at 2 ft	
			0'-5'	24"			
-3	<u> </u>		4			coal layer from 3-3.5ft	
-4			1		0	gravel layer from 4 to 5 ft	
					ļ	graver layer from 4 to 5 ft	
-5	S2						
-6			-		0	tan to brown medium to coarse SAND, w/	
 			1			pebbles and angular gravel; wet	
-7			5'-10'	36"		grand grand grand, not	
-8			" "			1 11	
-0	<u> </u>		1		0	brown silt	
-9						gray fine SAND, some silt, little gravel, trace clay	
-10						End of Boring at 10 feet, No Refusal	
						,	
-11							
-12							
-13							
-14							
-15							
-16							
-17							
-18							
-19							
-10							
-20							
		Ground	vater Me	asurei	ments	Summary	***************************************
D	ate	Time	Depth to			Measuring Point Overburden: SAND, TILL	
······································				~~~~~		Rock: NA	
						Well Depth: 10' Boring: 10'	
	I				1	Boring: 10'	

CDW Consultants, Inc.

Project No.: BORING ID: CDW-B3
Logged By: AMS
Contractor: TDS 1713 Client: SMMA Total Depth: 15 ft Location: 200 Trapelo Rd, Waltham Date Started: 1/31/2017 Completed: 1/31/2017 Casing ID: Ground El. Sheet #: 1 6610 DT Geoprobe Remarks:

	Т	^	•		т	The state of the s	·····
eet	<u></u>	Samp		T 5	- e		E
Depth (Feet)	Type & Num.	Blows per 6 Inches	Depth Range	Recovery	PID Hdspace (ppmv)	Sample Description	Well Diagram
0	S1						
<u> </u>	<u> </u>]		0		
-1						tan fine SAND, little medium sand, trace coarse sand	
-2					 	with pebbles; dry	
			0'-5'	36"			
-3					0	See Above; wet	
-4							
-						gray broken rock and gravel	
-5	S2						
-6					0	tan to brown sandy silt, w/ gravel pieces	
-7			51.401	00"			
			5'-10'	36"			
-8						See Above	
-9					0		
-10						End of Boring at 10 feet, No Refusal	
-11							
-11							
-12							
-13							
-14							
			15'				
-15							
-16							
-10							1
-17							
-18							
-19		<u> </u>					
-20							
		Groundw	otor Pa				
D:	ate					Summary Measuring Point Overburden: SAND, SILT	
		711.10		J. Galla	··aici	Rock: NA	
						Well Depth: NA	
	1				T	Boring: 10'	

Project No.:		Client:	SMMA	BORING ID:	CDW-B4
Total Depth:		Location:	200 Trapelo Rd, Waltham	Logged By:	AMS
Date Started:	1/31/2017	Completed:		Contractor:	TDS
Casing ID:		Ground El.		Sheet #:	1
Remarks:	6610 DT Geoprobe				

Rem	ains.	6610 DT C	seoprobe	2	·····		
et)		Samp	le		J		E
Depth (Feet)	Type & Num.	Blows per 6 Inches	Depth Range	Recovery	PID Hdspace (ppmv)	Sample Description	Well Diagram
-1 -2	S1				0	tan to brown sand and gravel FILL; dry	
-3			0'-5'	36"		black coal with ash; moist to wet	
-5	S2				0.9	orange SILT, little fine sand, trace gravel; wet	
-6 -7			5'-10'	48"	0	tan to gray fine SAND, some silt, little gravel, trace clay; moist to wet	
-8 -9					0	tan to gray fine SAND, some silt, little gravel, trace coarse sand with clay; wet	
-10 -11						End of Boring at 10 feet; No Refusal	
-12							
-13 -14							
-15							
-16 -17							
-18 -19							
-20							
Di	ate	Groundw Time	Depth to 0	asurer Ground	nents water	Measuring Point Overburden: SAND, TILL Rock: NA Well Depth: NA Boring: 10'	

•	1713	Client:	SMMA	BORING ID:	CDW-B5
Total Depth:	9 ft	Location:	200 Trapelo Rd, Waltham	Logged By:	AMS
Date Started:	1/31/2017	Completed:	***************************************	Contractor:	TDS
Casing ID:		Ground El.		Sheet #:	1
Remarks:	6610 DT Geoprobe		**************************************	Oncot #.	

₩ ₩	T	Samp	le	·······	1		
Depth (Feet)	Type & Num.	Blows per 6 Inches	Depth Range	Recovery	PID Hdspace (ppmv)	Sample Description	Well Diagram
0	S1						>
-1					0	tan to brown medium to fine SAND; dry	
-2			0'-5'	24"			
-3				27	0	tan to gray fine SAND with gray at all	
						tan to gray fine SAND, with gravel, silt, broken rock; dry	
-4							
-5	S2						
-6					0	gray fine SAND, with gravel, silt, broken rock	
-7			5'-9'	30"		See Above	
-8					0		
					<u> </u>	Broken rock in tip	
-9						End of Boring at 9 feet; Boring Refusal	
-10							
-11						Note: Refusals at 4ft, 7ft, 8ft	
						Note. Netusais at 4n, 7n, on	
-12							
-13							
-14							
-15							
-16							
-17							
-18							
-19							
-20							
	L	Groundw	ater Me	asuren	nents	Summary	
Da	ate					Measuring Point Overburden: SAND, TILL	
						Rock: NA	
·						Well Depth: NA Boring: 9'	
						Boring: 9'	

Project No.:		Client:	SMMA	BORING ID:	CDW-B6
Total Depth:	<u>9 ft</u>	Location:	200 Trapelo Rd, Waltham	Logged By:	AMS
Date Started:	1/31/2017	Completed:	1/31/2017	Contractor:	TDS
Casing ID:		Ground El.		Sheet #:	1
Remarks:	6610 DT Geoprobe			Oncot ir.	

Ĕ	1	Samp	le	·	T			TF
Depth (Feet)	Type & Num.	Blows per 6 Inches	Depth Range	Recovery	PID Hdspace (ppmv)		Sample Description	Well Diagram
0	S1							
-1					0	_ browr	fine SAND, trace silt with gravel	
-2]					
-2			0'-5'	36"	0	gray me	dium to fine SAND, little gravel; dry	
-3							black coal with some ash	
-4						gray fin	e SAND, little gravel, trace silt; dry	
-5	S2							
	02				0			
-6							ine SAND, little gravel, trace silt,	
-7			5'-9'	36"		al al	nd coarse sand; moist to wet	
-8					0		See Above	
-9						End	of Boring at 9 feet, Refusal	
-10								
-11						Note: A	Additional Refusals at 6ft, 7ft, 5 ft	
						71010.7	aditional Nordodio at Oil, Tit, 5 it	
-12								
-13								
-14								
-15								
-13								
-16								
-17								
-18								
-19								
-20								
		Groundy	rator NA-	201:22			S	
С	ate					Measuring Point	Summary Overburden: SAND, TILL	
							Rock: NA	
				· · · · · · · · · · · · · · · · · · ·			Well Depth: 9'	
		L					Boring: 9'	

Project No.:	1713	Client:	SMMA	BORING ID:	CDW-B7MW
Total Depth:	10 ft	Location:	200 Trapelo Rd, Waltham	Logged By:	AMS
Date Started:	2/1/2017	Completed:	2/1/2017	Contractor:	TDS
Casing ID:		Ground El.		Sheet #:	1
Remarks:	6610 DT Geoprobe				

(t)		Samp	le		T		
Depth (Feet)	Type & Num.	Blows per 6 Inches	Depth Range	Recovery	PID Hdspace (ppmv)	Sample Description	
-1 -2 -3 -4 -5 -6 -7 -10 -11 -12 -13 -14 -15 -16 -17 -18	\$1 \$2		5'-10'	36"	0.8	tan to brown fine SAND, little silt, trace gravel; dry See Above coal layer (appears as black fine sand) gray fine SAND, some silt moist to wet See Above gray fine SAND, some silt, little gravel, trace clay See Above End of Boring at 10 feet, Refusal	
-19 -20 Da	ate	Groundw Time				Summary Measuring Point Overburden: SAND, TILL Rock: NA	
						Well Depth: 10' Boring: 10'	

Project No.:	1713	Client:	SMMA	BORING ID:	CDW-B8MW
Total Depth:	9ft	Location:	200 Trapelo Rd, Waltham	-	AMS
Date Started:	2/1/2017	Completed:		Contractor:	TDS
Casing ID:		Ground El.		Sheet #:	1
Remarks:	6610 DT Geoprobe		***************************************		

		001001					
Depth (Feet)	Type & Num.	Blows per 6 Inches	Depth Range	Recovery	PID Hdspace (ppmv)	Sample Description	Well Diagram
o Dep	S1	Blo per inct	Depti	Rec	H GId (bpm		Well
-1					0	brown silty fine SAND, little coarse sand	
-2			0'-5'	36"		trace gravel; dry	
-3					0	See Above	
-4 -5	S2					brown silty fine SAND, little medium sand, trace gravel	
- 6					0	gray silty SAND, little gravel, trace coarse sand;	
-7			5'-9'	36"		moist to wet gray silty SAND, little gravel, trace coarse sand and clay moist to wet	The state of the s
-8					0	broken rock	
-9 -10						End of Boring at 9 feet, Refusal	
-11							
-12							
-13							
-14 -15							
-16							
-17							
-18							
-19							
-20		Groundy	vater Me	asurer	nents	Summary	
Da	ate					Measuring Point Overburden: SAND, TILL Rock: NA	
						Well Depth: 9' Boring: 9'	

ATTACHMENT D

LABORATORY REPORTS AND CHAIN OF CUSTODY RECORDS

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Lauren Konetzny CDW Consultants, Inc. 40 Speen Street Suite 301 Framingham, MA 01701

RE: Fernald School (N/A)

ESS Laboratory Work Order Number: 1702041

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 9:49 am, Feb 10, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

SAMPLE RECEIPT

The following samples were received on February 02, 2017 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Low Level VOA vials were frozen by ESS Laboratory on February 2, 2017 at 17:42.

Lab Number	Sample Name	Matrix	Analysis
1702041-01	CDW-B1 (11-13')	Soil	EPH8270, MADEP-EPH
1702041-02	CDW-B2 (1-3')	Soil	EPH8270, MADEP-EPH
1702041-03	CDW-B3 (2-4')	Soil	EPH8270, MADEP-EPH
1702041-04	CDW-B4 (3-5')	Soil	EPH8270, MADEP-EPH
1702041-05	Comp B1 to B4 (0-1')	Soil	6010C, 6020A, 7471B, 8082A
1702041-06	CDW-B5 (5-7')	Soil	EPH8270, MADEP-EPH
1702041-07	CDW-B6 (5-7')	Soil	EPH8270, MADEP-EPH
1702041-08	CDW-B7 (5-7')	Soil	8260B Low, EPH8270, MADEP-EPH
1702041-09	CDW-B8 (5-7')	Soil	EPH8270, MADEP-EPH
1702041-10	Comp B5 to B8 (0-1')	Soil	6010C, 6020A, 7471B

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

PROJECT NARRATIVE

5035/8260B Volatile Organic Compounds / Low Level

C7B0051-CCV1 Continuing Calibration %Diff/Drift is below control limit (CD-).

1,4-Dioxane (24% @ 20%), 2-Hexanone (21% @ 20%), 4-Methyl-2-Pentanone (22% @ 20%), Acetone (24% @ 20%), Bromoform (22% @ 20%), cis-1,3-Dichloropropene (21% @ 20%), Tetrachloroethene

(27% @ 20%), trans-1,3-Dichloropropene (22% @ 20%)

CB70321-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

1,4-Dioxane (21% @ 20%), Acetone (26% @ 25%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

<u>Definitions of Quality Control Parameters</u>

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

MassDEP Analytical Protocol Certification Form

	MADEP RT	ΓN:								
Thi	s form provides ce	ertific	ation for the follo	ving d	ata set: 1702041-01 tl	rou	gh 1702041-10			
Ma	trices: () Ground	d Wat	er/Surface Water		(X) Soil/Sediment	() Drinking Water	() Air	() Other:	
CA	M Protocol (che	ck all	that apply below):						
	8260 VOC CAM II A		7470/7471 Hg CAM III B		MassDEP VPH CAM IV A	() 8081 Pesticides CAM V B		7196 Hex Cr CAM VI B	() MassDEP APH CAM IX A
()	8270 SVOC CAM II B	()	7010 Metals CAM III C	(X)	MassDEP EPH CAM IV B	() 8151 Herbicides CAM V C		8330 Explosives CAM VIII A	() TO-15 VOC CAM IX B
(X)	6010 Metals CAM III A	(X)	6020 Metals CAM III D	()	8082 PCB CAM V A	() 6860 Perchlorate CAM VIII B		9014 Total Cyanid CAM VI A	le/PAC
		Α	Affirmative respo	nses to	auestions A throug	h F	are required for ''Pre	oumntiu/	. Cartainto!! statu	46
A	preserved (includ	receir ling te	ved in a condition emperature) in the	consis field o	tent with those descri r laboratory, and prep	bed (ared	on the Chain-of-Custod /analyzed within methor	ly, proper od holding	ly g times?	Yes (X) No ()
В	were the analytic followed?	al me	thod(s) and all ass	ociate	d QC requirements sp	ecifi	ed in the selected CAM	I protocol	(s)	Yes (x) No ()
С	Were all required implemented for	all ide	entified performan	ce star	dard non-conformance	es?	fied in the selected CA			Yes (X) No ()
D	Does the laborato	ry rep nality	oort comply with a	ll the i	reporting requirement	s spe	cified in the CAM VII ing of Analytical Data"	A, "Quali	ty	Yes (X) No ()
Е	a. VPH, EPH, AP	H and	d TO-15 only: Wa	each	method conducted wi ant modifications).	thou	t significant modification	? on(s)? (Re	efer	Yes (X) No ()
	b. APH and TO-1	5 Mei	thods only: Was th	e com	plete analyte list repo	rted	for each method?			Yes () No ()
F	Were all applicabling a laboratory na	le CA rrativ	M protocol QC ar e (including all "N	d perf o" resp	ormance standard nor conses to Questions A	-con thre	formances identified an ough E)?	nd evalua	ted	Yes (X) No ()
			Responses to	Ouesti	ons G. H and I below	are	required for '''Presum	ntiva Car	taintu!! etatue	
	<u>Data User Note:</u> D	ata th	ts at or below all (at achieve "Presu	CAM r <i>mptive</i>	eporting limits specifi	ed in	n the selected CAM pro	tocols(s)	?	Yes (X) No ()*
H	Were all QC perfo	orman	ce standards speci	fied in	the CAM protocol(s)	achi	ieved?			Yes() No(X)*
[* 411	Were results repor	rted fo	or the complete an	alyte li	st specified in the sele	ected	CAM protocol(s)?			Yes (X) No ()*
"AII	negative respons	ses mi	ust be addressed	in an	attached laboratory	narr	ative.			
I, th	e undersigned, a	ittest i	under the pains (ınd pe	nalties of perjury th	at, b	ased upon my person	al inquir	y of those respon	sible
for	obtaining the inf urate and comple	orma	tion, the materia	l conte	iined in this analytic	al r	eport is, to the best of	my know	vledge and belief,	1
ucci	Signature:	ie.	L. Sand	λ€s€	DD 0		Date: F	ebruary 1	0.2017	
	Printed Name	e: <u>Lau</u>	urel Stoddard		California e e e e e e e e e e e e e e e e e e e		Position: <u>Labor</u>			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B1 (11-13') Date Sampled: 01/31/17 09:30

Percent Solids: 89 Initial Volume: 24.3 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1702041 ESS Laboratory Sample ID: 1702041-01

Sample Matrix: Soil Units: mg/kg dry

Prepared: 2/3/17 13:45

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics 1	Results (MRL) 304 (17.4)	MDL Method MADEP-EPH	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	Analy: ZLC	st <u>Analyzed</u> 02/03/17 19:28	Sequence C7B0029	Batch CB70307
C19-C36 Aliphatics1	716 (17.4)	MADEP-EPH		1	ZLC	02/03/17 19:28	C7B0029	CB70307
C11-C22 Unadjusted Aromatics1	417 (17.4)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
C11-C22 Aromatics1,2	417 (17.4)	EPH8270			VSC	02/03/17 21:59		[CALC]
2-Methylnaphthalene	ND (0.23)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
Acenaphthene	ND (0.46)	EPH8270		-	VSC	02/03/17 21:59	C7B0057	CB70307
Naphthalene	ND (0.46)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
Phenanthrene	ND (0.46)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
Acenaphthylene	ND (0.23)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
Anthracene	ND (0.46)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
Benzo(a)anthracene	ND (0.46)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
Benzo(a)pyrene	ND (0.46)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
Benzo(b)fluoranthene	ND (0.46)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
Benzo(g,h,i)perylene	ND (0.46)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
Benzo(k)fluoranthene	ND (0.46)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
Chrysene	ND (0.46)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
Dibenzo(a,h)Anthracene	ND (0.23)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
Fluoranthene	ND (0.46)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
Fluorene	ND (0.46)	EPH8270		i	VSC	02/03/17 21:59	C7B0057	CB70307
Indeno(1,2,3-cd)Pyrene	ND (0.46)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307
Pyrene	0.60 (0.46)	EPH8270		1	VSC	02/03/17 21:59	C7B0057	CB70307

	%Recovery	Qualitier	Limits
Surrogate: 1-Chlorooctadecane	70 %		40-140
Surrogate: 2-Bromonaphthalene	<i>75 %</i>		40-140
Surrogate: 2-Fluorobiphenyl	76 %		40-140
Surrogate: O-Terphenyl	63 %		40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B2 (1-3') Date Sampled: 01/31/17 13:05

Percent Solids: 85 Initial Volume: 24.1 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1702041 ESS Laboratory Sample ID: 1702041-02

Sample Matrix: Soil Units: mg/kg dry

Prepared: 2/3/17 13:45

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) 20.7 (18.2)	MDL Method MADEP-EPH	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	Analys ZLC	Analyzed 02/03/17 20:15	Sequence C7B0029	<u>Batch</u> CB70307
C19-C36 Aliphatics1	30.5 (18.2)	MADEP-EPH		1	ZLC	02/03/17 20:15	C7B0029	CB70307
C11-C22 Unadjusted Aromatics1	152 (18.2)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
C11-C22 Aromatics1,2	126 (18.2)	EPH8270			VSC	02/03/17 22:33		[CALC]
2-Methylnaphthalene	0.25 (0.24)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Acenaphthene	ND (0.49)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Naphthalene	ND (0.49)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Phenanthrene	1.32 (0.49)	EPH8270		I	VSC	02/03/17 22:33	C7B0057	CB70307
Acenaphthylene	ND (0.24)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Anthracene	ND (0.49)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Benzo(a)anthracene	2.72 (0.49)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Benzo(a)pyrene	2.52 (0.49)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Benzo(b)fluoranthene	3.66 (0.49)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Benzo(g,h,i)perylene	1.83 (0.49)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Benzo(k)fluoranthene	1.37 (0.49)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Chrysene	3.06 (0.49)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Dibenzo(a,h)Anthracene	0.48 (0.24)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Fluoranthene	3.71 (0.49)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Fluorene	ND (0.49)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Indeno(1,2,3-cd)Pyrene	2.03 (0.49)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307
Pyrene	3.50 (0.49)	EPH8270		1	VSC	02/03/17 22:33	C7B0057	CB70307

	%Recovery	Qualifier	Limits
Surrogate: 1-Chlorooctadecane	66 %		40-140
Surrogate: 2-Bromonaphthalene	106 %		40-140
Surrogate: 2-Fluorobiphenyl	104 %		40-140
Surrogate: O-Terphenyl	<i>78</i> %		40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B3 (2-4') Date Sampled: 01/31/17 11:10

Percent Solids: Initial Volume: 25.6 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1702041 ESS Laboratory Sample ID: 1702041-03

Sample Matrix: Soil Units: mg/kg dry

Prepared: 2/3/17 13:45

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL)	MDL	Method MADEP-EPH	<u>Limit</u>	DF	Analy: ZLC	st <u>Analyzed</u> 02/03/17 21:02	Sequence C7B0029	Batch CB70307
C19-C36 Aliphatics1	60.7 (16.6)		MADEP-EPH		1	ZLC	02/03/17 21:02	C7B0029	CB70307
C11-C22 Unadjusted Aromatics1	61.9 (16.6)		EPH8270		1	VSC	02/03/17 23:07	C7B0027	CB70307
C11-C22 Aromatics 1,2	61.4 (16.6)		EPH8270			VSC	02/03/17 23:07	C1B0031	[CALC]
2-Methylnaphthalene	ND (0.22)		EPH8270		1	VSC	02/03/17 23:07	C7B0057	CB70307
Acenaphthene	ND (0.44)		EPH8270		1	VSC	02/03/17 23:07	C7B0057	CB70307
Naphthalene	ND (0.44)		EPH8270		1	VSC	02/03/17 23:07	C7B0057	CB70307
Phenanthrene	ND (0.44)		EPH8270		ı	VSC	02/03/17 23:07	C7B0057	CB70307
Acenaphthylene	ND (0.22)		EPH8270		1	VSC	02/03/17 23:07	C7B0057	CB70307
Anthracene	ND (0.44)		EPH8270		1	VSC	02/03/17 23:07	C7B0057	CB70307
Benzo(a)anthracene	ND (0.44)		EPH8270		1	VSC	02/03/17 23:07	C7B0057	CB70307
Benzo(a)pyrene	ND (0,44)		EPH8270		1	VSC	02/03/17 23:07	C7B0057	CB70307
Benzo(b)fluoranthene	ND (0.44)		EPH8270		1	VSC	02/03/17 23:07	C7B0057	CB70307 CB70307
Benzo(g,h,i)perylene	ND (0.44)		EPH8270		1	VSC	02/03/17 23:07	C7B0057	CB70307
Benzo(k)fluoranthene	ND (0.44)		EPH8270		1	VSC	02/03/17 23:07	C7B0057	CB70307
Chrysene	ND (0.44)		EPH8270		1	VSC	02/03/17 23:07	C7B0057	CB70307
Dibenzo(a,h)Anthracene	ND (0.22)		EPH8270		1	VSC	02/03/17 23:07	C7B0057	
Fluoranthene	0.45 (0.44)		EPH8270		,	VSC	02/03/17 23:07	C7B0057	CB70307
Fluorene	ND (0.44)		EPH8270		1	VSC	02/03/17 23:07		CB70307
Indeno(1,2,3-cd)Pyrene	ND (0.44)		EPH8270		1	VSC		C7B0057	CB70307
Pyrene	ND (0.44)		EPH8270		1	VSC	02/03/17 23:07	C7B0057	CB70307
	110 (0.44)		LI 116270		1	VSC	02/03/17 23:07	C7B0057	CB70307
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		62 %		40-140					
Surrogate: 2-Bromonaphthalene		81 %		40-140					
Surrogate: 2-Fluorobiphenyl		89 %		40-140					
Surrogate: O-Terphenyl		E9 04		40 140					

68 % 40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B4 (3-5') Date Sampled: 01/31/17 10:20

Percent Solids: 88 Initial Volume: 24.2 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1702041 ESS Laboratory Sample ID: 1702041-04

Sample Matrix: Soil Units: mg/kg dry

Prepared: 2/3/17 13:45

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) ND (17.6)	MDL	Method MADEP-EPH	Limit	DF	Analys ZLC	<u>Analyzed</u> 02/03/17 21:50	Sequence C7B0029	Batch CB70307
C19-C36 Aliphatics1	ND (17.6)		MADEP-EPH		1	ZLC	02/03/17 21:50	C7B0029	CB70307
C11-C22 Unadjusted Aromatics1	19.6 (17.6)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
C11-C22 Aromatics1,2	19.6 (17.6)		EPH8270			VSC	02/03/17 23:42		[CALC]
2-Methylnaphthalene	ND (0.23)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Acenaphthene	ND (0.47)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Naphthalene	ND (0.47)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Phenanthrene	ND (0.47)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Acenaphthylene	ND (0.23)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Anthracene	ND (0.47)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Benzo(a)anthracene	ND (0.47)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Benzo(a)pyrene	ND (0.47)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Benzo(b)fluoranthene	ND (0.47)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Benzo(g,h,i)perylene	ND (0.47)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Benzo(k)fluoranthene	ND (0.47)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Chrysene	ND (0.47)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Dibenzo(a,h)Anthracene	ND (0.23)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Fluoranthene	ND (0.47)		EPH8270		1		02/03/17 23:42	C7B0057	CB70307
Fluorene	ND (0.47)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Indeno(1,2,3-cd)Pyrene	ND (0.47)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
Pyrene	ND (0.47)		EPH8270		1	VSC	02/03/17 23:42	C7B0057	CB70307
		%Recovery	Qualifier	Limits	· · · · · · · · · · · · · · · · · · ·		······································	····	
Surrogate: 1-Chlorooctadecane		60 %	& married						
Surrogate: 2-Bromonaphthalene		88 %		40-140 40-140					
Surrogate: 2-Fluorobiphenyl		91 %							
Surrogate: O-Tembenyl		24 70		40-140					

Surrogate: O-Terphenyl 69 % 40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: Comp B1 to B4 (0-1')

Date Sampled: 01/31/17 13:05

Percent Solids:

92

ESS Laboratory Work Order: 1702041 ESS Laboratory Sample ID: 1702041-05

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3005A

Total Metals

Analyte Antimony	Results (MRL) ND (0.50)	MDL	Method 6020A	<u>Limit</u>	<u>DF</u> 20	Analyst NAR	Analyzed 02/08/17 9:54	<u>I/V</u> 2.17	<u>F/V</u>	Batch CB70233
Arsenic	ND (2.51)		6010C		1	KJK	02/03/17 16:13	2.17	100	CB70233
Barium	19.4 (2.51)		6010C		1	KJK	02/03/17 16:13	2.17	100	CB70233
Beryllium	0.45 (0.11)		6010C		1	KJK	02/03/17 16:13	2.17	100	CB70233
Cadmium	ND (0.50)		6010C		1	KJK	02/03/17 16:13	2.17	100	CB70233
Chromium	7.09 (1.00)		6010C		1	KJK	02/03/17 16:13	2.17	100	CB70233
Lead	23.1 (5.02)		6010C		1	KJK.	02/03/17 16:13	2.17	100	CB70233
Mercury	0.050 (0.035)		7471B		1	MJV	02/03/17 14:00	0.61	40	CB70234
Nickel	6.16 (2.51)		6010C		1	KJK.	02/03/17 16:13	2.17	100	CB70233
Selenium	ND (0.50)		6020A		20	NAR	02/08/17 9:54	2.17	100	CB70233
Silver	ND (0.50)		6010C		1	KJK	02/03/17 16:13	2.17	100	CB70233
Thallium	ND (0.50)		6020A		20	NAR	02/08/17 9:54	2.17	100	CB70233
Vanadium	14.9 (1.00)		6010C		I	KJK	02/03/17 16:13	2.17	100	CB70233
Zinc	34.3 (2.51)		6010C		1		02/03/17 16:13	2.17	100	CB70233

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: Comp B1 to B4 (0-1')

Date Sampled: 01/31/17 13:05

Percent Solids: Initial Volume: 19.8 Final Volume: 10

Extraction Method: 3540

ESS Laboratory Work Order: 1702041 ESS Laboratory Sample ID: 1702041-05

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 2/7/17 14:15 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

Analyte Aroclor 1016	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
	ND (0.0550)		8082A		ı	02/08/17 10:52		CB70607
Aroclor 1221	ND (0.0550)		8082A		1	02/08/17 10:52		CB70607
Aroclor 1232	ND (0.0550)		8082A		1	02/08/17 10:52		CB70607
Aroclor 1242	ND (0.0550)		8082A		1	02/08/17 10:52		CB70607
Aroclor 1248	ND (0.0550)		8082A		1	02/08/17 10:52		CB70607
Aroclor 1254	ND (0.0550)		8082A		1	02/08/17 10:52		CB70607
Aroclor 1260	ND (0.0550)		8082A		1	02/08/17 10:52		CB70607
Aroclor 1262	ND (0.0550)		8082A		1	02/08/17 10:52		CB70607
Aroclor 1268	ND (0.0550)		8082A		1	02/08/17 10:52		CB70607
A	9.	6Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		53 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		66 %		30-150				
Surrogate: Tetrachloro-m-xylene		77 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		88 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

http://www.ESSLaboratorv.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B5 (5-7') Date Sampled: 01/31/17 14:10

Percent Solids: 9 Initial Volume: 24.5 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1702041 ESS Laboratory Sample ID: 1702041-06

Sample Matrix: Soil Units: mg/kg dry

Prepared: 2/3/17 13:45

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) ND (16.0)	MDL Method MADEP-EPH	<u>Limit</u>	<u>DF</u> <u>A</u>	Analyst ZLC	Analyzed 02/03/17 22:37	Sequence C7B0029	Batch CB70307
C19-C36 Aliphatics1	ND (16.0)	MADEP-EPH		1	ZLC	02/03/17 22:37	C7B0029	CB70307
C11-C22 Unadjusted Aromatics1	ND (16.0)	EPH8270		1	VSC	02/04/17 0:16	C7B0027	CB70307
C11-C22 Aromatics1,2	ND (16.0)	EPH8270			VSC	02/04/17 0:16		[CALC]
2-Methylnaphthalene	ND (0.21)	EPH8270		1	VSC	02/04/17 0:16	C7B0057	CB70307
Acenaphthene	ND (0.43)	EPH8270		1	VSC	02/04/17 0:16	C7B0057	CB70307
Naphthalene	ND (0.43)	EPH8270		1	VSC	02/04/17 0:16	C7B0057	CB70307
Phenanthrene	ND (0.43)	EPH8270		1	VSC	02/04/17 0:16	C7B0057	CB70307
Acenaphthylene	ND (0.21)	EPH8270		1	VSC	02/04/17 0:16	C7B0057	CB70307
Anthracene	ND (0.43)	EPH8270		1	VSC	02/04/17 0:16	C7B0057	CB70307
Benzo(a)anthracene	ND (0.43)	EPH8270		1	VSC	02/04/17 0:16	C7B0057	CB70307
Benzo(a)pyrene	ND (0.43)	EPH8270		l	VSC	02/04/17 0:16	C7B0057	CB70307
Benzo(b)fluoranthene	ND (0.43)	EPH8270		1	VSC	02/04/17 0:16	C7B0057	CB70307
Benzo(g,h,i)perylene	ND (0.43)	EPH8270		1	VSC	02/04/17 0:16	C7B0057	CB70307
Benzo(k)fluoranthene	ND (0.43)	EPH8270		1	VSC	02/04/17 0:16	C7B0057	CB70307
Chrysene	ND (0.43)	EPH8270		1	VSC	02/04/17 0:16	C7B0057	CB70307
Dibenzo(a,h)Anthracene	ND (0.21)	EPH8270		l	VSC	02/04/17 0:16	C7B0057	CB70307
Fluoranthene	ND (0.43)	EPH8270		1	VSC	02/04/17 0:16	C7B0057	CB70307
Fluorene	ND (0.43)	EPH8270		1	VSC	02/04/17 0:16	C7B0057	CB70307
Indeno(1,2,3-cd)Pyrene	ND (0.43)	EPH8270		I	VSC	02/04/17 0:16	C7B0057	CB70307
Pyrene	ND (0.43)	EPH8270		1	VSC	02/04/17 0:16	C7B0057	CB70307

	%Recovery	Qualifier	Limits
Surrogate: 1-Chlorooctadecane	68 %		40-140
Surrogate: 2-Bromonaphthalene	91 %		40-140
Surrogate: 2-Fluorobiphenyl	89 %		40-140
Surrogate: O-Terphenyl	80 %		40-140

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B6 (5-7') Date Sampled: 01/31/17 15:00

Percent Solids: 93 Initial Volume: 25.8 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1702041 ESS Laboratory Sample ID: 1702041-07

Sample Matrix: Soil Units: mg/kg dry

Prepared: 2/3/17 13:45

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) ND (15.6)		<mark>/lethod</mark> DEP-EPH	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	Analyst ZLC	<u>Analy</u> 02/03/17		Sequence C7B0029	Batch CB70307
C19-C36 Aliphatics1	28.2 (15.6)	MA	DEP-EPH		1	ZLC	02/03/17	23:24	C7B0029	CB70307
C11-C22 Unadjusted Aromatics1	24.9 (15.6)	E	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
C11-C22 Aromatics1,2	24.9 (15.6)	Е	PH8270			VSC	02/04/17	0:50		[CALC]
2-Methylnaphthalene	ND (0.21)	Е	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Acenaphthene	ND (0.42)	Е	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Naphthalene	ND (0.42)	Е	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Phenanthrene	ND (0.42)	E	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Acenaphthylene	ND (0.21)	E	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Anthracene	ND (0.42)	E	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Benzo(a)anthracene	ND (0.42)	E	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Benzo(a)pyrene	ND (0.42)	E	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Benzo(b)fluoranthene	ND (0.42)	E	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Benzo(g,h,i)perylene	ND (0.42)	E	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Benzo(k)fluoranthene	ND (0.42)	E	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Chrysene	ND (0.42)	El	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Dibenzo(a,h)Anthracene	ND (0.21)	E	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Fluoranthene	ND (0.42)	E	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Fluorene	ND (0.42)	EI	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Indeno(1,2,3-cd)Pyrene	ND (0.42)	EI	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307
Pyrene	ND (0.42)	EI	PH8270		1	VSC	02/04/17	0:50	C7B0057	CB70307

	%Recovery	Qualifier	Limits
Surrogate: 1-Chlorooctadecane	56 %		40-140
Surrogate: 2-Bromonaphthalene	95 %		40-140
Surrogate: 2-Fluorobiphenyl	90 %		40-140
Surrogate: O-Terphenyl	72 %		40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B7 (5-7') Date Sampled: 02/01/17 08:45

Percent Solids: Initial Volume: 5.3 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1702041 ESS Laboratory Sample ID: 1702041-08

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0054)	MDL	Method 8260B Low	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	<u>Analyzed</u> 02/03/17 16:19	Sequence C7B0051	Batch CB70321
1,1,1-Trichloroethane	ND (0.0054)		8260B Low		I	02/03/17 16:19	C7B0051	CB70321
1,1,2,2-Tetrachloroethane	ND (0.0022)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,1,2-Trichloroethane	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,1-Dichloroethane	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,1-Dichloroethene	ND (0.0054)		8260B Low		I	02/03/17 16:19	C7B0051	CB70321
1,1-Dichloropropene	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,2,3-Trichlorobenzene	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,2,3-Trichloropropane	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,2,4-Trichlorobenzene	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,2,4-Trimethylbenzene	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,2-Dibromo-3-Chloropropane	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,2-Dibromoethane	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,2-Dichlorobenzene	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,2-Dichloroethane	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,2-Dichloropropane	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,3,5-Trimethylbenzene	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,3-Dichlorobenzene	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,3-Dichloropropane	ND (0.0054)		8260B Low		l	02/03/17 16:19	C7B0051	CB70321
1,4-Dichlorobenzene	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
1,4-Dioxane	ND (0.109)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
2,2-Dichloropropane	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
2-Butanone	ND (0.0109)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
2-Chlorotoluene	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
2-Hexanone	ND (0.0109)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
4-Chlorotoluene	ND (0.0054)		8260B Low		I	02/03/17 16:19	C7B0051	CB70321
4-Isopropyltoluene	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
4-Methyl-2-Pentanone	ND (0.0109)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
Acetone	0.0148 (0.0109)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
Benzene	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
Bromobenzene	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
Bromochloromethane	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B7 (5-7') Date Sampled: 02/01/17 08:45

Percent Solids: Initial Volume: 5.3 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1702041 ESS Laboratory Sample ID: 1702041-08

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

Analyte Bromodichloromethane	Results (MRL) ND (0.0054)	MDL Method 8260B Low	Limit DF	Analyzed 02/03/17 16:19	Sequence C7B0051	Batch CB70321
Bromoform	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Bromomethane	ND (0.0109)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Carbon Disulfide	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Carbon Tetrachloride	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Chlorobenzene	ND (0.0054)	. 8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Chloroethane	ND (0.0109)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Chloroform	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Chloromethane	ND (0.0109)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
cis-1,2-Dichloroethene	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
cis-1,3-Dichloropropene	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Dibromochloromethane	ND (0.0022)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Dibromomethane	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Dichlorodifluoromethane	ND (0.0109)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Diethyl Ether	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Di-isopropyl ether	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Ethyl tertiary-butyl ether	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Ethylbenzene	ND (0.0054)	8260B Low	Ī	02/03/17 16:19	C7B0051	CB70321
Hexachlorobutadiene	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Isopropylbenzene	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Methyl tert-Butyl Ether	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Methylene Chloride	ND (0.0109)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Naphthalene	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
n-Butylbenzene	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
n-Propylbenzene	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
sec-Butylbenzene	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Styrene	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
tert-Butylbenzene	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Tertiary-amyl methyl ether	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Tetrachloroethene	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Tetrahydrofuran	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321
Toluene	ND (0.0054)	8260B Low	1	02/03/17 16:19	C7B0051	CB70321

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B7 (5-7') Date Sampled: 02/01/17 08:45

Percent Solids: Initial Volume: 5.3 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1702041 ESS Laboratory Sample ID: 1702041-08

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

Analyte trans-1,2-Dichloroethene	Results (MRL) ND (0.0054)	MDL	Method 8260B Low	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	<u>Analyzed</u> 02/03/17 16:19	Sequence C7B0051	Batch CB70321
trans-1,3-Dichloropropene	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
Trichloroethene	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
Trichlorofluoromethane	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
Vinyl Chloride	ND (0.0109)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
Xylene O	ND (0.0054)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
Xylene P,M	ND (0.0109)		8260B Low		1	02/03/17 16:19	C7B0051	CB70321
Xylenes (Total)	ND (0.0109)		8260B Low		1	02/03/17 16:19		[CALC]

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	91 %		70-130
Surrogate: 4-Bromofluorobenzene	95 %		70-130
Surrogate: Dibromofluoromethane	91 %		70-130
Surrogate: Toluene-d8	99 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B7 (5-7') Date Sampled: 02/01/17 08:45

Percent Solids: 87 Initial Volume: 25.1 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1702041 ESS Laboratory Sample ID: 1702041-08

Sample Matrix: Soil Units: mg/kg dry

Prepared: 2/3/17 13:45

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyst		Sequence	Batch
C9-C18 Aliphatics1	ND (17.2)		MADEP-EPH		ł	ZLC	02/04/17 0:12	C7B0029	CB70307
C19-C36 Aliphatics1	ND (17.2)		MADEP-EPH		1	ZLC	02/04/17 0:12	C7B0029	CB70307
C11-C22 Unadjusted Aromatics1	ND (17.2)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
C11-C22 Aromatics1,2	ND (17.2)		EPH8270			VSC	02/04/17 1:24		[CALC]
2-Methylnaphthalene	ND (0.23)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Acenaphthene	ND (0.46)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Naphthalene	ND (0.46)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Phenanthrene	ND (0.46)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Acenaphthylene	ND (0.23)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Anthracene	ND (0.46)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Benzo(a)anthracene	ND (0.46)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Benzo(a)pyrene	ND (0.46)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Benzo(b)fluoranthene	ND (0.46)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Benzo(g,h,i)perylene	ND (0.46)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Benzo(k)fluoranthene	ND (0.46)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Chrysene	ND (0.46)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Dibenzo(a,h)Anthracene	ND (0.23)		EPH8270		ī	VSC	02/04/17 1:24	C7B0057	CB70307
Fluoranthene	ND (0.46)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Fluorene	ND (0.46)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Indeno(1,2,3-cd)Pyrene	ND (0.46)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
Pyrene	ND (0.46)		EPH8270		1	VSC	02/04/17 1:24	C7B0057	CB70307
	9	6Recovery	Qualifier	Limits					

	in tecorery	Quanner	
Surrogate: 1-Chlorooctadecane	60 %		40-140
Surrogate: 2-Bromonaphthalene	94 %		40-140
Surrogate: 2-Fluorobiphenyl	91 %		40-140
Surrogate: O-Terphenyl	73 %		40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B8 (5-7') Date Sampled: 02/01/17 09:55

Percent Solids: 9: Initial Volume: 24.3 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1702041 ESS Laboratory Sample ID: 1702041-09

Sample Matrix: Soil Units: mg/kg dry

Prepared: 2/3/17 13:45

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL)	MDL	Method MADEP-EPH	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	Analyst ZLC	Analyzed 02/04/17 2:34	Sequence C7B0029	Batch CB70307
C19-C36 Aliphatics1	ND (16.5)		MADEP-EPH		1	ZLC	02/04/17 2:34	C7B0029	CB70307
C11-C22 Unadjusted Aromatics1	ND (16.5)		EPH8270		1	VSC	02/04/17 3:06	C7B0029	CB70307
C11-C22 Aromatics 1,2	ND (16.5)		EPH8270			VSC	02/04/17 3:06		[CALC]
2-Methylnaphthalene	ND (0.22)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Acenaphthene	ND (0.44)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Naphthalene	ND (0.44)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Phenanthrene	ND (0.44)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Acenaphthylene	ND (0.22)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Anthracene	ND (0.44)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Benzo(a)anthracene	ND (0.44)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Benzo(a)pyrene	ND (0.44)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Benzo(b)fluoranthene	ND (0.44)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Benzo(g,h,i)perylene	ND (0.44)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Benzo(k)fluoranthene	ND (0.44)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Chrysene	ND (0.44)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Dibenzo(a,h)Anthracene	ND (0.22)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Fluoranthene	ND (0.44)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Fluorene	ND (0.44)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Indeno(1,2,3-cd)Pyrene	ND (0.44)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
Pyrene	ND (0.44)		EPH8270		1	VSC	02/04/17 3:06	C7B0057	CB70307
		%Recovery	Qualifier	Limits		·····	***************************************		***************************************

	JUNICEOFE/ F	Quantiti	Little
Surrogate: 1-Chlorooctadecane	67 %		40-140
Surrogate: 2-Bromonaphthalene	90 %		40-140
Surrogate: 2-Fluorobiphenyl	89 %		40-140
Surrogate: O-Terphenyl	78 %		40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: Comp B5 to B8 (0-1')

Date Sampled: 02/01/17 10:15

Percent Solids:

ESS Laboratory Work Order: 1702041 ESS Laboratory Sample ID: 1702041-10

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3005A

Total Metals

<u>Analyte</u>	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	<u>F/V</u>	<u>Batch</u>
Antimony	ND (0.43)		6020A		20	NAR	02/08/17 9:59	2.49	100	CB70233
Arsenic	2.61 (2.16)		6010C		1	KJK	02/03/17 16:17	2.49	100	CB70233
Barium	20.5 (2.16)		6010C		1	KJK	02/03/17 16:17	2.49	100	CB70233
Beryllium	0.43 (0.10)		6010C		1	KJK	02/03/17 16:17	2.49	100	CB70233
Cadmium	ND (0.43)		6010C		1	KJK	02/03/17 16:17	2.49	100	CB70233
Chromium	6.50 (0.87)		6010C		1	KJK	02/03/17 16:17	2.49	100	CB70233
Lead	20.1 (4.33)		6010C		I	KJK	02/03/17 16:17	2.49	100	CB70233
Mercury	0.092 (0.030)		7471B		l	MJV	02/03/17 14:02	0.7	40	CB70234
Nickel	5.70 (2.16)		6010C		1	KJK	02/03/17 16:17	2.49	100	CB70233
Selenium	ND (0.43)		6020A		20	NAR	02/08/17 9:59	2.49	100	CB70233
Silver	ND (0.43)		6010C		1	KJK	02/03/17 16:17	2.49	100	CB70233
Thallium	ND (0.43)		6020A		20	NAR	02/08/17 9:59	2.49	100	CB70233
Vanadium	16.4 (0.87)		6010C		1	KJK	02/03/17 16:17	2.49	100	CB70233
Zinc	29.9 (2.16)		6010C		1	KJK	02/03/17 16:17	2.49	100	CB70233

The Microbiology Division of Thielsch Engineering, Inc.

RPD

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

%REC

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Meta	ls						
Batch CB70233 - 3005A				***************************************	A1		***************************************	***************************************		
Blank								***************************************		
Antimony	ND	0.50	mg/kg wet			***************************************				
Arsenic	ND	2.50	mg/kg wet							
Barium	ND	2.50	mg/kg wet							
Beryllium	ND	0.11	mg/kg wet							
admium	ND	0.50	mg/kg wet							
hromium	ND	1.00	mg/kg wet							
ead	ND	5.00	mg/kg wet							
ickel	ND	2.50	mg/kg wet							
elenium	ND	0.50	mg/kg wet							
lver	ND	0.50	mg/kg wet							
hallium	ND	0.50	mg/kg wet							
anadium	ND	1.00	mg/kg wet							
inc	ND	2.50	mg/kg wet							
CS			~~~~				***************************************			
ntimony	121	21.6	mg/kg wet	100.0		121	19-257			***************************************
senic	155	8.62	mg/kg wet	161.0		96	80-120			
arium	357	8.62	mg/kg wet	351.0		102	80-120			
eryllium	83.8	0.38	mg/kg wet	89.40		94	80-120			
admium	165	1.72	mg/kg wet	190.0		87	80-120			
nromium	80.1	3.45	mg/kg wet	87.90		91	80-120			
ead	132	17.2	mg/kg wet	138.0		95	80-120			
ckel	116	8.62	mg/kg wet	127.0		92	80-120			
elenium	314	21.6	mg/kg wet	305.0		103	80-120			
lver	52.2	1.72	mg/kg wet	58.00		90	80-120			
nallium	87.9	21.6	mg/kg wet	89.80		98	80-120			
nnadium	76.3	3.45	mg/kg wet	81.60		94	80-120			
nc	155	8.62	mg/kg wet	173.0		90	80-120			
CS Dup	**************************************				***************************************					
timony	130	22.7	mg/kg wet	100.0		130	19-257	7	30	
senic	158	9.09	mg/kg wet	161.0		98	80-120	2	20	
rium	396	9.09	mg/kg wet	351.0		113	80-120	10	20	
ryllium	83.8	0.40	mg/kg wet	89.40		94	80-120	0.07	20	
idmium	172	1.82	mg/kg wet	190.0		90	80-120	4	20	
romium	82.6	3.64	mg/kg wet	87.90		94	80-120	3	20	
ad	134	18.2	mg/kg wet	138.0		97	80-120	2		
ckel	121	9.09	mg/kg wet	127.0		95	80-120	4	20 20	
lenium	328	22.7	mg/kg wet	305.0		107	80-120	4	30	
ver	54.6	1.82	mg/kg wet	58.00		94	80-120	4	20	
allium	91.5	22.7	mg/kg wet	89.80		102	80-120	4	30	
nadium	79.0	3.64	mg/kg wet	81.60		97	80-120	4	20	
nc	163	9.09	mg/kg wet	173.0		94	80-120	5	20	
	100	2.03	mg/ng nec	1, 3.0		J ;	00 120	J	۷۷	
atch CB70234 - 7471B									***************************************	

185 Frances Avenue, Cranston, RI 02910-2211

Blank

Tel: 401-461-7181

Fax: 401-461-4486 • Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Meta	ls						
Batch CB70234 - 7471B										
Mercury	ND	0.033	mg/kg wet				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
LCS						W4400				
Mercury	12.7	1.43	mg/kg wet	15.90		80	80-120			
LCS Dup		····								
Mercury	12.8	1.57	mg/kg wet	15.90		81	80-120	1	20	

ner cur y	12.0	1.57	ing/kg wet 15.90 81 80-120 1 20
	5035/	8260B Volati	ile Organic Compounds / Low Level
Batch CB70321 - 5035			
Blank			
,1,1,2-Tetrachloroethane	ND	0.0050	mg/kg wet
.,1,1-Trichloroethane	ND	0.0050	mg/kg wet
.,1,2,2-Tetrachloroethane	ND	0.0020	mg/kg wet
,1,2-Trichloroethane	ND	0.0050	mg/kg wet
,1-Dichloroethane	ND	0.0050	mg/kg wet
,1-Dichloroethene	ND	0.0050	mg/kg wet
,1-Dichloropropene	ND	0.0050	mg/kg wet
,2,3-Trichlorobenzene	ND	0.0050	mg/kg wet
,2,3-Trichloropropane	ND	0.0050	mg/kg wet
,2,4-Trichlorobenzene	ND	0.0050	mg/kg wet
,2,4-Trimethylbenzene	ND	0.0050	mg/kg wet
,2-Dibromo-3-Chloropropane	ND	0.0050	mg/kg wet
,2-Dibromoethane	ND	0.0050	mg/kg wet
,2-Dichlorobenzene	ND	0.0050	mg/kg wet
,2-Dichloroethane	ND	0.0050	mg/kg wet
,2-Dichloropropane	ND	0.0050	mg/kg wet
,3,5-Trimethylbenzene	ND	0.0050	mg/kg wet
,3-Dichlorobenzene	ND	0.0050	mg/kg wet
,3-Dichloropropane	ND	0.0050	mg/kg wet
,4-Dichlorobenzene	ND	0.0050	mg/kg wet
,4-Dioxane	ND	0.100	mg/kg wet
,2-Dichloropropane	ND	0.0050	mg/kg wet
-Butanone	ND	0.0100	mg/kg wet
-Chlorotoluene	ND	0.0050	mg/kg wet
Hexanone	ND	0.0100	mg/kg wet
-Chlorotoluene	ND	0.0050	mg/kg wet
-Isopropyltoluene	ND	0.0050	mg/kg wet
-Methyl-2-Pentanone	ND	0.0100	mg/kg wet
cetone	ND	0.0100	mg/kg wet
enzene	ND	0.0050	mg/kg wet
romobenzene	ND	0.0050	mg/kg wet
romochloromethane	ND	0.0050	mg/kg wet
romodichloromethane	ND	0.0050	mg/kg wet
romoform	ND	0.0050	mg/kg wet
romomethane	ND	0.0100	mg/kg wet

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

Qualifier

RPD

Limit

CERTIFICATE OF ANALYSIS

Result

MRL

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

Analyte

Surrogate: 1,2-Dichloroethane-d4

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,1,1-Trichloroethane

LCS

ESS Laboratory Work Order: 1702041

%REC

%REC

Limits

RPD

Quality Control Data

Units

Spike

Level

Source

Result

	5035/8	260B Volati	le Organic Compounds / Low Level	
Batch CB70321 - 5035				
Carbon Disulfide	ND	0.0050	mg/kg wet	
Carbon Tetrachloride	ND	0.0050	mg/kg wet	
Chlorobenzene	ND	0.0050	mg/kg wet	
Chloroethane	ND	0.0100	mg/kg wet	
Chloroform	ND	0.0050	mg/kg wet	
Chloromethane	ND	0.0100	mg/kg wet	
cis-1,2-Dichloroethene	ND	0.0050	mg/kg wet	
cis-1,3-Dichloropropene	ND	0.0050	mg/kg wet	
Dibromochloromethane	ND	0.0020	mg/kg wet	
Dibromomethane	ND	0.0050	mg/kg wet	
Dichlorodifluoromethane	ND	0.0100	mg/kg wet	
Diethyl Ether	ND	0.0050	mg/kg wet	
Di-isopropyl ether	ND	0.0050	mg/kg wet	
Ethyl tertiary-butyl ether	ND	0.0050	mg/kg wet	
Ethylbenzene	ND	0.0050	mg/kg wet	
Hexachlorobutadiene	ND	0.0050	mg/kg wet	
Isopropylbenzene	ND	0.0050	mg/kg wet	
Methyl tert-Butyl Ether	ND	0.0050	mg/kg wet	
Methylene Chloride	ND	0.0100	mg/kg wet	
Naphthalene	ND	0.0050	mg/kg wet	
n-Butylbenzene	ND	0.0050	mg/kg wet	
n-Propylbenzene	ND	0.0050	mg/kg wet	
sec-Butylbenzene	ND	0.0050	mg/kg wet	
Styrene	ND	0.0050	mg/kg wet	
tert-Butylbenzene	ND	0.0050	mg/kg wet	
Tertiary-amyl methyl ether	ND	0.0050	mg/kg wet	
Tetrachloroethene	ND	0.0050	mg/kg wet	
Tetrahydrofuran	ND	0.0050	mg/kg wet	
Toluene	ND	0.0050	mg/kg wet	
trans-1,2-Dichloroethene	ND	0.0050	mg/kg wet	
trans-1,3-Dichloropropene	ND	0.0050	mg/kg wet	
Trichloroethene	ND	0.0050	mg/kg wet	
Trichlorofluoromethane	ND	0.0050	mg/kg wet	
Vinyl Chloride	ND	0.0100	mg/kg wet	
Xylene O	ND	0.0050	mg/kg wet	
Xylene P,M	ND	0.0100	mg/kg wet	
Xylenes (Total)	ND	0.0100	mg/kg wet	

0.0434

0.0466

0.0451

0.0495

0.0449

0.0416

0.0443

mg/kg wet

mg/kg wet

mg/kg wet

mg/kg wet

mg/kg wet

mg/kg wet

87

93

90

99

90

83

70-130

70-130

70-130

70-130

70-130

70-130

70-130

0.0050

0.0050

0.0020

0.05000

0.05000

0.05000

0.05000

0.05000

0.05000

0.05000

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Batch CB70321 - 5035				4,000		
1,1,2-Trichloroethane	0.0410	0.0050	mg/kg wet	0.05000	82	70-130
1,1-Dichloroethane	0.0402	0.0050	mg/kg wet	0.05000	80	70-130
1,1-Dichloroethene	0.0414	0.0050	mg/kg wet	0.05000	83	70-130
1,1-Dichloropropene	0.0422	0.0050	mg/kg wet	0.05000	84	70-130
1,2,3-Trichlorobenzene	0.0468	0.0050	mg/kg wet	0.05000	94	70-130
1,2,3-Trichloropropane	0.0434	0.0050	mg/kg wet	0.05000	87	70-130
1,2,4-Trichlorobenzene	0.0477	0.0050	mg/kg wet	0.05000	95	70-130
1,2,4-Trimethylbenzene	0.0452	0.0050	mg/kg wet	0.05000	90	70-130
1,2-Dibromo-3-Chloropropane	0.0426	0.0050	mg/kg wet	0.05000	85	70-130
1,2-Dibromoethane	0.0452	0.0050	mg/kg wet	0.05000	90	70-130
1,2-Dichlorobenzene	0.0435	0.0050	mg/kg wet	0.05000	87	70-130
,2-Dichloroethane	0.0409	0.0050	mg/kg wet	0.05000	82	70-130
1,2-Dichloropropane	0.0399	0.0050	mg/kg wet	0.05000	80	70-130
1,3,5-Trimethylbenzene	0.0454	0.0050	mg/kg wet	0.05000	91	70-130
.,3-Dichlorobenzene	0.0437	0.0050	mg/kg wet	0.05000	87	70-130
,3-Dichloropropane	0.0465	0.0050	mg/kg wet	0.05000	93	70-130
4-Dichlorobenzene	0.0427	0.0050	mg/kg wet	0.05000	85	70-130
,4-Dioxane	0.760	0.100	mg/kg wet	1.000	76	70-130
2-Dichloropropane	0.0411	0.0050	mg/kg wet	0.05000	82	70-130
Butanone	0.202	0.0100	mg/kg wet	0.2500	81	70-130
Chlorotoluene	0.0437	0.0050	mg/kg wet	0.05000	87	70-130
Hexanone	0.202	0.0100	mg/kg wet	0.2500	81	70-130
Chlorotoluene	0.0449	0.0050	mg/kg wet	0.05000	90	70-130
Isopropyltoluene	0.0452	0.0050	mg/kg wet	0.05000	90	70-130
Methyl-2-Pentanone	0.191	0.0100	mg/kg wet	0.2500	76	70-130
retone	0.179	0.0100	mg/kg wet	0.2500	71	70-130
enzene	0.0408	0.0050	mg/kg wet	0.05000	82	70-130
romobenzene	0.0446	0.0050	mg/kg wet	0.05000	89	70-130
omochloromethane	0.0414	0.0050	mg/kg wet	0.05000	83	70-130
romodichloromethane	0.0422	0.0050	mg/kg wet	0.05000	84	70-130
remoform	0.0381	0.0050	mg/kg wet	0.05000	76	70-130
romomethane	0.0440	0.0100	mg/kg wet	0.05000	88	70-130
arbon Disulfide	0.0414	0.0050	mg/kg wet	0.05000	83	70-130
arbon Tetrachloride	0.0413	0.0050	mg/kg wet	0.05000	83	70-130
hlorobenzene	0.0431	0.0050	mg/kg wet	0.05000	86	70-130
hloroethane	0.0405	0.0100	mg/kg wet	0.05000	81	70-130
hloroform	0.0407	0.0050	mg/kg wet	0.05000	81	70-130
nloromethane	0.0388	0.0100	mg/kg wet	0.05000	78	70-130
is-1,2-Dichloroethene	0.0443	0.0050	mg/kg wet	0.05000	89	70-130
s-1,3-Dichloropropene	0.0402	0.0050	mg/kg wet	0.05000	80	70-130
ibromochloromethane	0.0402	0.0020	mg/kg wet	0.05000	80	70-130
ibromomethane	0.0413	0.0050	mg/kg wet	0.05000	83	70-130
ichlorodifluoromethane	0.0396	0.0100	mg/kg wet	0.05000	79	70-130
Diethyl Ether	0.0425	0.0050	mg/kg wet	0.05000	85	70-130
i-isopropyl ether	0.0421	0.0050	mg/kg wet	0.05000	84	70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	5035/8	8260B Volati	le Organic C	ompound	s / Low L	evel				
Batch CB70321 - 5035										***************************************
thyl tertiary-butyl ether	0.0421	0.0050	mg/kg wet	0.05000		84	70-130			
Ethylbenzene	0.0453	0.0050	mg/kg wet	0.05000		91	70-130			
Hexachlorobutadiene	0.0437	0.0050	mg/kg wet	0.05000		87	70-130			
sopropylbenzene	0.0428	0.0050	mg/kg wet	0.05000		86	70-130			
1ethyl tert-Butyl Ether	0.0424	0.0050	mg/kg wet	0.05000		85	70-130			
1ethylene Chloride	0.0400	0.0100	mg/kg wet	0.05000		80	70-130			
laphthalene	0.0433	0.0050	mg/kg wet	0.05000		87	70-130			
a-Butylbenzene	0.0465	0.0050	mg/kg wet	0.05000		93	70-130			
n-Propylbenzene	0.0454	0.0050	mg/kg wet	0.05000		91	70-130			
ec-Butylbenzene	0.0442	0.0050	mg/kg wet	0.05000		88	70-130			
ityrene	0.0410	0.0050	mg/kg wet	0.05000		82	70-130			
ert-Butylbenzene	0.0451	0.0050	mg/kg wet	0.05000		90	70-130			
ertiary-amyl methyl ether	0.0418	0.0050	mg/kg wet	0.05000		84	70-130			
etrachloroethene	0.0358	0.0050	mg/kg wet	0.05000		72	70-130			
etrahydrofuran	0.0397	0.0050	mg/kg wet	0.05000		79	70-130			
oluene	0.0416	0.0050	mg/kg wet	0.05000		83	70-130			
ans-1,2-Dichloroethene	0.0363	0.0050	mg/kg wet	0.05000		73	70-130			
rans-1,3-Dichloropropene	0.0375	0.0050	mg/kg wet	0.05000		75	70-130			
richloroethene	0.0401	0.0050	mg/kg wet	0.05000		80	70-130			
richlorofluoromethane	0.0349	0.0050	mg/kg wet	0.05000		70	70-130			
inyl Chloride	0.0407	0.0100	mg/kg wet	0.05000		81	70-130			
ylene O	0.0450	0.0050	mg/kg wet	0.05000		90	70-130			
ylene P,M	0.0895	0.0100	mg/kg wet	0.1000		89	70-130			
ylenes (Total)	0.134	0.0100	mg/kg wet							
urrogate: 1,2-Dichloroethane-d4	0.0430		mg/kg wet	0.05000		86	70-130			
Turrogate: 4-Bromofluorobenzene	0.0468		mg/kg wet	0.05000		94	70-130			
urrogate: Dibromofluoromethane	0.0447		mg/kg wet	0.05000		89	70-130			
urrogate: Toluene-d8	0.0480		mg/kg wet	0.05000		96	70-130			
CS Dup	**************************************									
1,1,2-Tetrachloroethane	0.0489	0.0050	mg/kg wet	0.05000		98	70-130	9	25	
1,1-Trichloroethane	0.0441	0.0050	mg/kg wet	0.05000		88	70-130	6	25	
1,2,2-Tetrachloroethane	0.0512	0.0020	mg/kg wet	0.05000		102	70-130	14	25	
1,2-Trichloroethane	0.0456	0.0050	mg/kg wet	0.05000		91	70-130	11	25	
1-Dichloroethane	0.0427	0.0050	mg/kg wet	0.05000		85	70-130	6	25	
1-Dichloroethene	0.0441	0.0050	mg/kg wet	0.05000		88	70-130	6	25	
1-Dichloropropene	0.0449	0.0050	mg/kg wet	0.05000		90	70-130	6	25	
2,3-Trichlorobenzene	0.0521	0.0050	mg/kg wet	0.05000		104	70-130	11	25	
2,3-Trichloropropane	0.0507	0.0050	mg/kg wet	0.05000		101	70-130	15	25	
2,4-Trichlorobenzene	0.0528	0.0050	mg/kg wet	0.05000		106	70-130	10	25	
2,4-Trimethylbenzene	0.0483	0.0050	mg/kg wet	0.05000		97	70-130	7	25	
2-Dibromo-3-Chloropropane	0.0533	0.0050	mg/kg wet	0.05000		107	70-130	22	25	
2-Dibromoethane	0.0510	0.0050	mg/kg wet	0.05000		102	70-130	12	25	
2-Dichlorobenzene	0.0470	0.0050	mg/kg wet	0.05000		94	70-130	8	25	
2-Dichloroethane	0.0447	0.0050	mg/kg wet	0.05000		89	70-130	9	25	
	3.0117	0.0050		3.55500		86	70-130	-	~ 3	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	5035/8	260B Volatil	e Organic C	Compound	ls / Low L	evel				

Batch CB70321 - 5035						***************************************			
1,3,5-Trimethylbenzene	0.0486	0.0050	mg/kg wet	0.05000	97	70-130	7	25	***************************************
1,3-Dichlorobenzene	0.0464	0.0050	mg/kg wet	0.05000	93	70-130	6	25	
1,3-Dichloropropane	0.0517	0.0050	mg/kg wet	0.05000	103	70-130	11	25	
1,4-Dichlorobenzene	0.0469	0.0050	mg/kg wet	0.05000	94	70-130	9	25	
1,4-Dioxane	0.936	0.100	mg/kg wet	1.000	94	70-130	21	20	D+
2,2-Dichloropropane	0.0434	0.0050	mg/kg wet	0.05000	87	70-130	5	25	
2-Butanone	0.238	0.0100	mg/kg wet	0.2500	95	70-130	16	25	
2-Chlorotoluene	0.0473	0.0050	mg/kg wet	0.05000	95	70-130	8	25	
-Hexanone	0.250	0.0100	mg/kg wet	0.2500	100	70-130	21	25	
-Chlorotoluene	0.0477	0.0050	mg/kg wet	0.05000	95	70-130	6	25	
-Isopropyltoluene	0.0482	0.0050	mg/kg wet	0.05000	96	70-130	6	25	
-Methyl-2-Pentanone	0.230	0.0100	mg/kg wet	0.2500	92	70-130	19	25	
cetone	0.231	0.0100	mg/kg wet	0.2500	92	70-130	26	25	D+
enzene	0.0435	0.0050	mg/kg wet	0.05000	87	70-130	6	25	
romobenzene	0.0486	0.0050	mg/kg wet	0.05000	97	70-130	8	25	
romochloromethane	0.0455	0.0050	mg/kg wet	0.05000	91	70-130	9	25	
romodichloromethane	0.0459	0.0050	mg/kg wet	0.05000	92	70-130	8	25	
romoform	0.0425	0.0050	mg/kg wet	0.05000	85	70-130	11	25	
romomethane	0.0461	0.0100	mg/kg wet	0.05000	92	70-130	5	25	
arbon Disulfide	0.0436	0.0050	mg/kg wet	0.05000	87	70-130	5	25	
erbon Tetrachloride	0.0443	0.0050	mg/kg wet	0.05000	89	70-130	7	25	
nlorobenzene	0.0460	0.0050	mg/kg wet	0.05000	92	70-130	6	25	
nloroethane	0.0429	0.0100	mg/kg wet	0.05000	86	70-130	6	25	
aloroform	0.0435	0.0050	mg/kg wet	0.05000	87	70-130	7	25	
iloromethane	0.0410	0.0100	mg/kg wet	0.05000	82	70-130	6	25	
5-1,2-Dichloroethene	0.0474	0.0050	mg/kg wet	0.05000	95	70-130	7	25	
:-1,3-Dichloropropene	0.0436	0.0050	mg/kg wet	0.05000	87	70-130	8	25	
bromochloromethane	0.0441	0.0020	mg/kg wet	0.05000	88	70-130	9		
bromomethane	0.0452	0.0020		0.05000				25	
chlorodifluoromethane	0.0412	0.0100	mg/kg wet mg/kg wet	0.05000	90 82	70-130	9	25	
ethyl Ether	0.0478	0.0050				70-130	4	25	
-isopropyl ether	0.0478	0.0050	mg/kg wet	0.05000	96	70-130	12	25	
hyl tertiary-butyl ether			mg/kg wet	0.05000	92	70-130	9	25	
hylbenzene	0.0466	0.0050	mg/kg wet	0.05000	93	70-130	10	25	
exachlorobutadiene	0.0485	0.0050	mg/kg wet	0.05000	97	70-130	7	25	
opropylbenzene	0.0475	0.0050	mg/kg wet	0.05000	95	70-130	8	25	
	0.0457	0.0050	mg/kg wet	0.05000	91	70-130	6	25	
ethyl tert-Butyl Ether	0.0481	0.0050	mg/kg wet	0.05000	96	70-130	12	25	
ethylene Chloride	0.0430	0.0100	mg/kg wet	0.05000	86	70-130	7	25	
phthalene	0.0513	0.0050	mg/kg wet	0.05000	103	70-130	17	25	
Butylbenzene	0.0499	0.0050	mg/kg wet	0.05000	100	70-130	7	25	
Propylbenzene	0.0484	0.0050	mg/kg wet	0.05000	97	70-130	6	25	
c-Butylbenzene	0.0471	0.0050	mg/kg wet	0.05000	94	70-130	6	25	
yrene	0.0445	0.0050	mg/kg wet	0.05000	89	70-130	8	25	
rt-Butylbenzene	0.0482	0.0050	mg/kg wet	0.05000	96	70-130	7	25	
ertiary-amyl methyl ether	0.0470	0.0050	mg/kg wet	0.05000	94	70-130	12	25	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	5035/	8260B Volati	le Organic C	ompound	s / Low L	evel.				***************************************
Batch CB70321 - 5035		***************************************							***************************************	
Tetrachloroethene	0.0384	0.0050	mg/kg wet	0.05000		77	70-130	7	25	
Tetrahydrofuran	0.0488	0.0050	mg/kg wet	0.05000		98	70-130	21	25	
Toluene	0.0443	0.0050	mg/kg wet	0.05000		89	70-130	6	25	
trans-1,2-Dichloroethene	0.0389	0.0050	mg/kg wet	0.05000		78	70-130	7	25	
trans-1,3-Dichloropropene	0.0417	0.0050	mg/kg wet	0.05000		83	70-130	11	25	
Trichloroethene	0.0426	0.0050	mg/kg wet	0.05000		85	70-130	6	25	
Trichlorofluoromethane	0.0366	0.0050	mg/kg wet	0.05000		73	70-130	5	25	
Vinyl Chloride	0.0427	0.0100	mg/kg wet	0.05000		85	70-130	5	25	
Kylene O	0.0478	0.0050	mg/kg wet	0.05000		96	70-130	6	25	
Xylene P,M	0.0957	0.0100	mg/kg wet	0.1000		96	70-130	7	25	
Xylenes (Total)	0.143	0.0100	mg/kg wet							
Surrogate: 1,2-Dichloroethane-d4	0.0434		mg/kg wet	0.05000		87	70-130			
Surrogate: 4-Bromofluorobenzene	0.0469		mg/kg wet	0.05000		94	70-130			
Surrogate: Dibromofluoromethane	0.0447		mg/kg wet	0.05000		89	70-130			
Surrogate: Toluene-d8	0.0480		mg/kg wet	0.05000		96	70-130			
		8082A Poly	chlorinated E	3iphenyls	(PCB)					
Batch CB70607 - 3540										
Blank										
vroclor 1016	ND	0.0500	mg/kg wet		***************************************					
roclor 1221	ND	0.0500	mg/kg wet							
- 1- 42PP										
Arocior 1232	ND	0.0500	mg/kg wet							
	ND ND	0.0500 0.0500	mg/kg wet mg/kg wet							
Aroclor 1242										
Aroclor 1242 Aroclor 1248	ND	0.0500	mg/kg wet							
Arocior 1242 Arocior 1248 Arocior 1254	ND ND	0.0500 0.0500	mg/kg wet mg/kg wet							
Arocior 1242 Arocior 1248 Arocior 1254 Arocior 1260	ND ND ND	0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet							
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262	ND ND ND	0.0500 0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet mg/kg wet							
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	ND ND ND ND	0.0500 0.0500 0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	0.02500		81	30-150			
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Surrogate: Decachlorobiphenyl	ND ND ND ND ND	0.0500 0.0500 0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	0.02500 0.02500		81 93	30-150 30-150			
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl [2C]	ND ND ND ND ND ND	0.0500 0.0500 0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet							
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl [2C] Surrogate: Tetrachloro-m-xylene	ND ND ND ND ND ND	0.0500 0.0500 0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	0.02500		93	30-150			
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Sourrogate: Decachlorobiphenyl Sourrogate: Tetrachloro-m-xylene Sourrogate: Tetrachloro-m-xylene Sourrogate: Tetrachloro-m-xylene [2C]	ND ND ND ND ND ND 0.0204 0.0233 0.0193	0.0500 0.0500 0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	0.02500 0.02500		93 77	30-150 30-150			
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl [2C] Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene [2C] Aroclor 1016	ND ND ND ND ND ND 0.0204 0.0233 0.0193	0.0500 0.0500 0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	0.02500 0.02500		93 77	30-150 30-150			
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene [2C] CCS	ND ND ND ND ND 0.0204 0.0233 0.0193 0.0217	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	0.02500 0.02500 0.02500		93 77 87	30-150 30-150 30-150			
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl [2C] Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene [2C]	ND ND ND ND ND 0.0204 0.0233 0.0193 0.0217	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	0.02500 0.02500 0.02500 0.5000		93 77 87 86	30-150 30-150 30-150 40-140			
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Surrogate: Decachlorobiphenyl Surrogate: Decachloro-m-xylene Surrogate: Tetrachloro-m-xylene [2C] Aroclor 1016 Aroclor 1260	ND ND ND ND ND 0.0204 0.0233 0.0193 0.0217	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	0.02500 0.02500 0.02500 0.5000		93 77 87 86 86	30-150 30-150 30-150 40-140 40-140			
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene [2C] Aroclor 1016 Aroclor 1260	ND ND ND ND ND 0.0204 0.0233 0.0193 0.0217	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	0.02500 0.02500 0.02500 0.5000 0.5000		93 77 87 86 86	30-150 30-150 30-150 40-140 40-140 30-150			
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene [2C] Aroclor 1016 Aroclor 1260 Surrogate: Decachlorobiphenyl	ND ND ND ND ND 0.0204 0.0233 0.0193 0.0217	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	0.02500 0.02500 0.02500 0.5000 0.5000 0.02500 0.02500		93 77 87 86 86 86	30-150 30-150 30-150 40-140 40-140 30-150 30-150			
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene [2C] CS Aroclor 1016 Aroclor 1260 Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene	ND ND ND ND 0.0204 0.0233 0.0193 0.0217 0.429 0.431 0.0212 0.0242 0.0247	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	0.02500 0.02500 0.02500 0.5000 0.5000 0.02500 0.02500 0.02500		93 77 87 86 86 85 97 87	30-150 30-150 30-150 40-140 40-140 30-150 30-150 30-150			
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene [2C] CCS Aroclor 1016 Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl [2C] Surrogate: Tetrachloro-m-xylene	ND ND ND ND 0.0204 0.0233 0.0193 0.0217 0.429 0.431 0.0212 0.0242 0.0247	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet	0.02500 0.02500 0.02500 0.5000 0.5000 0.02500 0.02500 0.02500		93 77 87 86 86 85 97 87	30-150 30-150 30-150 40-140 40-140 30-150 30-150 30-150	5	30	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

Substitution Subs	Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Managetic Places relative subjective project 0.02221 mig/ng wet 0.025030 181 30-159 191 191-159 19		. 135							,	-ame	- Coamo
Managetic Places relative subjective project 0.02221 mig/ng wet 0.025030 181 30-159 191 191-159 19	Patril CP70607 2540						***************************************		***************************************		
Company Comp	Batch CB/0607 - 3540						***************************************				
MADEP-EPH Extractation m-systems 0.0227 mg/kg wet 0.02507 89 30-169	Surrogate: Decachlorobiphenyl										
MADEP-EPH Extractable Petroleum Hydrocarbons	Surrogate: Decachlorobiphenyl [2C]										
### MADEP-EPH Extractable Petroleum Hydrocarbons #### MADEP-EPH Extractable Petroleum Hydrocarbons ###################################	Surrogate: Tetrachloro-m-xylene										
Section (23) NO 0.5 mg/sq wet section (23) NO 0.5 mg/sq wet section (23) NO 0.5 mg/sq wet section (23) NO 0.5 mg/sq wet section (23) NO 0.5 mg/sq wet section (24) NO 0.5 mg/sq wet section (25) NO 0.5 mg/sq wet section (26) NO 0.6 mg/sq wet section (26) NO 0.6 mg/sq wet sectio	Surrogate: Tetrachloro-m-xylene [2C]		FP-FPH Fyti			drocarbo		30-150			
19-C35 Alphabacis				- Cur	olculli i i j	urocar bo					
19-CEA Miphates1 ND 15.0 mg/kg wet seame (CLO) ND 0.5 mg/kg wet seame (CLO) ND 0.5 mg/kg wet seame (CLO) ND 0.5 mg/kg wet seame (CLO) ND 0.5 mg/kg wet seame (CLO) ND 0.5 mg/kg wet seame (CLO) ND 0.5 mg/kg wet seame (CLO) ND 0.5 mg/kg wet seamed (CLO) mg/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed (CLO) MG/kg wet seamed	Batch CB70307 - 3546										
P-CLE Alphatics1 ND 15.0 mg/kg wet cacane (CLI) ND 0.5 mg/kg wet cocasane (C22) ND 0.5 mg/kg wet cocasane (C12) ND 0.5 mg/kg wet cocasane (C12) ND 0.5 mg/kg wet cocasane (C12) ND 0.5 mg/kg wet cocasane (C16) ND 0.5 mg/kg wet cocasane (C16) ND 0.5 mg/kg wet cocasane (C16) ND 0.5 mg/kg wet cocasane (C16) ND 0.5 mg/kg wet cocasane (C16) ND 0.5 mg/kg wet cocasane (C16) ND 0.5 mg/kg wet cocasane (C16) ND 0.5 mg/kg wet cocasane (C19) ND 0.5 mg/kg wet cocasane (C20) ND 0.5 mg/kg w	Blank										
Part Part				mg/kg wet							
coccame (C22) ND 0.5 mg/kg wet codecame (C12) ND 0.5 mg/kg wet coccame (C20) ND 0.5 mg/kg wet exectosame (C26) ND 0.5 mg/kg wet exectosame (C36) ND 0.5 mg/kg wet condectane (C19) ND 0.5 mg/kg wet condectane (C39) ND 0.5 mg/kg wet citadecane (C18) ND 0.5 mg/kg wet citadecane (C18) ND 0.5 mg/kg wet citadecane (C18) ND 0.5 mg/kg wet citadecane (C19) ND 0.5 mg/kg wet citadecane (C14) ND 0.5 mg/kg wet citadecane (C24) ND 0.5 mg/kg wet sterosane (C20) ND 0.5 mg/kg wet sterosane (C24) ND 0.5 mg/kg wet sterosane (C29) ND 0.5 mg/kg wet sterosane (C29) ND 0.0 mg/kg wet	C9-C18 Aliphatics1										
coleraire (C12) ND 0.5 mg/kg wet cosame (C20) ND 0.5 mg/kg wet exactocation (C36) ND 0.5 mg/kg wet exactocation (C16) ND 0.5 mg/kg wet exactocation (C19) ND 0.5 mg/kg wet onance (C39) ND 0.5 mg/kg wet onance (C39) ND 0.5 mg/kg wet stracosiane (C24) ND 0.5 mg/kg wet stracosiane (C24) ND 0.5 mg/kg wet stracosiane (C24) ND 0.5 mg/kg wet stracosiane (C24) ND 0.5 mg/kg wet stracosiane (C24) ND 0.5 mg/kg wet stracosiane (C24) ND 0.5 mg/kg wet stracosiane (C24) ND 0.5 mg/kg wet stracosiane (C36) ND 0.5 mg/kg wet stracosiane (C42) ND 0.5 mg/kg wet stracosiane (C34) ND 0.5 mg/kg wet	Decane (C10)										
Mo											
exacosane (C26) ND 0.5 mg/kg wet sexidecane (C16) ND 0.5 mg/kg wet sexidecane (C16) ND 0.5 mg/kg wet sexidecane (C19) ND 0.5 mg/kg wet sexidecane (C19) ND 0.5 mg/kg wet sexidecane (C28) ND 0.5 mg/kg wet sexidecane (C28) ND 0.5 mg/kg wet sexidecane (C28) ND 0.5 mg/kg wet sexidecane (C28) ND 0.5 mg/kg wet sexidecane (C18) ND 0.5 mg/kg wet sexidecane (C14) ND 0.5 mg/kg wet sexidecane (C14) ND 0.5 mg/kg wet sexidecane (C14) ND 0.5 mg/kg wet sexidecane (C14) ND 0.5 mg/kg wet sexidecane (C14) ND 0.5 mg/kg wet sexidecane (C14) ND 0.5 mg/kg wet sexidecane (C14) ND 0.5 mg/kg wet sexidecane (C14) ND 0.5 mg/kg wet sexidecane (C14) ND 0.5 mg/kg wet sexidecane (C14) ND 0.5 mg/kg wet sexidecane (C14) ND 0.5 mg/kg wet sexidecane (C14) ND 0.5 mg/kg wet sexidecane (C14) ND 0.5 mg/kg wet sexidecane (C14) ND 0.40 mg/kg wet sexid											
exadecane (C16) ND 0.5 mg/kg wet exadriscontane (C36) ND 0.5 mg/kg wet nonancecane (C19) ND 0.5 mg/kg wet nonancecane (C29) ND 0.5 mg/kg wet extracosane (C28) ND 0.5 mg/kg wet extracosane (C28) ND 0.5 mg/kg wet extracosane (C28) ND 0.5 mg/kg wet extracosane (C24) ND 0.5 mg/kg wet extracosane (C30) ND 0.5 mg/kg wet extracosane (C30) ND 0.5 mg/kg wet extracosane (C30) ND 0.5 mg/kg wet extracosane (C30) ND 0.5 mg/kg wet extracosane (C30) ND 0.5 mg/kg wet extracosane (C30) ND 0.5 mg/kg wet extracosane (C30) ND 0.5 mg/kg wet extracosane (C30) ND 0.5 mg/kg wet extracosane (C30) ND 0.5 mg/kg wet extracosane (C30) ND 0.5 mg/kg wet extracosane (C30) ND 0.5 mg/kg wet extracosane (C30) ND 0.5 mg/kg wet extracosane (C30) ND 0.5 mg/kg wet extracosane (C30) Mg/k											
exetriacontane (C16) ND 0.5 mg/kg wet onadecane (C19) ND 0.5 mg/kg wet onadecane (C19) ND 0.5 mg/kg wet onadecane (C19) ND 0.5 mg/kg wet onadecane (C18) ND 0.5 mg/kg wet otadecane (C18) ND 0.5 mg/kg wet otadecane (C18) ND 0.5 mg/kg wet otadecane (C14) ND 0.5 mg/kg wet otadecane (C14) ND 0.5 mg/kg wet otadecane (C14) ND 0.5 mg/kg wet otadecane (C14) ND 0.5 mg/kg wet otadecane (C14) ND 0.5 mg/kg wet otadecane (C14) ND 0.5 mg/kg wet otadecane (C14) ND 0.5 mg/kg wet otadecane (C19) ND 0.5 mg/kg wet otadecane (C19) ND 0.5 mg/kg wet otadecane (C19) ND 0.5 mg/kg wet otadecane (C19) ND 0.5 mg/kg wet otadecane (C19) ND 0.5 mg/kg wet otadecane (C19) ND 0.5 mg/kg wet otadecane (C19) ND 0.40 mg/kg wet otage (C19) ND 0.40 mg/kg w											
ND											
ND 0.5 mg/kg wet											
tadosane (C28) ND 0.5 mg/kg wet tadosane (C18) ND 0.5 mg/kg wet tadosane (C19) ND 0.5 mg/kg wet tadosane (C24) ND 0.5 mg/kg wet tadosane (C14) ND 0.5 mg/kg wet tadosane (C14) ND 0.5 mg/kg wet tadosane (C14) ND 0.5 mg/kg wet tadosane (C14) ND 0.5 mg/kg wet tadosane (C19) ND 0.5 mg/kg wet tadosane (C19) ND 0.5 mg/kg wet tadosane (C19) ND 0.5 mg/kg wet tadosane (C19) ND 0.5 mg/kg wet tadosane (C19) ND 0.5 mg/kg wet tadosane (C19) ND 0.5 mg/kg wet tadosane (C19) ND 0.40 mg/kg wet tadosane (C19)											
tadecane (C18) ND 0.5 mg/kg wet etracesane (C24) ND 0.5 mg/kg wet etracesane (C24) ND 0.5 mg/kg wet etracesane (C14) ND 0.5 mg/kg wet etracesane (C30) ND 0.5 mg/kg wet etracesane (C30) ND 0.5 mg/kg wet etracesane (C30) ND 0.5 mg/kg wet etracesane (C30) ND 0.5 mg/kg wet etracesane (C30) ND 0.5 mg/kg wet etracesane (C30) ND 0.5 mg/kg wet etracesane (C30) ND 0.5 mg/kg wet etracesane (C30) ND 0.20 mg/kg wet etracesane (C30) ND 0.40 mg/k											
### accordance (C24) ND 0.5 mg/kg wet ### accordance (C14) ND 0.5 mg/kg wet ### accordance (C30) ND 0.5 mg/kg wet ### accordance (C30) ND 0.5 mg/kg wet ### accordance (C30) ND 0.5 mg/kg wet ### accordance (C30) ***********************************											
Mode No.											
1.45 mg/kg wet 2.000 73 40-140											
mg/kg wet 2,000 73 40-140											
Methylraphthalene ND 0.20 mg/kg wet senaphthene ND 0.40 mg/kg wet senaphthylene ND 0.20 mg/kg wet sthracene ND 0.40 mg/kg wet straco(a)anthracene ND 0.40 mg/kg wet straco(a)pyrene ND 0.40 mg/kg wet straco(g)fluoranthene ND 0.40 mg/kg wet straco(g,flu)perylene ND 0.40 mg/kg wet straco(k)fluoranthene ND 0.40 mg/kg wet straco(k)fluoranthene ND 0.40 mg/kg wet strysene ND 15.0 mg/kg wet strysene ND 0.40 mg/kg wet stroco(a,h)Anthracene ND 0.40 mg/kg wet storaphthylene ND 0.40 mg/kg wet storaphthylene ND 0.40 mg/kg wet storaphthylene ND 0.40 mg/kg wet storaphthylene ND 0.40	nacontaile (C30)	NO	0.5	mg/kg wet	***************************************			····			
Methylnaphthalene ND 0.20 mg/kg wet denaphthene ND 0.40 mg/kg wet denaphthylene ND 0.40 mg/kg wet ditracene ND 0.40 mg/kg wet divo(a)anthracene ND 0.40 mg/kg wet divo(a)pyrene ND 0.40 mg/kg wet divo(a)pyrene ND 0.40 mg/kg wet divo(a)pyrene ND 0.40 mg/kg wet divo(a)pyrene ND 0.40 mg/kg wet divo(a)pyrene ND 0.40 mg/kg wet divo(a)pyrene ND 0.40 mg/kg wet divo(a)pyrene ND 0.40 mg/kg wet divo(a)pyrene ND 0.40 mg/kg wet divo(a)pyrene ND 0.40 mg/kg wet divo(a)pyrene ND 0.40 mg/kg wet divo(a)pyrene ND 0.40 mg/kg wet divo(a)pyrene ND 0.40 mg/kg wet <t< td=""><td>Gurrogate: 1-Chlorooctadecane</td><td>1.45</td><td></td><td>mg/kg wet</td><td>2.000</td><td></td><td>73</td><td>40-140</td><td>North Walt William Inches</td><td></td><td></td></t<>	Gurrogate: 1-Chlorooctadecane	1.45		mg/kg wet	2.000		73	40-140	North Walt William Inches		
genaphthene ND 0.40 mg/kg wet genaphthylene ND 0.20 mg/kg wet genaphthylene ND 0.40 mg/kg wet genzo(a)anthracene ND 0.40 mg/kg wet genzo(a)pyrene ND 0.40 mg/kg wet genzo(g,h,i)perylene ND 0.40 mg/kg wet genzo(k)fluoranthene ND 0.40 mg/kg wet genzo(k)fluoranthene ND 0.40 mg/kg wet genzo(k)fluoranthene ND 15.0 mg/kg wet genzo(k)fluoranthene ND 15.0 mg/kg wet genzo(k)fluoranthene ND 15.0 mg/kg wet genzo(k)fluoranthene ND 0.40 mg/kg wet genzo(k)fluoranthene ND 0.40 mg/kg wet genzo(k)fluoranthene ND 0.40 mg/kg wet genzo(k)fluoranthene ND 0.40 mg/kg wet genzo(k)fluoranthene ND 0.40 mg/kg wet genzo(k)fluoranthene	Blank		**************************************			***************************************					
kenaphthylene ND 0.20 mg/kg wet athracene ND 0.40 mg/kg wet brizo(a)anthracene ND 0.40 mg/kg wet brizo(a)pyrene ND 0.40 mg/kg wet brizo(b)filoranthene ND 0.40 mg/kg wet brizo(g, h,i)perylene ND 0.40 mg/kg wet brizo(k)filoranthene ND 0.40 mg/kg wet brizo(k)filoranthene ND 0.40 mg/kg wet brizo(k)filoranthene ND 0.40 mg/kg wet brizo(k)filoranthene ND 0.40 mg/kg wet brizo(k)filoranthene ND 0.40 mg/kg wet brizo(k)filoranthene ND 0.40 mg/kg wet brizo(k)filoranthene ND 0.40 mg/kg wet brizo(k)filoranthene ND 0.40 mg/kg wet brizo(k)filoranthene ND 0.40 mg/kg wet brizo(k)filoranthene ND 0.40 mg/kg wet brizo(k)filoranthene											
athracene ND 0.40 mg/kg wet enzo(a)anthracene ND 0.40 mg/kg wet enzo(a)pyrene ND 0.40 mg/kg wet enzo(b)fluoranthene ND 0.40 mg/kg wet enzo(g,h,i)perylene ND 0.40 mg/kg wet enzo(k)fluoranthene ND 0.40 mg/kg wet 1-C22 Aromatics1,2 ND 15.0 mg/kg wet 1-C22 Unadjusted Aromatics1 ND 15.0 mg/kg wet erysene ND 0.40 mg/kg wet benzo(a,h)Anthracene ND 0.20 mg/kg wet eroranthene ND 0.40 mg/kg wet erorene ND 0.40 mg/kg wet deno(1,2,3-cd)Pyrene ND 0.40 mg/kg wet											
mzo(a)anthracene ND 0.40 mg/kg wet mzo(a)pyrene ND 0.40 mg/kg wet mzo(g,h,i)perylene ND 0.40 mg/kg wet mzo(g,h,i)perylene ND 0.40 mg/kg wet mzo(k)fluoranthene ND 0.40 mg/kg wet mzo(k)fluoranthene ND 0.40 mg/kg wet mzo(k)fluoranthene ND 0.40 mg/kg wet mzo(k)fluoranthene ND 0.40 mg/kg wet mzo(k)fluoranthene ND 0.40 mg/kg wet mzo(k)fluoranthene ND 0.40 mg/kg wet mzysene ND 0.40 mg/kg wet mzysene ND 0.40 mg/kg wet mzysene ND 0.40 mg/kg wet mzysene ND 0.40 mg/kg wet mzysene ND 0.40 mg/kg wet mzysene mzykg wet mzysene mzykg wet mzysene mzykg wet mzysene mzykg wet mzysene mzykg wet mzysene mzykg wet mzysene mzykg wet mzysene mzykg wet mzysene mzykg wet mzysene mzykg wet											
sinzo(a) pyrene ND 0.40 mg/kg wet sinzo(b) fluoranthene ND 0.40 mg/kg wet sinzo(g,h,i) perylene ND 0.40 mg/kg wet sinzo(k) fluoranthene ND 0.40 mg/kg wet 1-C22 Aromatics1,2 ND 15.0 mg/kg wet 1-C22 Unadjusted Aromatics1 ND 15.0 mg/kg wet sinzysene ND 0.40 mg/kg wet spenzo(a,h)Anthracene ND 0.20 mg/kg wet spenzo(a,h)Anthracene ND 0.40 mg/kg wet spenzo(a,b)Anthracene ND 0.40 mg/kg wet											
Inzo(b)fluoranthene ND 0.40 mg/kg wet Inzo(g,h,i)perylene ND 0.40 mg/kg wet Inzo(k)fluoranthene ND 0.40 mg/kg wet 1-C22 Aromatics1,2 ND 15.0 mg/kg wet 1-C22 Unadjusted Aromatics1 ND 15.0 mg/kg wet Inysene ND 0.40 mg/kg wet Inversional Number ND 0.20 mg/kg wet Inversional Number ND 0.40 mg/kg wet Inversional Number ND 0.40 mg/kg wet Inversional Number ND 0.40 mg/kg wet Inversional Number ND 0.40 mg/kg wet Inversional Number ND 0.40 mg/kg wet Inversional Number ND 0.40 mg/kg wet											
Inzo(g,h,i)perylene ND 0.40 mg/kg wet Inzo(k)fluoranthene ND 0.40 mg/kg wet 1-C22 Aromatics1,2 ND 15.0 mg/kg wet 1-C22 Unadjusted Aromatics1 ND 15.0 mg/kg wet Inzopene ND 0.40 mg/kg wet Incopene ND 0.20 mg/kg wet Incopene ND 0.40 mg/kg wet Incopene ND 0.40 mg/kg wet Indeno(1,2,3-cd)Pyrene ND 0.40 mg/kg wet											
Into(k)fluoranthene ND 0.40 mg/kg wet 1-C22 Aromatics1,2 ND 15.0 mg/kg wet 1-C22 Unadjusted Aromatics1 ND 15.0 mg/kg wet rysene ND 0.40 mg/kg wet penzo(a,h)Anthracene ND 0.20 mg/kg wet poranthene ND 0.40 mg/kg wet porene ND 0.40 mg/kg wet pdeno(1,2,3-cd)Pyrene ND 0.40 mg/kg wet											
1-C22 Aromatics1,2 ND 15.0 mg/kg wet 1-C22 Unadjusted Aromatics1 ND 15.0 mg/kg wet 1-C22 Unadjusted Aromatics1 ND 0.40 mg/kg wet Denzo(a,h)Anthracene ND 0.40 mg/kg wet Denzo(a,h)Anthracene ND 0.40 mg/kg wet Denzo(a,h)Anthracene ND 0.40 mg/kg wet Denzo(a,h)Anthracene ND 0.40 mg/kg wet Denzo(a,h)Anthracene ND 0.40 mg/kg wet Denzo(a,h)Anthracene ND 0.40 mg/kg wet Denzo(a,h)Anthracene ND 0.40 mg/kg wet											
1-C22 Unadjusted Aromatics1 ND 15.0 mg/kg wet mg/kg wet npenzo(a,h)Anthracene ND 0.20 mg/kg wet noranthene ND 0.40 mg/kg wet noranthene ND 0.40 mg/kg wet noranthene ND 0.40 mg/kg wet noranthene ND 0.40 mg/kg wet noranthene ND 0.40 mg/kg wet noranthene ND 0.40 mg/kg wet											
persone ND 0.40 mg/kg wet penzo(a,h)Anthracene ND 0.20 mg/kg wet poranthene ND 0.40 mg/kg wet porene ND 0.40 mg/kg wet pdeno(1,2,3-cd)Pyrene ND 0.40 mg/kg wet											
Denzo(a,h)Anthracene ND 0.20 mg/kg wet poranthene ND 0.40 mg/kg wet porene ND 0.40 mg/kg wet pdeno(1,2,3-cd)Pyrene ND 0.40 mg/kg wet											
poranthene ND 0.40 mg/kg wet porene ND 0.40 mg/kg wet pdeno(1,2,3-cd)Pyrene ND 0.40 mg/kg wet											
vorene ND 0.40 mg/kg wet deno(1,2,3-cd)Pyrene ND 0.40 mg/kg wet											
deno(1,2,3-cd)Pyrene ND 0.40 mg/kg wet											
prinalene ND 0.40 mg/kg wet											
	apnonaiene	ND	0.40	mg/kg wet							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	MAD	EP-EPH Ext	ractable Petro	oleum Hy	/drocarbo	ns		***************************************		
Batch CB70307 - 3546				TC-T-1848 AND TO PER PROSERVA AND AND AND AND AND AND AND AND AND AN						
Phenanthrene	ND	0.40	mg/kg wet			· · · · · · · · · · · · · · · · · · ·				
Pyrene	ND	0.40	mg/kg wet							
Surrogate: 2-Bromonaphthalene	1.33		mg/kg wet	2.000		66	40-140			
Surrogate: 2-Fluorobiphenyl	1.71		mg/kg wet	2.000		85	40-140			
Surrogate: O-Terphenyl	1.74		mg/kg wet	2.000		87	40-140			
LCS				······································		·····	***************************************			
C19-C36 Aliphatics1	13.1	15.0	mg/kg wet	16.00		82	40-140	V-1-1		
C9-C18 Aliphatics1	7.9	15.0	mg/kg wet	12.00		66	40-140			
Decane (C10)	0.9	0.5	mg/kg wet	2.000		47	40-140			
Docosane (C22)	1.6	0.5	mg/kg wet	2.000		80	40-140			
Dodecane (C12)	1.0	0.5	mg/kg wet	2.000		50	40-140			
Eicosane (C20)	1.5	0.5	mg/kg wet	2.000		75	40-140			
Hexacosane (C26)	1.5	0.5	mg/kg wet	2.000		75	40-140			
Hexadecane (C16)	1.3	0.5	mg/kg wet	2.000		66	40-140			
Hexatriacontane (C36)	1.4	0.5	mg/kg wet	2.000		72	40-140			
Nonadecane (C19)	1.5	0.5	mg/kg wet	2.000		75	40-140			
Nonane (C9)	0.8	0.5	mg/kg wet	2.000		38	30-140			
Octacosane (C28)	1.5	0.5	mg/kg wet	2.000		73	40-140			
Octadecane (C18)	1.4	0.5	mg/kg wet	2.000		71	40-140			
Tetracosane (C24)	1.5	0.5	mg/kg wet	2.000		76	40-140			
Tetradecane (C14)	1.1	0.5	mg/kg wet	2.000		57	40-140			
Triacontane (C30)	1.4	0.5	mg/kg wet	2.000		71	40-140			
Surrogate: 1-Chlorooctadecane	1.51		mg/kg wet	2.000		75	40-140			
LCS							***************************************			
2-Methylnaphthalene	1.31	0.20	mg/kg wet	2.000		66	40-140			
Acenaphthene	1.44	0.40	mg/kg wet	2.000		72	40-140			
Acenaphthylene	1.48	0.20	mg/kg wet	2.000		74	40-140			
Anthracene	1.54	0.40	mg/kg wet	2.000		77	40-140			
Benzo(a)anthracene	1.69	0.40	mg/kg wet	2.000		85	40-140			
Benzo(a)pyrene	1.71	0.40	mg/kg wet	2.000		85	40-140			
Benzo(b)fluoranthene	1.50	0.40	mg/kg wet	2.000		75	40-140			
Benzo(g,h,i)perylene	1.68	0.40	mg/kg wet	2.000		84	40-140			
Benzo(k)fluoranthene	1.73	0.40	mg/kg wet	2.000		86	40-140			
C11-C22 Aromatics1,2	6.14	15.0	mg/kg wet							
C11-C22 Unadjusted Aromatics1	32.6	15.0	mg/kg wet	34.00		96	40-140			
Chrysene	1.69	0.40	mg/kg wet	2.000		84	40-140			
Dibenzo(a,h)Anthracene	1.48	0.20	mg/kg wet	2.000		74	40-140			
luoranthene	1.54	0.40	mg/kg wet	2.000		77	40-140			
luorene	1.55	0.40	mg/kg wet	2.000		77	40-140			
ndeno(1,2,3-cd)Pyrene	1.70	0.40	mg/kg wet	2.000		85	40-140			
laphthalene	1.36	0.40	mg/kg wet	2.000		68	40-140			
henanthrene	1.50	0.40	mg/kg wet	2.000		75	40-140			
yrene	1.62	0.40	mg/kg wet	2.000		81	40-140			
Gurrogate: 2-Bromonaphthalene	1.64		mg/kg wet	2.000		82	40-140			

Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	MAD	EP-EPH Ext	ractable Petr	oleum Hy	/drocarbo	ns				***************************************
Batch CB70307 - 3546										
Surrogate: 2-Fluorobiphenyl	1.87		mg/kg wet	2.000		94	40-140			
Surrogate: O-Terphenyl	1.78		mg/kg wet	2.000		89	40-140			
LCS										
2-Methylnaphthalene Breakthrough	0.0		%				0-5			
Naphthalene Breakthrough	0.0		%				0-5			
LCS Dup					A. (1991)		W/400/90 Has has had a market		***************************************	
C19-C36 Aliphatics1	13.8	15.0	mg/kg wet	16.00	AV-1-A-11	86	40-140	5	25	
C9-C18 Aliphatics1	8.2	15.0	mg/kg wet	12.00		69	40-140	4	25	
Decane (C10)	1.0	0.5	mg/kg wet	2.000		48	40-140	2	25	
Docosane (C22)	1.7	0.5	mg/kg wet	2.000		85	40-140	6	25	
Dodecane (C12)	1.0	0.5	mg/kg wet	2.000		52	40-140	3	25	
Eicosane (C20)	1.6	0.5	mg/kg wet	2.000		79	40-140	6	25	
Hexacosane (C26)	1.6	0.5	mg/kg wet	2.000		79	40-140	5	25	
Hexadecane (C16)	1.4	0.5	mg/kg wet	2.000		69	40-140	4	25	
Hexatriacontane (C36)	1.5	0.5	mg/kg wet	2.000		76	40-140	6	25	
Nonadecane (C19)	1.6	0.5	mg/kg wet	2.000		79	40-140	5	25	
Vonane (C9)	0.8	0.5	mg/kg wet	2.000		39	30-140	4	25	
Octacosane (C28)	1.5	0.5	mg/kg wet	2.000		76	40-140	5	25	
Octadecane (C18)	1.5	0.5	mg/kg wet	2.000		75	40-140	5	25	
Fetracosane (C24)	1.6	0.5	mg/kg wet	2.000		80	40-140	6	25	
Tetradecane (C14)	1.2	0.5	mg/kg wet	2.000		58	40-140	0.3	25	
Friacontane (C30)	1.5	0.5	mg/kg wet	2.000		76	40-140	6	25	
Surrogate: 1-Chlorooctadecane	1.56		mg/kg wet	2.000		78	40-140			
.CS Dup										
2-Methylnaphthalene	1.34	0.20	mg/kg wet	2.000		67	40-140	3	30	
acenaphthene	1.50	0.40	mg/kg wet	2.000		75	40-140	4	30	
cenaphthylene	1.52	0.20	mg/kg wet	2.000		76	40-140	3	30	
nthracene	1.65	0.40	mg/kg wet	2.000		83	40-140	7	30	
lenzo(a)anthracene	1.81	0.40	mg/kg wet	2.000		90	40-140	7	30	
enzo(a)pyrene	1.80	0.40	mg/kg wet	2.000		90	40-140	5	30	
enzo(b)fluoranthene	1.61	0.40	mg/kg wet	2.000		80	40-140	7	30	
enzo(g,h,i)perylene	1.73	0.40	mg/kg wet	2.000		86	40-140	3	30	
enzo(k)fluoranthene	1.79	0.40	mg/kg wet	2.000		89	40-140	3	30	
11-C22 Aromatics1,2	6.96	15.0	mg/kg wet							
11-C22 Unadjusted Aromatics1	34.8	15.0	mg/kg wet	34.00		102	40-140	6	25	
hrysene	1.79	0.40	mg/kg wet	2.000		89	40-140	6	30	
ibenzo(a,h)Anthracene	1.52	0.20	mg/kg wet	2.000		76	40-140	3	30	
luoranthene	1.67	0.40	mg/kg wet	2.000		83	40-140	8	30	
luorene	1.60	0.40	mg/kg wet	2.000		80	40-140	3	30	
ndeno(1,2,3-cd)Pyrene	1.79	0.40	mg/kg wet	2.000		90	40-140	5	30	
aphthalene	1.41	0.40	mg/kg wet	2.000		71	40-140	4	30	
henanthrene	1.60	0.40	mg/kg wet	2.000		80	40-140	6	30	
yrene	1.72	0.40	mg/kg wet	2.000		86	40-140	6	30	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

Analyte	Result	MRL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	MAD	EP-EPH Extractable F	Petroleum H	ydrocarbo	ns				
Batch CB70307 - 3546									
Surrogate: 2-Bromonaphthalene	1.86	mg/kg w	et <i>2.000</i>		93	40-140			
Surrogate: 2-Fluorobiphenyl	2.19	mg/kg w	et <i>2.000</i>		110	40-140			
Surrogate: O-Terphenyl	1.82	mg/kg w	et 2.000		91	40-140			
LCS Dup								~~~~	
2-Methylnaphthalene Breakthrough	0.0	%				0-5		200	
Naphthalene Breakthrough	0.0	%				0-5		200	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

Notes and Definitions

U	Analyte included in the analysis, but not detected
D+	
	Relative percent difference for duplicate is outside of criteria (D+).
D	Diluted.
CD-	Continuing Calibration %Diff/Drift is below control limit (CD-).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.

[CALC] Calculated Analyte

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702041

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-R1002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: R1006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=Pl NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	CD\	N Consultan	ts, Inc TB	/ML			Project ID:	1702041 2/2/2017	
Shinned/De	alivered Via	<u>_</u>	SS Courier	•			Received: Due Date:	2/9/2017	
Shippeorbe	silvered via.		100 Country				or Project:	5 Day	
	anifest prese			No		6. Does COC	match bottles?		Yes
2. Were cu	stody seals p	oresent?	ı	No		7. Is COC con	nplete and correct?		Yes
3. Is radiati	on count <10	00 CPM?		Yes		8. Were samp	les received intact?		Yes
	ler Present?	و ما المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام المام الم		Yes		9. Were labs	informed about short	holds & rushes?	Yes / No / NA
		lced with:		Yes		10. Were any	analyses received outs	ide of hold time?	Yes No
5. Was CO	C signed an	d dated by cli	ent?	<u>res</u>					
							As received? s in aqueous VOAs? anol cover soil complet	ely?	Yes (No Yes (No Yes) No / NA
a. If metals	e samples pro s preserved u rel VOA vials		ved?	(eg) / No Date: Date:	711516	Time:	By 17대 By	だ た <u> </u>	
Sample Re	ceiving Notes	s:							
		····							
a. Was the	ere a need to	o contact Pro	client?		Yes (No) Yes (No)	Time:	B _!	<i>f</i> :	
			····-	<u></u>					
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Contain	er Type	Preservative	Record pH (Cy Pestio	
01	102218	Yes	NA	Yes		- Unpres	NP		
02	102217	Yes	NA	Yes		- Unpres	NP NP		
03	102216	Yes	NA NA	Yes Yes		- Unpres - Unpres	NP		
04 05	102215 102214	Yes Yes	NA	Yes		- Unpres	NP		
06	102213	Yes	NA	Yes		- Unpres	NP		
07	102212	Yes	NA	Yes	4 oz. Jar	- Unpres	NP		
08	102211	Yes	NA	Yes	4 oz. Jar	- Unpres	NP		
08	102219	Yes	NA	Yes	VOA Vial	- Methanol	MeOH		
08	102337	Yes	NA	Yes		al - Other	Other		
80	102338	Yes	NA	Yes		al - Other	Other		
09	102210	Yes	NA	Yes		- Unpres	NP NP		
10	102209	Yes	NA	Yes	4 oz. Jar	- Unpres	145		
2nd Reviev Are barcod	v le labels on d	correct contai	ners?		Ŷes) No				
Completed By:	Q_1	*			Date & Time	: <u>z</u> ło	2/17 1656		
Reviewed By:	al	1-2	∂ /		Date & Time	2/2/17	1742		
Delivered By:	De	٠.	7-			2/2/1	7 1742		

ESS Laboratory	>		J	CHAIN OF CUSTODY	ESS Lab#			
Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston RI 02910	ineering, Inc. anston RI 029	10	Turn Time Regulatory State	S SAY Rush	Reporting	5-1/6W-1/6	5-m9/p-m	
iei. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com	ix (401) 461-44	පිරි	Is thi Oct Rep	s project for affly of MAP	Electonic	Limit Checker S Other (Please Specify L.)	Standard Excel	T
00 2007 (2007)	Company Name	15.	Project #	Project Name		N. C.		
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ontact Person		40 Sprise	Address		sec wit		
City	امر	SAM		Zip Code	KlenA	171		
Telephone Number	mber 557	FAX Number	Number	Email Address	,	6		
ESS Lab Collection ID Date	Collection Time	Sample Type	Sample Matrix	Sample ID		ow ov		*************************
4/1/6/1	45	y K	Se, 2	(19) 18- 207		, <u>x</u>		
11 2	Soft	Ġ.		(1-3,)	*			
;; S	1144	૭	7	cow-33 /2-4)	X		-	
5	10:20	૭	4	(15-6) 48-000	\			
î	1315	Comp	2	COMP B1 484 HAPIO	(,)~	×		- ,
<u></u> د	1410	. 9	-5					
<u>,</u>	1 8 cm	ٯ	13	com - 86 5-71	・ス			
2/1/12	843	3	-	(5-5) (S-4)	X	×		
	955	5	**	com 38 (5-7)	X			_,
= 2	(04%)	- 1	-\$	9	(·	×		
Container lype: AC-Air Cassette	ió	sette AG-Amber Glass 2-2 5 dal 3-250 ml	B-BOD Bottle	G - Glass O-Other P-Pof	rile V-Vial			
Preservation Code: 1-Non Preserved 2-HCI 3-H25C4 4-HNO3	1-Non Preserved	2-HCI 3-HZSO4 4-HNO	1	7. V CA 8-2 02 9-4 02 ZnAce, NaOH 9-NH4CI 10-DI H2O	10-8 oz 11-Other*			······································
				Number of Conta	Sample:			
0	Laboratory Use Only	/ Use Only						
Seals Intact:	> \	1		Comments: Please spe	ecify "Other"	Please specify "Other" preservative and containers types in this space	types in this space	
Cooler Temperature:	0.8 Y %	ر اور	4					
Relinquished by (Signature Cale a Time) Con	(Signature Ca	Sea Time, O.S.	Received By: (Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)	: (Signature, Da		Received By: (Signature, Date & Time)	
© Relinquished by: (Signature Cate & Time)	Signature	11/2/1/	ZX SX	0 X 3 5 0 1 0 0 X	0/7	(G:05 /2)	of zelo in	
1				Orgynature, Date & Hille) (Keilinquished by: (Signature, Date & Time)	: (Signature, Di	1	Received By: (Signature, Date & Time)	
1								

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Lauren Konetzny CDW Consultants, Inc. 40 Speen Street Suite 301 Framingham, MA 01701

RE: Fernald School (N/A)

ESS Laboratory Work Order Number: 1702237

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 4:37 pm, Feb 21, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

SAMPLE RECEIPT

The following samples were received on February 10, 2017 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Lab Number	Sample Name	<u>Matrix</u>	Analysis
1702237-01	MW-4	Ground Water	6010C, 7010, 7470A, 8260B, EPH8270,
			EPH8270SIM, MADEP-EPH, MADEP-VPH
1702237-02	CDW-B2MW	Ground Water	EPH8270, EPH8270SIM, MADEP-EPH
1702237-03	CDW-B1MW	Ground Water	6010C, 7010, 7470A, 8260B, EPH8270,
			EPH8270SIM, MADEP-EPH, MADEP-VPH
1702237-04	B-11	Ground Water	EPH8270, EPH8270SIM, MADEP-EPH
1702237-05	MW-1	Ground Water	EPH8270, EPH8270SIM, MADEP-EPH

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

PROJECT NARRATIVE

8260B Volatile Organic Compounds

CB71317-BS1 E

Blank Spike recovery is above upper control limit (B+).

Bromomethane (137% @ 70-130%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

MassDEP Analytical Protocol Certification Form

		MADEP RTY	٧: .	*************************************			_					
Thi	s form	provides cer	tifica	ntion for the follow	ving d	ata set: 1702237-01 th	rouş	gh 1702237-05				
Ma	trices:	(X) Ground	Wate	er/Surface Water		() Soil/Sediment	() Drinking Water	() Air	() Other:		
CA	M Pro	otocol (checl	k all	that apply below)):							
	8260 CAM	VOC		7470/7471 Hg CAM III B		MassDEP VPH CAM IV A	() 8081 Pesticides CAM V B		7196 Hex Cr CAM VI B	()	MassDEP APH CAM IX A
()	8270 CAM	SVOC II B	(X)	7010 Metals CAM III C	(X)	MassDEP EPH CAM IV B	() 8151 Herbicides CAM V C		8330 Explosives CAM VIII A	()	TO-15 VOC CAM IX B
(X)	6010 CAM	Metals III A	()	6020 Metals CAM III D	()	8082 PCB CAM V A	() 6860 Perchlorate CAM VIII B		9014 Total Cyanic CAM VI A	de/PA	С
			A	Affirmative respo	nses to	guestions A through	h F	are required for ''Pro	esumptive	Certainty'' stati	us	
A			receiv	ved in a condition	consis	tent with those describ	ed o	on the Chain-of-Custoo	dy, proper	У		Yes (X) No ()
В		the analytica						/analyzed within methord and in the selected CAN				Yes (X) No ()
C								fied in the selected CA	M protoco	ol(s)		Yes(X) No()
D	Does	the laborator	y rep	oort comply with a	ll the		spe	ecified in the CAM VII		ty		Yes (X) No ()
Е						method conducted win	hou	t significant modificati	ion(s)? (Re	efer		Yes (X) No ()
	b. AP	H and TO-15	5 Mei	thods only: Was th	e com	plete analyte list repor						Yes () No ()
F						ormance standard non ponses to Questions A		nformances identified a pugh E)?	ınd evalua	ted		Yes (X) No ()
				Responses to	Ouesti	ons G. H and I below	are	required for '''Presun	antive Cer	taintv'' status		
G	<u>Data</u>	<u>User Note:</u> De	ata th	ts at or below all (nat achieve "Presu	CAM 1 mptive	eporting limits specifi	ed in	n the selected CAM processarily meet the da	otocols(s)	?		Yes (X) No ()*
Н						the CAM protocol(s)						Yes () No (X)*
I	Were	results report	ted fo	or the complete an	alyte l	ist specified in the sele	ectec	d CAM protocol(s)?				Yes (x) No ()*
*All	nega	tive respons	es m	ust be addressed	in an	attached laboratory	nari	rative.				
								pased upon my person				?
		and complet					at r	eport is, to the best of	ј ту кпоч	vieuge una bellej	<i>Ι</i> ,	
		ignature:		Z.L.	Ats.			Date: <u>I</u>	February 2	21, 2017		
	P	rinted Name	e: <u>La</u>	urel Stoddard				Position: <u>Labo</u>				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

Client Sample ID: MW-4 Date Sampled: 02/07/17 08:15

Percent Solids: N/A

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte Antimony	Results (MRL) ND (2.5)	MDL	<u>Method</u> 7010	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 02/15/17 6:49	<u>I/V</u> 50	<u>F/V</u> 25	Batch CB71337
Arsenic	ND (2.5)		7010		1	KJK	02/15/17 0:29	50	25	CB71337
Barium	32.4 (25.0)		6010C		1	KJK	02/18/17 17:43	50	25	CB71337
Beryllium	ND (0.5)		6010C		1	KJK	02/18/17 17:43	50	25	CB71337
Cadmium	ND (2.5)		6010C		1	KJK	02/18/17 17:43	50	25	CB71337
Chromium	ND (10.0)		6010C		1	KJK	02/18/17 17:43	50	25	CB71337
Lead	ND (10.0)		6010C		1	KJK	02/18/17 17:43	50	25	CB71337
Mercury	ND (0.20)		7470A		1	MJV	02/14/17 10:58	20	40	CB71339
Nickel	ND (25.0)		6010C		1	KJK	02/18/17 17:43	50	25	CB71337
Selenium	ND (5.0)		7010		1	KJK	02/15/17 3:38	50	25	CB71337
Silver	ND (5.0)		6010C		1	KJK	02/18/17 17:43	50	25	CB71337
Thallium	ND (1.0)		7010		1	KJK	02/14/17 21:04	50	25	CB71337
Vanadium	ND (10.0)		6010C		1	KJK	02/18/17 17:43	50	25	CB71337
Zine	ND (25.0)		6010C		1	KJK	02/18/17 17:43	50	25	CB71337

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

Client Sample ID: MW-4 Date Sampled: 02/07/17 08:15

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-01

Sample Matrix: Ground Water

Units: ug/L Analyst: GEM

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (1.0)	MDL	Method 8260B	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	<u>Analyzed</u> 02/13/17 14:15	Sequence C7B0166	Batch CB71317
1,1,1-Trichloroethane	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,1,2,2-Tetrachloroethane	ND (0.5)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,1,2-Trichloroethane	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,1-Dichloroethane	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,1-Dichloroethene	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,1-Dichloropropene	ND (2.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,2,3-Trichlorobenzene	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,2,3-Trichloropropane	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,2,4-Trichlorobenzene	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,2,4-Trimethylbenzene	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,2-Dibromo-3-Chloropropane	ND (5.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,2-Dibromoethane	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,2-Dichlorobenzene	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,2-Dichloroethane	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,2-Dichloropropane	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,3,5-Trimethylbenzene	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,3-Dichlorobenzene	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,3-Dichloropropane	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,4-Dichlorobenzene	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
1,4-Dioxane - Screen	ND (500)		8260B		1	02/13/17 14:15	C7B0166	CB71317
2,2-Dichloropropane	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
2-Butanone	ND (10.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
2-Chlorotoluene	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
2-Hexanone	ND (10.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
4-Chlorotoluene	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
4-Isopropyltoluene	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
4-Methyl-2-Pentanone	ND (10.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
Acetone	ND (10.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
Benzene	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
Bromobenzene	ND (2.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
Bromochloromethane	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

Client Sample ID: MW-4 Date Sampled: 02/07/17 08:15

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-01

Sample Matrix: Ground Water

Units: ug/L Analyst: GEM

Analyte Bromodichloromethane	Results (MRL) MDL ND (0.6)	Method 8260B	<u>Limit</u>	<u>DF</u>	Analyzed 02/13/17 14:15	Sequence C7B0166	Batch CB71317
Bromoform	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Bromomethane	ND (2.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Carbon Disulfide	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Carbon Tetrachloride	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Chlorobenzene	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Chloroethane	ND (2.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Chloroform	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Chloromethane	ND (2.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
cis-1,2-Dichloroethene	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
cis-1,3-Dichloropropene	ND (0.4)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Dibromochloromethane	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Dibromomethane	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Dichlorodifluoromethane	ND (2.0)	8260B		I	02/13/17 14:15	C7B0166	CB71317
Diethyl Ether	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Di-isopropyl ether	ND (1.0)	8260B		I	02/13/17 14:15	C7B0166	CB71317
Ethyl tertiary-butyl ether	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Ethylbenzene	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Hexachlorobutadiene	ND (0.6)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Hexachloroethane	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Isopropylbenzene	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Methyl tert-Butyl Ether	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Methylene Chloride	ND (2.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Naphthalene	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
n-Butylbenzene	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
n-Propylbenzene	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
sec-Butylbenzene	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Styrene	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
tert-Butylbenzene	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Tertiary-amyl methyl ether	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Tetrachloroethene	ND (1.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317
Tetrahydrofuran	ND (5.0)	8260B		1	02/13/17 14:15	C7B0166	CB71317

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

Client Sample ID: MW-4 Date Sampled: 02/07/17 08:15

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Surrogate: Toluene-d8

Extraction Method: 5030B

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-01

Sample Matrix: Ground Water

Units: ug/L Analyst: GEM

8260B Volatile Organic Compounds

Analyte Toluene	Results (MRL) ND (1.0)	<u>MDL</u>	Method 8260B	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	<u>Analyzed</u> 02/13/17 14:15	Sequence C7B0166	Batch CB71317
trans-1,2-Dichloroethene	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
trans-1,3-Dichloropropene	ND (0.4)		8260B		1	02/13/17 14:15	C7B0166	CB71317
Trichloroethene	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
Trichlorofluoromethane	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
Vinyl Chloride	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
Xylene O	ND (1.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
Xylene P,M	ND (2.0)		8260B		1	02/13/17 14:15	C7B0166	CB71317
Xylenes (Total)	ND (2.0)		8260B		1	02/13/17 14:15		[CALC]
	9%	6Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		109 %		70-130				
Surrogate: 4-Bromofluorobenzene		113 %		70-130				
Surrogate: Dibromofluoromethane		109 %		70-130				

70-130

102 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

Client Sample ID: MW-4 Date Sampled: 02/07/17 08:15

Percent Solids: N/A Initial Volume: 940 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-01

Sample Matrix: Ground Water

Units: ug/L

Prepared: 2/11/17 10:50

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics 1	Results (MRL)	MDL Method MADEP-EPH	<u>Limit</u> <u>DF</u>	Analys DPS		Sequence	Batch
C19-C36 Aliphatics1	ND (106)		1		02/13/17 15:33	C7B0160	CB71014
•	ND (106)	MADEP-EPH	ı	DPS	02/13/17 15:33	C7B0160	CB71014
C11-C22 Unadjusted Aromatics1	ND (106)	EPH8270	1	VSC	02/13/17 13:58	C7B0154	CB71014
C11-C22 Aromatics1,2	ND (106)	EPH8270		VSC	02/13/17 14:19		[CALC]
2-Methylnaphthalene	ND (0.53)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Acenaphthene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Naphthalene	ND (0.53)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Phenanthrene	ND (0.53)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Acenaphthylene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Anthracene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Benzo(a)anthracene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Benzo(a)pyrene	ND (0.11)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Benzo(b)fluoranthene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Benzo(g,h,i)perylene	ND (0.21)	EPH8270SIM	Ī	VSC	02/13/17 14:19	C7B0156	CB71014
Benzo(k)fluoranthene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Chrysene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Dibenzo(a,h)Anthracene	ND (0.21)	EPH8270SIM	I	VSC	02/13/17 14:19	C7B0156	CB71014
Fluoranthene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Fluorene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Indeno(1,2,3-cd)Pyrene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Pyrene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 14:19	C7B0156	CB71014
Preservative:	pH <= 2	MADEP-EPH		DPS			CB71014

	%Recovery	Qualifier	Limits
Surrogate: 1-Chlorooctadecane	67 %		40-140
Surrogate: 2-Bromonaphthalene	98 %		40-140
Surrogate: 2-Fluorobiphenyl	94 %		40-140
Surrogate: O-Terphenyl	79 %		40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

Client Sample ID: MW-4 Date Sampled: 02/07/17 08:15

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-01

Sample Matrix: Ground Water

Units: ug/L Analyst: GEM

MADEP-VPH Volatile Petroleum Hydrocarbon

Analyte C9-C10 Aromatics	Results (MRL) ND (100)	MDL Method MADEP-VPH	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 02/14/17 14:35	Sequence C7B0185	Batch CB71437
C5-C8 Aliphatics1,2	ND (150)	MADEP-VPH		1	02/14/17 14:35	C7B0103	[CALC]
C9-C12 Aliphatics2,3	ND (150)	MADEP-VPH		1	02/14/17 14:35		[CALC]
Benzene	ND (1.5)	MADEP-VPH		1	02/14/17 14:35	C7B0185	CB71437
Ethylbenzene	ND (5.0)	MADEP-VPH		1	02/14/17 14:35	C7B0185	CB71437
Methyl tert-Butyl Ether	ND (1.5)	MADEP-VPH		1	02/14/17 14:35	C7B0185	CB71437
Naphthalene	ND (5.0)	MADEP-VPH		1	02/14/17 14:35	C7B0185	CB71437
Toluene	ND (5.0)	MADEP-VPH		1	02/14/17 14:35	C7B0185	CB71437
Xylene O	ND (5.0)	MADEP-VPH		1	02/14/17 14:35	C7B0185	CB71437
Xylene P,M	ND (10.0)	MADEP-VPH		1	02/14/17 14:35	C7B0185	CB71437
Preservative:	pH <= 2	MADEP-VPH					CB71437

 Surrogate: 2,5-Dibromotoluene - FID
 76 %
 Qualifier
 Limits

 Surrogate: 2,5-Dibromotoluene - FID
 76 %
 70-130

 Surrogate: 2,5-Dibromotoluene - PID
 73 %
 70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B2MW Date Sampled: 02/07/17 09:40

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-02

Sample Matrix: Ground Water

Units: ug/L

Prepared: 2/11/17 10:50

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) ND (93)	MDL Method MADEP-EPH	Limit DF	Analysi DPS	<u>Analyzed</u> 02/13/17 16:21	Sequence C7B0160	Batch CB71014
C19-C36 Aliphatics1	209 (93)	MADEP-EPH	1	DPS	02/13/17 16:21	C7B0160	CB71014
C11-C22 Unadjusted Aromatics1	123 (93.5)	EPH8270	1	VSC	02/13/17 14:33	C7B0154	CB71014
C11-C22 Aromatics1,2	ND (93.5)	EPH8270		VSC	02/13/17 15:08		[CALC]
2-Methylnaphthalene	ND (0.47)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Acenaphthene	0.70 (0.19)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Naphthalene	ND (0.47)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Phenanthrene	1.91 (0.47)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Acenaphthylene	0.25 (0.19)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Anthracene	0.62 (0.19)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Benzo(a)anthracene	4.21 (0.19)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Benzo(a)pyrene	4.54 (0.09)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Benzo(b)fluoranthene	7.70 (0.19)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Benzo(g,h,i)perylene	3.99 (0.19)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Benzo(k)fluoranthene	2.08 (0.19)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Chrysene	4.90 (0.19)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Dibenzo(a,h)Anthracene	1.10 (0.19)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Fluoranthene	6.72 (0.19)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Fluorene	ND (0.19)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Indeno(1,2,3-cd)Pyrene	4.12 (0.19)	EPH8270SIM	I	VSC	02/13/17 15:08	C7B0156	CB71014
Pyrene	5.94 (0.19)	EPH8270SIM	1	VSC	02/13/17 15:08	C7B0156	CB71014
Preservative:	pH <= 2	MADEP-EPH		DPS			CB71014

	%Recovery	Qualifier	Limits
Surrogate: 1-Chlorooctadecane	72 %		40-140
Surrogate: 2-Bromonaphthalene	100 %		40-140
Surrogate: 2-Fluorobiphenyl	96 %		40-140
Surrogate: O-Terphenyl	83 %		40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B1MW Date Sampled: 02/07/17 10:45

Percent Solids: N/A

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-03

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A

Total Metals

Analyte Antimony	Results (MRL) ND (2.5)	MDL <u>Method</u> 7010	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	Analyst KJK	Analyzed 02/15/17 6:54	<u>I/V</u> 100	<u>F/V</u> 50	Batch CB71337
Arsenic	ND (2.5)	7010		1	KJK	02/15/17 0:34	100	50	CB71337
Barium	28.0 (25.0)	6010C		1	KJK	02/18/17 17:47	100	50	CB71337
Beryllium	ND (0.5)	6010C		I	KJK	02/18/17 17:47	100	50	CB71337
Cadmium	ND (2.5)	6010C		1	KJK	02/18/17 17:47	100	50	CB71337
Chromium	ND (10.0)	6010C		1	KJK	02/18/17 17:47	100	50	CB71337
Lead	ND (10.0)	6010C		1	KJK	02/18/17 17:47	100	50	CB71337
Mercury	ND (0.20)	7470A		1	MJV	02/14/17 10:56	20	40	CB71339
Nickel	ND (25.0)	6010C		1	KJK	02/18/17 17:47	100	50	CB71337
Selenium	ND (5.0)	7010		1	KJK	02/15/17 4:07	100	50	CB71337
Silver	ND (5.0)	6010C		1	KJK	02/18/17 17:47	100	50	CB71337
Thallium	ND (1.0)	7010		1	KJK	02/14/17 21:09	100	50	CB71337
Vanadium	ND (10.0)	6010C		1	KJK	02/18/17 17:47	100	50	CB71337
Zinc	29.3 (25.0)	6010C		1	KJK	02/18/17 17:47	100	50	CB71337

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B1MW Date Sampled: 02/07/17 10:45

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-03

Sample Matrix: Ground Water

Units: ug/L Analyst: GEM

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (1.0)	MDL	Method 8260B	Limit	$\frac{\mathbf{DF}}{1}$	<u>Analyzed</u> 02/13/17 14:41	Sequence C7B0166	Batch CB71317
1,1,1-Trichloroethane	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,1,2,2-Tetrachloroethane	ND (0.5)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,1,2-Trichloroethane	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,1-Dichloroethane	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,1-Dichloroethene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,1-Dichloropropene	ND (2.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,2,3-Trichlorobenzene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,2,3-Trichloropropane	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,2,4-Trichlorobenzene	ND (1.0)		8260B		I	02/13/17 14:41	C7B0166	CB71317
1,2,4-Trimethylbenzene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,2-Dibromo-3-Chloropropane	ND (5.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,2-Dibromoethane	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,2-Dichlorobenzene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,2-Dichloroethane	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,2-Dichloropropane	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,3,5-Trimethylbenzene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,3-Dichlorobenzene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,3-Dichloropropane	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,4-Dichlorobenzene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
1,4-Dioxane - Screen	ND (500)		8260B		1	02/13/17 14:41	C7B0166	CB71317
2,2-Dichloropropane	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
2-Butanone	ND (10.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
2-Chlorotoluene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
2-Hexanone	ND (10.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
4-Chlorotoluene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
4-Isopropyltoluene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
4-Methyl-2-Pentanone	ND (10.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Acetone	ND (10.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Benzene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Bromobenzene	ND (2.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Bromochloromethane	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B1MW Date Sampled: 02/07/17 10:45

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-03

Sample Matrix: Ground Water

Units: ug/L Analyst: GEM

Analyte Bromodichloromethane	Results (MRL) ND (0.6)	MDL	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 02/13/17 14:41	Sequence C7B0166	Batch CB71317
Bromoform	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Bromomethane	ND (2.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Carbon Disulfide	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Carbon Tetrachloride	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Chlorobenzene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Chloroethane	ND (2.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Chloroform	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Chloromethane	ND (2.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
cis-1,2-Dichloroethene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
cis-1,3-Dichloropropene	ND (0.4)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Dibromochloromethane	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Dibromomethane	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Dichlorodifluoromethane	ND (2.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Diethyl Ether	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Di-isopropyl ether	ND (1.0)		8260B		i	02/13/17 14:41	C7B0166	CB71317
Ethyl tertiary-butyl ether	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Ethylbenzene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Hexachlorobutadiene	ND (0.6)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Hexachloroethane	ND (1.0)		8260B		I	02/13/17 14:41	C7B0166	CB71317
Isopropylbenzene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Methyl tert-Butyl Ether	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Methylene Chloride	ND (2.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Naphthalene	ND (1.0)		8260B		I	02/13/17 14:41	C7B0166	CB71317
n-Butylbenzene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
n-Propylbenzene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
sec-Butylbenzene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Styrene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
tert-Butylbenzene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Tertiary-amyl methyl ether	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Tetrachloroethene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Tetrahydrofuran	ND (5.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B1MW Date Sampled: 02/07/17 10:45

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-03

Sample Matrix: Ground Water

Units: ug/L Analyst: GEM

<u>Analyte</u>	Results (MRL)	$\underline{\mathbf{MDL}}$	<u>Method</u>	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Toluene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
trans-1,2-Dichloroethene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
trans-1,3-Dichloropropene	ND (0.4)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Trichloroethene	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Trichlorofluoromethane	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Vinyl Chloride	ND (1.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Xylene O	ND (1.0)		8260B		I	02/13/17 14:41	C7B0166	CB71317
Xylene P,M	ND (2.0)		8260B		1	02/13/17 14:41	C7B0166	CB71317
Xylenes (Total)	ND (2.0)		8260B		1	02/13/17 14:41		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		117 %		70-130				

	,	•	
Surrogate: 1,2-Dichloroethane-d4	117 %		70-130
Surrogate: 4-Bromofluorobenzene	116 %		70-130
Surrogate: Dibromofluoromethane	110 %		70-130
Surrogate: Toluene-d8	105 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B1MW Date Sampled: 02/07/17 10:45

Percent Solids: N/A Initial Volume: 950 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-03

Sample Matrix: Ground Water

Units: ug/L

Prepared: 2/11/17 10:50

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) ND (105)	MDL Method MADEP-EPH	Limit DF	Analys DPS	<u>Analyzed</u> 02/13/17 17:09	Sequence C7B0160	Batch CB71014
C19-C36 Aliphatics1	ND (105)	MADEP-EPH	1	DPS	02/13/17 17:09	C7B0160	CB71014
C11-C22 Unadjusted Aromatics1	ND (105)	EPH8270	1	VSC	02/13/17 15:07	C7B0154	CB71014
C11-C22 Aromatics1,2	ND (105)	EPH8270		VSC	02/13/17 15:58		[CALC]
2-Methylnaphthalene	ND (0.53)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Acenaphthene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Naphthalene	ND (0.53)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Phenanthrene	ND (0.53)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Acenaphthylene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Anthracene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Benzo(a)anthracene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Benzo(a)pyrene	ND (0.11)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Benzo(b)fluoranthene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Benzo(g,h,i)perylene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Benzo(k)fluoranthene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Chrysene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Dibenzo(a,h)Anthracene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Fluoranthene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Fluorene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Indeno(1,2,3-cd)Pyrene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Pyrene	ND (0.21)	EPH8270SIM	1	VSC	02/13/17 15:58	C7B0156	CB71014
Preservative:	pH <= 2	MADEP-EPH		DPS			CB71014

	%Recovery	Qualifier	Limits
Surrogate: 1-Chlorooctadecane	56 %		40-140
Surrogate: 2-Bromonaphthalene	103 %		40-140
Surrogate: 2-Fluorobiphenyl	100 %		40-140
Surrogate: O-Terphenyl	<i>73 %</i>		40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School Client Sample ID: CDW-B1MW Date Sampled: 02/07/17 10:45

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-03

Sample Matrix: Ground Water

Units: ug/L Analyst: GEM

MADEP-VPH Volatile Petroleum Hydrocarbon

<u>Analyte</u>	Results (MRL)	MDL Method	<u>Limit</u> <u>DF</u>	Analyzed	Sequence	Batch
C9-C10 Aromatics	ND (100)	MADEP-VPH	1	02/14/17 15:10	C7B0185	CB71437
C5-C8 Aliphatics1,2	ND (150)	MADEP-VPH	1	02/14/17 15:10		[CALC]
C9-C12 Aliphatics2,3	ND (150)	MADEP-VPH	1	02/14/17 15:10		[CALC]
Benzene	ND (1.5)	MADEP-VPH	1	02/14/17 15:10	C7B0185	CB71437
Ethylbenzene	ND (5.0)	MADEP-VPH	1	02/14/17 15:10	C7B0185	CB71437
Methyl tert-Butyl Ether	ND (1.5)	MADEP-VPH	1	02/14/17 15:10	C7B0185	CB71437
Naphthalene	ND (5.0)	MADEP-VPH	1	02/14/17 15:10	C7B0185	CB71437
Toluene	ND (5.0)	MADEP-VPH	1	02/14/17 15:10	C7B0185	CB71437
Xylene O	ND (5.0)	MADEP-VPH	1	02/14/17 15:10	C7B0185	CB71437
Xylene P,M	ND (10.0)	MADEP-VPH	1	02/14/17 15:10	C7B0185	CB71437
Preservative:	pH <= 2	MADEP-VPH				CB71437

 %Recovery
 Qualifier
 Limits

 Surrogate: 2,5-Dibromotoluene - FID
 84 %
 70-130

 Surrogate: 2,5-Dibromotoluene - PID
 82 %
 70-130

Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

Client Sample ID: B-11 Date Sampled: 02/07/17 12:00

Percent Solids: N/A Initial Volume: 1060 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-04

Sample Matrix: Ground Water

Units: ug/L

Prepared: 2/11/17 10:50

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) ND (94)	MDL Method MADEP-EPH	Limit	<u>DF</u>	Analyst DPS	Analyzed 02/13/17 17:56	Sequence C7B0160	Batch CB71014
C19-C36 Aliphatics1	105 (94)	MADEP-EPH		1	DPS	02/13/17 17:56	C7B0160	CB71014
C11-C22 Unadjusted Aromatics1	ND (94.3)	EPH8270		1	VSC	02/13/17 15:41	C7B0154	CB71014
C11-C22 Aromatics1,2	ND (94.3)	EPH8270			VSC	02/13/17 16:48		[CALC]
2-Methylnaphthalene	ND (0.47)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Acenaphthene	0.35 (0.19)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Naphthalene	ND (0.47)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Phenanthrene	2.36 (0.47)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Acenaphthylene	ND (0.19)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Anthracene	0.62 (0.19)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Benzo(a)anthracene	0.92 (0.19)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Benzo(a)pyrene	0.83 (0.09)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Benzo(b)fluoranthene	0.99 (0.19)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Benzo(g,h,i)perylene	0.53 (0.19)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Benzo(k)fluoranthene	0.34 (0.19)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Chrysene	0.95 (0.19)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Dibenzo(a,h)Anthracene	ND (0.19)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Fluoranthene	2.07 (0.19)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Fluorene	0.40 (0.19)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Indeno(1,2,3-cd)Pyrene	0.55 (0.19)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Pyrene	1.79 (0.19)	EPH8270SIM		1	VSC	02/13/17 16:48	C7B0156	CB71014
Preservative:	pH <= 2	MADEP-EPH			DPS			CB71014

	%Recovery	Qualifier	Limits
Surrogate: 1-Chlorooctadecane	64 %		40-140
Surrogate: 2-Bromonaphthalene	100 %		40-140
Surrogate: 2-Fluorobiphenyl	96 %		40-140
Surrogate: O-Terphenyl	79 %		40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

Client Sample ID: MW-1 Date Sampled: 02/07/17 13:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1702237 ESS Laboratory Sample ID: 1702237-05

Sample Matrix: Ground Water

Units: ug/L

Prepared: 2/11/17 10:50

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte C9-C18 Aliphatics1	Results (MRL) ND (93)	MDL Method MADEP-EPH	<u>Limit</u>	<u>DF</u>	Analyst DPS	Analyzed 02/13/17 18:43	Sequence C7B0160	Batch CB71014
C19-C36 Aliphatics1	ND (93)	MADEP-EPH		1	DPS	02/13/17 18:43	C7B0160	CB71014
C11-C22 Unadjusted Aromatics1	ND (93.5)	EPH8270		1	VSC	02/13/17 16:15	C7B0154	CB71014
C11-C22 Aromatics1,2	ND (93.5)	EPH8270			VSC	02/13/17 17:38		[CALC]
2-Methylnaphthalene	ND (0.47)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Acenaphthene	ND (0.19)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Naphthalene	ND (0.47)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Phenanthrene	ND (0.47)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Acenaphthylene	ND (0.19)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Anthracene	ND (0.19)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Benzo(a)anthracene	ND (0.19)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Benzo(a)pyrene	ND (0.09)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Benzo(b)fluoranthene	ND (0.19)	EPH8270SIM		I	VSC	02/13/17 17:38	C7B0156	CB71014
Benzo(g,h,i)perylene	ND (0.19)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Benzo(k)fluoranthene	ND (0.19)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Chrysene	ND (0.19)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Dibenzo(a,h)Anthracene	ND (0.19)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Fluoranthene	ND (0.19)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Fluorene	ND (0.19)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Indeno(1,2,3-cd)Pyrene	ND (0.19)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Pyrene	ND (0.19)	EPH8270SIM		1	VSC	02/13/17 17:38	C7B0156	CB71014
Preservative:	pH <= 2	MADEP-EPH			DPS			CB71014

	%Recovery	Qualifier	Limits
Surrogate: 1-Chlorooctadecane	62 %		40-140
Surrogate: 2-Bromonaphthalene	104 %		40-140
Surrogate: 2-Fluorobiphenyl	100 %		40-140
Surrogate: O-Terphenyl	82 %		40-140

The Microbiology Division of Thielsch Engineering, Inc.

RPD

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

%REC

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Meta	als			***************************************	***************************************		***************************************
3atch CB71337 - 3005A										
Blank										
Antimony	ND	2.5	ug/L					······································		
Arsenic	ND	2.5	ug/L							
Barium	ND	25.0	ug/L							
eryllium	ND	0.5	ug/L							
admium	ND	2.5	ug/L							
hromium	ND	10.0	ug/L							
ead	ND	10.0	ug/L							
ickel	ND	25.0	ug/L							
elenium	ND	5.0	ug/L							
ilver	ND	5.0	ug/L							
hallium	ND	1.0	ug/L							
anadium	ND	10.0	ug/L							
linc	ND	25.0	ug/L							
cs				***************************************	***************************************	***************************************				
ntimony	228	62.5	ug/L	250.0	***************************************	91	80-120	***************************************		
rsenic	258	62.5	ug/L	250.0		103	80-120			
orium	257	25.0	ug/L	250.0		103	80-120			
eryllium	25.2	0.5	ug/L	25.00		101	80-120			
admium	125	2.5	ug/L	125.0		100	80-120			
nromium	256	10.0	ug/L	250.0		102	80-120			
ad	261	10.0	ug/L	250.0		104	80-120			
ckel	266	25.0	ug/L	250.0		107	80-120			
elenium	487	125	ug/L	500.0		97	80-120			
lver	128	5.0	ug/L	125.0		103	80-120			
nallium	267	25.0	ug/L	250.0		107	80-120			
anadium	255	10.0	ug/L	250.0		102	80-120			
nc	284	25.0	ug/L	250.0		113	80-120			
CS Dup				-	***************************************					
ntimony	238	62.5	ug/L	250.0	***************************************	95	80-120	4	20	
senic	259	62.5	ug/L	250.0		104	80-120	0.3	20	
nrium	258	25.0	ug/L	250.0		103	80-120	0.2	20	
eryllium	25.3	0.5	ug/L	25.00		101	80-120	0.1	20	
dmìum	126	2.5	ug/L	125.0		101	80-120	1	20	
nromium	257	10.0	ug/L	250.0		103	80-120	0.3	20	
ad	262	10.0	ug/L	250.0		105	80-120	0.3	20	
ckel	269	25.0	ug/L	250.0		107	80-120	0.9	20	
lenium	499	125	ug/L	500.0		100	80-120	2	20	
ver	128	5.0	ug/L	125.0		103	80-120	0.07	20	
allium	272	25.0	ug/L	250.0		109	80-120	2	20	
nadium	257	10.0	ug/L	250.0		103	80-120	0.7	20	
nc .	270	25.0	ug/L	250.0		108	80-120	5	20	

Blank

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Met	als			***************************************		***************************************	
Batch CB71339 - 245.1/7470A				~~~			 			
Mercury	ND	0.20	ug/L				***************************************	***************************************		
LCS										
Mercury	6.09	0.20	ug/L	6.000		101	80-120			***************************************
LCS Dup										
Mercury	6.10	0.20	ug/L	6.000	***************************************	102	80-120	0.2	20	
		8260B Vol	atile Organ	ic Compoι	unds					
Batch CB71317 - 5030B				A						
LCS										MM-1
1,1,1,2-Tetrachloroethane	8.8		ug/L	10.00		88	70-130	***************************************		
1,1,1-Trichloroethane	10.2		ug/L	10.00		102	70-130			
1,1,2,2-Tetrachloroethane	9.0		ug/L	10.00		90	70-130			
.,1,2-Trichloroethane	8.6		ug/L	10.00		86	70-130			
.,1-Dichloroethane	9.8		ug/L	10.00		98	70-130			
,1-Dichloroethene	9.8		ug/L	10.00		98	70-130			
,1-Dichloropropene	10.2		ug/L	10.00		102	70-130			
,2,3-Trichlorobenzene	11.2		ug/L	10.00		112	70-130			
,2,3-Trichloropropane	8.7		ug/L	10.00		87	70-130			
,2,4-Trichlorobenzene	10.8		ug/L	10.00		108	70-130			
,2,4-Trimethylbenzene	9.5		ug/L	10.00		95	70-130			
,2-Dibromo-3-Chloropropane	10.0		ug/L	10.00		100	70-130			
,2-Dibromoethane	9.7		ug/L	10.00		97	70-130			
,2-Dichlorobenzene	9.8		ug/L	10.00		98	70-130			
,2-Dichloroethane	9.8		ug/L	10.00		98	70-130			
,2-Dichloropropane	8.6		ug/L	10.00		86	70-130			
,3,5-Trimethylbenzene	9.5		ug/L	10.00		95	70-130			
,3-Dichlorobenzene	9.6		ug/L	10.00		96	70-130			
,3-Dichloropropane	9.0		ug/L	10.00		90	70-130			
,4-Dichlorobenzene	9.9		ug/L	10.00		99	70-130			
,4-Dioxane - Screen	213		ug/L	200.0		107	0-332			
,2-Dichloropropane	10.3		ug/L	10.00		103	70-130			
-Butanone	45.9		ug/L	50.00		92	70-130			
-Chlorotoluene	9.4		ug/L	10.00		94	70-130			
-Hexanone	47.7		ug/L	50.00		95	70-130			
-Chlorotoluene	9.6		ug/L	10.00		96	70-130			
Isopropyltoluene	10.4		ug/L	10.00		104	70-130			
Methyl-2-Pentanone	45.4		ug/L	50.00		91	70-130			
cetone	44.0		ug/L	50.00		88	70-130			
enzene	9.3		ug/L	10.00		93	70-130			
romobenzene	10.4		ug/L	10.00		104	70-130			
romochloromethane	9.7		ug/L	10.00		97	70-130			
omodichloromethane	9.2		ug/L	10.00	4.	92	70-130			
romoform	9.5		ug/L	10.00		95	70-130			

13.7

Bromomethane

ug/L

137

70-130

10.00

The Microbiology Division of Thielsch Engineering, Inc.

RPD

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

%REC

Quality Control Data

Spike

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8260B Vo	latile Organ	ic Compo	unds		***************************************			
Batch CB71317 - 5030B				· · · · · · · · · · · · · · · · · · ·						
Carbon Disulfide	9.4		ug/L	10.00		94	70-130			
Carbon Tetrachloride	10.6		ug/L	10.00		106	70-130			
Chlorobenzene	9.3		ug/L	10.00		93	70-130			
Chloroethane	8.6		ug/L	10.00		86	70-130			
Chloroform	9.7		ug/L	10.00		97	70-130			
Chloromethane	10.0		ug/L	10.00		100	70-130			
is-1,2-Dichloroethene	10.6		ug/L	10.00		106	70-130			
is-1,3-Dichloropropene	9.6		ug/L	10.00		96	70-130			
Dibromochloromethane	9.2		ug/L	10.00		92	70-130			
Dibromomethane	9.8		ug/L	10.00		98	70-130			
Dichlorodifluoromethane	10.3		ug/L	10.00		103	70-130			
liethyl Ether	9.5		ug/L	10.00		95	70-130			
i-isopropyl ether	8.2		ug/L	10.00		82	70-130			
ithyl tertiary-butyl ether	8.5		ug/L	10.00		85	70-130			
thylbenzene	9.6		ug/L	10.00		96	70-130			
lexachlorobutadiene	10.5		ug/L	10.00		105	70-130			
exachloroethane	9.9		ug/L	10.00		99	70-130			
opropylbenzene	9.3		ug/L	10.00		93	70-130			
ethyl tert-Butyl Ether	9.0		ug/L	10.00		90	70-130			
ethylene Chloride	9.6		ug/L	10.00		96	70-130			
aphthalene	9.1		ug/L	10.00		91	70-130			
Butylbenzene	10.4		ug/L	10.00		104	70-130			
Propylbenzene	9.8		ug/L	10.00		98	70-130			
ec-Butylbenzene	9.8		ug/L	10.00		98	70-130			
yrene	9.8		ug/L	10.00		98	70-130			
rt-Butylbenzene	9.8		ug/L	10.00		98	70-130			
ertiary-amyl methyl ether	8.1		ug/L	10.00		81	70-130			
etrachloroethene	7.7		ug/L	10.00		77	70-130			
etrahydrofuran	10.4		ug/L	10.00		104	70-130			
oluene	9.6		ug/L	10.00		96	70-130			
ans-1,2-Dichloroethene	8.8		ug/L	10.00		88	70-130			
ans-1,3-Dichloropropene	8.7		ug/L	10.00		87	70-130			
richloroethene	11.1		ug/L	10.00		111	70-130			
ichlorofluoromethane	9.7		ug/L	10.00		97	70-130			
nyl Chloride	10.3		ug/L	10.00		103	70-130			
rlene O	9.9		ug/L	10.00		99	70-130			
lene P,M	18.1		ug/L	20.00		90	70-130			
rienes (Total)	28.0		ug/L							
urrogate: 1,2-Dichloroethane-d4	28.8		ug/L	25.00		115	70-130			
urrogate: 4-Bromofluorobenzene	25.2		ug/L	25.00		101	70-130			
urrogate: Dibromofluoromethane	26.7		ug/L	25.00		107	70-130			
urrogate: Toluene-d8	25.6		ug/L	25.00		102	70-130			
S Dup	***************************************								***************************************	
I,1,2-Tetrachloroethane	8.7		ug/L	10.00		87	70-130	2	25	
,1-Tríchloroethane	10.3		ug/L	10.00		103	70-130	2	25	
ya manarakana	10.3		ug/L	10.00		103	\0120	4	دع	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		8260B Vol	atile Organi	c Compoi	unds					
Batch CB71317 - 5030B		***************************************								
,1,2,2-Tetrachloroethane	8.7		ug/L	10.00	NAC-1	87	70-130	4	25	
,1,2-Trichloroethane	8.6		ug/L	10.00		86	70-130	0.2	25	
,1-Dichloroethane	9.6		ug/L	10.00		96	70-130	1	25	
,1-Dichloroethene	10.2		ug/L	10.00		102	70-130	4	25	
,1-Dichloropropene	10.1		ug/L	10.00		101	70-130	0.9	25	
,2,3-Trichlorobenzene	9.9		ug/L	10.00		99	70-130	13	25	
,2,3-Trichloropropane	8.7		ug/L	10.00		87	70-130	0.5	25	
,2,4-Tríchlorobenzene	9.8		ug/L	10.00		98	70-130	10	25	
,2,4-Trimethylbenzene	9.1		ug/L	10.00		91	70-130	4	25	
2-Dibromo-3-Chloropropane	9.6	*	ug/L	10.00		96	70-130	4	25	
2-Dibromoethane	9.5		ug/L	10.00		95	70-130	2	25	
2-Dichlorobenzene	9.5		ug/L	10.00		95	70-130	3	25	
,2-Dichloroethane	10.0		ug/L	10.00		100	70-130	3	25	
2-Dichloropropane	8.6		ug/L	10.00		86	70-130	0.1	25	
3,5-Trimethylbenzene	9.0		ug/L	10.00		90	70-130	5	25	
3-Dichlorobenzene	9.2		ug/L	10.00		92	70-130	5	25	
3-Dichloropropane	9.3		ug/L	10.00		93	70-130	4	25	
4-Dichlorobenzene	9.7		ug/L	10.00		97	70-130	2	25	
4-Dioxane - Screen	193		ug/L	200.0		96	0-332	10	200	
2-Dichloropropane	10.4		ug/L	10.00		104	70-130	1	25	
Butanone	48.4		ug/L	50.00		97	70-130	5	25	
Chlorotoluene	8.9		ug/L	10.00		89	70-130	5	25	
Hexanone	43.5		ug/L	50.00		87	70-130	9	25	
Chlorotoluene	9.3		ug/L	10.00		93	70-130	4	25	
Isopropyltoluene	9.4		ug/L	10.00		94	70-130	9	25	
Methyl-2-Pentanone	43.3		ug/L	50.00		87	70-130	5	25	
etone	42.4		ug/L	50.00		85	70-130	4	25	
nzene	9.0		ug/L	10.00		90	70-130	3	25	
omobenzene	9.5		ug/L	10.00		95	70-130	10	25	
omochloromethane	10.2		ug/L	10.00		102	70-130	5	25	
omodichloromethane	8.9		ug/L	10.00		89	70-130	3	25	
omoform	9.6		ug/L	10.00		96	70-130	0.2	25	
omomethane	12.3		ug/L	10.00		123	70-130	11	25	
rbon Disulfide	9.4		ug/L	10.00		94	70-130	0.3	25	
rbon Tetrachloride	10.6		ug/L	10.00		106	70-130	0.4	25	
lorobenzene	9.1		ug/L	10.00		91	70-130	2	25	
oroethane	9.6		ug/L	10.00		96	70-130	10	25	
oroform	10.0		ug/L	10.00		100	70-130	3	25	
oromethane	9.4		ug/L	10.00		94	70-130	6	25	
1,2-Dichloroethene	10.3		ug/L	10.00		103	70-130	3	25	
1,3-Dichloropropene	9.1		ug/L	10.00		91	70-130	5	25	-
romochloromethane	9.1		ug/L	10.00		91	70-130	2	25	
romomethane	10.1		ug/L	10.00		101	70-130	3	25	
hlorodifluoromethane	10.2		ug/L	10.00		102	70-130	2	25	
thyl Ether	9.4		ug/L	10.00		94	70-130	1	25	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8260B Vola								
	PROFESSION OF THE STREET, THE STREET, THE STREET, THE STREET, THE STREET, THE STREET, THE STREET, THE STREET,			,						
Batch CB71317 - 5030B										
Di-isopropyl ether	8.2		ug/L	10.00		82	70-130	0.1	25	
Ethyl tertiary-butyl ether	8.6		ug/L	10.00		86	70-130	2	25	
Ethylbenzene	9.6		ug/L	10.00		96	70-130	0.4	25	
Hexachlorobutadiene	10.5		ug/L	10.00		105	70-130	0.7	25	
Hexachloroethane	8.8		ug/L	10.00		88	70-130	12	25	
sopropylbenzene	8.7		ug/L	10.00		87	70-130	6	25	
Methyl tert-Butyl Ether	8.8		ug/L	10.00		88	70-130	2	25	
Methylene Chloride	9.5		ug/L	10.00		95	70-130	2	25	
Naphthalene	8.4		ug/L	10.00		84	70-130	8	25	
n-Butylbenzene	9.7		ug/L	10.00		97	70-130	7	25	
-Propylbenzene	9.4		ug/L	10.00		94	70-130	4	25	
ec-Butylbenzene	9.2		ug/L	10.00		92	70-130	5	25	
ityrene	9.1		ug/L	10.00		91	70-130	7	25	
ert-Butylbenzene	9.4		ug/L	10.00		94	70-130	4	25	
ertiary-amyl methyl ether	8.0		ug/L	10.00		80	70-130	2	25	
etrachloroethene	7.8		ug/L	10.00		78	70-130	1	25	
`etrahydrofuran	8.5		ug/L	10.00		85	70-130	20	25	
oluene	9.2		ug/L	10.00		92	70-130	4	25	
rans-1,2-Dichloroethene	8.7		ug/L	10.00		87	70-130	0.3	25	
rans-1,3-Dichloropropene	8.6		ug/L	10.00		86	70-130	1	25	
Trichloroethene	10.6		ug/L	10.00		106	70-130	5	25	
richlorofluoromethane	9.5		ug/L	10.00		95	70-130	2	25	
finyl Chloride	10.1		ug/L	10.00		101	70-130	2	25	
ylene O	9.6		ug/L	10.00		96	70-130	2	25	
ylene P,M	18.5		ug/L	20.00		92	70-130	2	25	
ylenes (Total)	28.2		ug/L							
urrogate: 1,2-Dichloroethane-d4	28.6		ug/L	25.00		115	70-130			
urrogate: 4-Bromofluorobenzene	25.7		ug/L	25.00		103	70-130			
Turrogate: Dibromofluoromethane	26.8		ug/L	25.00		107	70-130			
Gurrogate: Toluene-d8	25.9		ug/L	25.00		104	70-130			

MADEP-EPH Extractable Petroleum Hydrocarbons

Batch CB71014 - 3510C	atch CB71014 - 3510C										
Blank											
C19-C36 Aliphatics1	ND	100	ug/L								
C9-C18 Aliphatics1	ND	100	ug/L								
Decane (C10)	ND	5	ug/L								
Docosane (C22)	ND	5	ug/L								
Dodecane (C12)	ND	5	ug/L								
Eicosane (C20)	ND	5	ug/L								
Hexacosane (C26)	ND	5	ug/L								
lexadecane (C16)	ND	5	ug/L								
Hexatriacontane (C36)	ND	5	ug/L								
Nonadecane (C19)	ND	5	ug/L								
Nonane (C9)	ND	5	ug/L								

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	MAD	EP-EPH Extr	actable Petr	oleum Hy	/drocarbo	ns				
Batch CB71014 - 3510C			***************************************		***************************************					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Octacosane (C28)	ND	5	ug/L		······································	***************************************				······································
Octadecane (C18)	ND	5	ug/L							
Tetracosane (C24)	ND	5	ug/L							
Tetradecane (C14)	ND	5	ug/L							
Triacontane (C30)	ND	5	ug/L		·		·	***************************************		
Surrogate: 1-Chlorooctadecane	37.3		ug/L	50.00		75	40-140			
Blank										***************************************
C11-C22 Aromatics1,2	ND	100	ug/L			WAAAAA				***************************************
C11-C22 Unadjusted Aromatics1	ND	100	ug/L							
Surrogate: 2-Bromonaphthalene	48.5		ug/L	50.00		97	40-140			
Surrogate: 2-Fluorobiphenyl	47.3		ug/L	50.00		95	40-140			
Surrogate: O-Terphenyl	41.4		ug/L	50.00		83	40-140			
Blank	MANAGEMENT AND ASSESSMENT OF THE SECOND ASSESS					***************************************	****			
2-Methylnaphthalene	ND	0.50	ug/L			***************************************	***************************************	************	***************************************	
Acenaphthene	ND	0.20	ug/L							
Acenaphthylene	ND	0.20	ug/L							
Anthracene	ND	0.20	ug/L							
Benzo(a)anthracene	ND	0.20	ug/L							
Benzo(a)pyrene	ND	0.10	ug/L							
Benzo(b)fluoranthene	ND	0.20	ug/L							
Benzo(g,h,i)perylene	ND	0.20	ug/L							
Benzo(k)fluoranthene	ND	0.20	ug/L							
C11-C22 Aromatics1,2	ND	0.50	ug/L							
Chrysene	ND	0.20	ug/L							
Dibenzo(a,h)Anthracene	ND	0.20	ug/L							
Fluoranthene	ND	0.20	ug/L							
Fluorene	ND	0.20	ug/L							
Indeno(1,2,3-cd)Pyrene	ND	0.20	ug/L							
Naphthalene	ND	0.50	ug/L							
Phenanthrene	ND	0.50	ug/L							
Pyrene	ND	0.20	ug/L							
LCS										
C19-C36 Aliphatics1	356	100	ug/L	400.0		89	40-140			
C9-C18 Aliphatics1	243	100	ug/L	300.0		81	40-140			
Decane (C10)	34	5	ug/L	50.00		68	40-140			
Docosane (C22)	46	5	ug/L	50.00		91	40-140			
Dodecane (C12)	38	5	ug/L	50.00		76	40-140			
Eicosane (C20)	46	5	ug/L	50.00		91	40-140			
Hexacosane (C26)	45	5	ug/L	50.00		89	40-140			
Hexadecane (C16)	44	5	ug/L	50.00		88	40-140			
dexatriacontane (C36)	43	5	ug/L	50.00		86	40-140			
Nonadecane (C19)	46	5	ug/L	50.00		92	40-140			
Nonane (C9)	27	5	ug/L	50.00		55	30-140			
Octacosane (C28)	44	5	ug/L	50.00		87	40-140			

The Microbiology Division of Thielsch Engineering, Inc.

RPD

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

%REC

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	MAD	EP-EPH Extr	actable Pet	roleum Hy	/drocarbo	ns				
Batch CB71014 - 3510C										
Octadecane (C18)	44	5	ug/L	50.00		89	40-140			
Tetracosane (C24)	45	5	ug/L	50.00		91	40-140			
Tetradecane (C14)	41	5	ug/L	50.00		82	40-140			
Triacontane (C30)	43	5	ug/L	50.00		86	40-140			
Surrogate: 1-Chlorooctadecane	42.9		ug/L	50.00		86	40-140			
LCS							·	***************************************		· · · · · · · · · · · · · · · · · · ·
C11-C22 Aromatics1,2	666	100	ug/L					*****		
C11-C22 Unadjusted Aromatics1	666	100	ug/L	850.0		78	40-140			
Surrogate: 2-Bromonaphthalene	46.6		ug/L	50.00		93	40-140			
Surrogate: 2-Fluorobiphenyl	46.1		ug/L	50.00		92	40-140			
Surrogate: O-Terphenyl	46.8		ug/L	50.00		94	40-140			
LCS										
2-Methylnaphthalene Breakthrough	0.0		%		·		0-5			
Naphthalene Breakthrough	0.0		%				0-5			
LCS			***************************************						***************************************	
2-Methylnaphthalene	2.33	0.50	ug/L	5.000		47	40-140		***************************************	
cenaphthene	3.00	0.20	ug/L	5.000		60	40-140			
cenaphthylene	3.04	0.20	ug/L	5.000		61	40-140			
Anthracene	3.09	0.20	ug/L	5.000		62	40-140			
Benzo(a)anthracene	2.88	0.20	ug/L	5.000		58	40-140			
Benzo(a)pyrene	3.21	0.10	ug/L	5.000		64	40-140			
Benzo(b)fluoranthene	3.08	0.20	ug/L	5.000		62	40-140			
Benzo(g,h,i)perylene	3.18	0.20	ug/L	5.000		64	40-140			
Benzo(k)fluoranthene	3.40	0.20	ug/L	5.000		68	40-140			
C11-C22 Aromatics1,2	ND	0.50	ug/L	3.000		50	10 110			
Chrysene	3.18	0.20	ug/L	5.000		64	40-140			
Dibenzo(a,h)Anthracene	3.48	0.20	ug/L	5.000		70	40-140			
luoranthene	3.11	0.20	ug/L	5.000		62	40-140			
luorene	3.13	0.20		5.000		63	40-140			
ndeno(1,2,3-cd)Pyrene	3.49	0.20	ug/L ug/L	5.000		70	40-140			
laphthalene	2.75	0.50	ug/L	5.000		55	40-140			
henanthrene	2.97	0.50								
yrene	2.91	0.20	ug/L ug/L	5.000 5.000		59 58	40-140 40-140			
CS Dup	6171	V.E V		3.000			70 170			
·	222	100	!!	400.0	hhw. 19-14-a hill Add 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	03	40.440	***	~~~	
19-C36 Aliphatics1 9-C18 Aliphatics1	333	100	ug/L	400.0		83	40-140	7	25	
ecane (C10)	216	100	ug/L	300.0		72	40-140	12	25	
	29	5	ug/L	50.00		58	40-140	17	25	
ocosane (C22)	43	5	ug/L	50.00		85	40-140	6	25	
odecane (C12)	33	5	ug/L	50.00		66	40-140	15	25	
icosane (C20)	43	5	ug/L	50.00		86	40-140	6	25	
exacosane (C26)	42	5	ug/L	50.00		84	40-140	6	25	
exadecane (C16)	41	5	ug/L	50.00		81	40-140	8	25	
exatriacontane (C36)	. 40	5	ug/L	50.00		80	40-140	7	25	
onadecane (C19)	43	5	ug/L	50.00		86	40-140	7	25	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	MAC	EP-EPH Extr	actable Petr	oleum Hy	drocarbo	ns			***************************************	
Batch CB71014 - 3510C					***************************************					
Nonane (C9)	23	5	ug/L	50.00		46	30-140	17	25	
Octacosane (C28)	41	5	ug/L	50.00		82	40-140	6	25	
Octadecane (C18)	41	5	ug/L	50.00		83	40-140	7	25	
Fetracosane (C24)	43	5	ug/L	50.00		85	40-140	6	25	
Fetradecane (C14)	37	5	ug/L	50.00		73	40-140	11	25	
Friacontane (C30)	41	5	ug/L	50.00		81	40-140	6	25	
Surrogate: 1-Chlorooctadecane	39.4		ug/L	50.00		79	40-140			
.CS Dup						***************************************				
C11-C22 Aromatics1,2	618	100	ug/L		***************************************					
C11-C22 Unadjusted Aromatics1	618	100	ug/L	850.0		73	40-140	7	25	
Surrogate: 2-Bromonaphthalene	48.8		ug/L	50.00		98	40-140			
Surrogate: 2-Fluorobiphenyl	47.8		ug/L	50.00		96	40-140			
Surrogate: O-Terphenyl	43.2		ug/L	50.00		86	40-140			
-CS Dup		and the second section of foreign control or an annual control of the second section of the section of the sect								
-Methylnaphthalene Breakthrough	0.0		%	*****	***********************		0-5		200	
laphthalene Breakthrough	0.0		%				0-5		200	
.CS Dup			***************************************	Administration		*******************				
-Methylnaphthalene	2.66	0.50	ug/L	5.000		53	40-140	13	20	
cenaphthene	3.36	0.20	ug/L	5.000		67	40-140	11	20	
cenaphthylene	3.38	0.20	ug/L	5.000		68	40-140	10	20	
nthracene	3.46	0.20	ug/L	5.000		69	40-140	11	20	
enzo(a)anthracene	3.08	0.20	ug/L	5.000		62	40-140	7	20	
enzo(a)pyrene	3.43	0.10	ug/L	5.000		69	40-140	7	20	
enzo(b)fluoranthene	3.23	0.20	ug/L	5.000		65	40-140	5	20	
enzo(g,h,i)perylene	3.36	0.20	ug/L	5.000		67	40-140	6	20	
enzo(k)fluoranthene	3.61	0.20	ug/L	5.000		72	40-140	6	20	
11-C22 Aromatics1,2	ND	0.50	ug/L							
hrysene	3.41	0.20	ug/L	5.000		68	40-140	7	20	
ibenzo(a,h)Anthracene	3.70	0.20	ug/L	5.000		74	40-140	6	20	
uoranthene	3.47	0.20	ug/L	5.000		69	40-140	11	20	
uorene	3.45	0.20	ug/L	5.000		69	40-140	10	20	
deno(1,2,3-cd)Pyrene	3.66	0.20	ug/L	5.000		73	40-140	5	20	
aphthalene	3.10	0.50	ug/L	5.000		62	40-140	12	20	
nenanthrene	3.30	0.50	ug/L	5.000		66	40-140	11	20	
rene	3.20	0.20	ug/L	5.000		64	40-140	9	20	
	MA	DEP-VPH Vo	latile Petrol	eum Hydr	ocarbon					
atch CB71437 - 5030B	***************************************					OPPORTUNE AND AND AND AND AND AND AND AND AND AND				
ank										
2,4-Trimethylbenzene	ND	5.0	ug/L							
2,4-Trimethylpentane	ND	5.0	ug/L							
Methylpentane	ND	5.0	ug/L ug/L							
enzene	ND	1.5	ug/L							

The Microbiology Division of Thielsch Engineering, Inc.

RPD

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

%REC

Quality Control Data

Spike

Source

Analyte		Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		M	ADEP-VPH \	/olatile Petr	oleum Hyd	Irocarbon				***************************************	
Batch CB71437 - [CALC]			***************************************								
C5-C8 Aliphatics1,2		ND	150	ug/L							
C5-C8 Unadjusted Aliphatics	;	ND	150	ug/L							
C9-C10 Aromatics		ND	100	ug/L							
C9-C12 Aliphatics2,3		ND	150	ug/L							
C9-C12 Unadjusted Aliphatic	:s	ND	150	ug/L							
Ethylbenzene		ND	5.0	ug/L							
Methyl tert-Butyl Ether		ND	1.5	ug/L							
Naphthalene		ND	5.0	ug/L							
n-Butylcyclohexane		ND	5.0	ug/L							
n-Decane		ND	5.0	ug/L							
Nonane (C9)		ND	5.0	ug/L							
Pentane		ND	5.0	ug/L							
Toluene		ND	5.0	ug/L							
Xylene O		ND	5.0	ug/L							
Xylene P,M		ND	10.0	ug/L							
Surrogate: 2,5-Dibromotolue	ne - FID	<i>39.7</i>		ug/L	50.00		79	70-130			
Surrogate: 2,5-Dibromotolue		38.9		ug/L	50.00		78	70-130			
LCS					50,00		70	70-130		****	
1,2,4-Trimethylbenzene		91.3			400.0						
2,2,4-Trimethylpentane				ug/L	100.0		91	70-130			
2-Methylpentane		155		ug/L	150.0		103	70-130			
Benzene		168		ug/L	150.0		112	70-130			
C5-C8 Aliphatics1,2		47.7		ug/L	50.00		95	70-130			
		125		ug/L							
C5-C8 Unadjusted Aliphatics		453		ug/L	400.0		113	70-130			
C9-C10 Aromatics		89.8		ug/L	100.0		90	70-130			
29-C12 Aliphatics2,3		ND		ug/L							
C9-C12 Unadjusted Aliphatics		267		ug/L	300.0		89	70-130			
thylbenzene		49.9		ug/L	50.00		100	70-130			
fethyl tert-Butyl Ether		137		ug/L	150.0		91	70-130			
laphthalene		82.0		ug/L	100.0		82	70-130			
i-Butylcyclohexane		86.1		ug/L	100.0		86	70-130			
i-Decane		99.5		ug/L	100.0		99	70-130			
lonane (C9)		89.5		ug/L	100.0		90	30-130			
entane		127		ug/L	100.0		127	70-130			
oluene		144		ug/L	150.0		96	70-130			
ylene O		95.6		ug/L	100.0		96	70-130			
ylene P,M		192		ug/L	200.0		96	70-130			
iurrogate: 2,5-Dibromotoluen	e - FID	42.3		ug/L	50.00		85	70-130			
urrogate: 2,5-Dibromotoluen	e - PID	42.5		ug/L	50.00		85	70-130			
CS Dup							*****		***************************************		
2,4-Trimethylbenzene		89.0		ug/L	100.0	***************************************	89	70-130	3	25	
2,4-Trimethylpentane		145		ug/L	150.0		97	70-130	7	25	
Methylpentane		160		ug/L	150.0		107	70-130	5	25	
enzene		46.7		ug/L	50.00		93	70-130	2	25	
	85 Frances Avenue, C)-2211 Te	J				, 5 250	-	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

Quality Control Data

Analyte	Result	MRL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie	
	M	ADEP-VPH Volatile Petr	oleum Hyd	Irocarbon	·					
Batch CB71437 - [CALC]			***************************************							
C5-C8 Aliphatics1,2	104	ug/L								
C5-C8 Unadjusted Aliphatics	429	ug/L	400.0							
C9-C10 Aromatics	87.5	ug/L	100.0		107	70-130	5	25		
C9-C12 Aliphatics2,3	ND	ug/L	100.0		88	70-130	3	25		
29-C12 Unadjusted Aliphatics	219	ug/L	300.0							
thylbenzene	48.6	ug/L			73	70-130	20	25		
lethyl tert-Butyl Ether	138		50.00		97	70-130	3	25		
laphthalene	93.2	ug/L	150.0		92	70-130	1	25		
-Butylcyclohexane	71.7	ug/L	100.0		93	70-130	13	25		
-Decane	86.0	ug/L	100.0		72	70-130	18	25		
onane (C9)	73.7	ug/L	100.0		86	70-130	15	25		
entane	122	ug/L	100.0		74	30-130	19	25		
pluene	141	ug/L	100.0		122	70-130	4	25		
rlene O	93.5	ug/L	150.0		94	70-130	2	25		
riene P,M	187	ug/L	100.0		94	70-130	2	25		
	107	ug/L	200.0		94	70-130	3	25		
urrogate: 2,5-Dibromotoluene - FID	44.7	ug/L	50.00		22					
urrogate: 2,5-Dibromotoluene - PID	43.6	ug/L	50.00		89	70-130				
		09/6	30.00		87	70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Subcontracted analysis; see attached report

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

SUB

ESS Laboratory Work Order: 1702237

Notes and Definitions

	Delinitions
Z-06	$pH \le 2$
U	Analyte included in the analysis, but not detected
D	Diluted.
B+	Blank Spike recovery is above upper control limit (B+).
ND	Analyte NOT DETECTED at or above the MRL (LOO) LOD for DoD Reports, MDL for LELevel 1.
dry	bample results reported on a dry Weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL I/V	Detection Limit
F/V	Initial Volume Final Volume
§ 1	Subcontracted analysis; see attached report
2	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
3	Range result excludes concentrations of target analytes eluting in that range
Avg	Range result excludes the concentration of the C9-C10 aromatic range.
NR	Results reported as a mathematical average. No Recovery
[CALC]	Calculated Analyte
[Circ]	Calculated Analyte

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: CDW Consultants, Inc. Client Project ID: Fernald School

ESS Laboratory Work Order: 1702237

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental_health/environmental_heal

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-R1002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

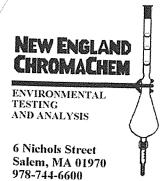
United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client: CDW Consultants, Inc TB/ML	ESS Project ID: 1702237 Date Received: 2/10/2017	W
Shipped/Delivered Via: ESS Courier	Project Due Date: 2/17/2017 Days for Project: 5 Day	
Air bill manifest present? No NA	6. Does COC match bottles?	Yes
Were custody seals present?	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes	9. Were labs informed about short holds & rushes?	Yes / No /NA
Temp: 4.5 Iced with: Ice 5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes (No)
11. Any Subcontracting needed? Yes / No ESS Sample IDs: Analysis: TAT:	12. Were VOAs received?a. Air bubbles in aqueous VOAs?b. Does methanol cover soil completely?	(Fes. / No Yes. (Fig. Yes. / No. / (VA)
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Date: Date:	Time: By: Time: By:	
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:		

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
01	103892	Yes	NA	Yes	1L Amber - HCl	HCI	
01	103894	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
01	103901	Yes	No	Yes	VOA Vial - HCI	HCI	
01	103902	Yes	No	Yes	VOA Vial - HCI	HCI	
01	103903	Yes	No	Yes	VOA Vial - HCI	HCI	
01	103904	Yes	No	Yes	VOA Vial - HCI	HCI	
01	103905	Yes	No	Yes	VOA Vial - HCl	HCI	
01	103906	Yes	No	Yes	VOA Vial - HCI	HCI	
02	103891	Yes	NA	Yes	1L Amber - HCI	HC1	
03	103890	Yes	NA	Yes	1L Amber - HCl	HCI	
03	103893	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	
03	103895	Yes	No	Yes	VOA Vial - HCI	HCI	
03	103896	Yes	No	Yes	VOA Vial - HCI	HCI	
03	103897	Yes	No	Yes	VOA Vial - HCI	HCI	
03	103898	Yes	No	Yes	VOA Vial - HCI	HCI	
03	103899	Yes	No	Yes	VOA Vial - HCl	HCI	
03	103900	Yes	No	Yes	VOA Vial - HCl	HCI	
04	103889	Yes	NA	Yes	1L Amber - HCI	HCI	
05	103888	Yes	NA	Yes	1L Amber - HCI	HCI	


2nd Review
Are barcode labels on correct containers?

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	CDW Consultants, Inc TB/ML		ESS Project	ID:	1702237
		-	Date Receiv	red:	2/10/2017
Completed By:	(31-+	Date & Time:	zholo	1958	
Reviewed By:	giel to	Date & Time: _	2/10/17	2005	
Delivered A	fee or		2/10/17	2005	
	~ 				

Turn Time	ESS Laboratory		CHAIN OF CUSTODY	ESS Lab # 1702237	
	Division of Thielsch Engineering, Inc.	Turn Time			
Sample Type Sample Matrix Counterfloams Control Colorer Project Matrix Counterfloams C	nces Avenue, Cranston RI 02910	Regulatory State	VASSECHESTTS	İ	
1	.I) 451-7181 Fax (401) 461-4466 slaboratory.com	Is th Oct re	s project for any	Umit Checker	Standard Excel
Collection Col	_	Project #	Project Name		
Ann	ontact Person /	\ \ \	Addr	49. Hg.	
Collection Sample Type Sample Matrix CDL - CS MLD Sample ID Sample ID Sample ID Sample ID Sample ID Sample Matrix CDL - BD-MLD Sample ID		State	Zip Code)) (
Collection Sample Type Sample Matrix Sample ID Sample Sample Matrix Sample ID Sample		FAX Number	Email Address	120	
1	Collection Collection Date Time	-	Sample ID	SO/N	
10145 11 11 CD - 3 - 3 ML) 17 CD 3 ML) 17 X X X X X X X X X	518 61/2	3	W~-4	×	
13:00	046	11	1		
13.00 II II MW— Y Y Y Y Y Y Y Y Y		1)	1 ,	× ×	
13.00 19 19 19 19 19 19 19			77		
Haboratory Use Only Laboratory Use Only Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)	13:00	-	1-36	~ ~	
ACAIT Cassette AGAmber Glass B-BOD Bottle Coubilainer G-Glass O-Other P-Poly S-Sterile V-Vial K6 (/ P P P P P P P P P P					
ACAPI Cassette AG-Amber Glass B-BOD Bottle C-Cubilainer G - Glass O-Other P-Potty S-Sterile V-Vial Mb 4 V 7 P S-1-100 mL 2-2.5 gal 3-250 mL 4-300 mL 6-1L 7-VOA 8-2 oz 9-4 oz 10-8 oz 11-Other V-Vial Mb 4 V 7 P S-1-100 mL 2-2.5 gal 3-250 mL 4-300 mL 5-500 mL 6-1L 7-VOA 8-2 oz 9-4 oz 10-8 oz 11-Other V-Vial Mb 4 V 7 P V					
AC-Air Cassetle AG-Amber Glass B-BOD Bottle C-Cubitainer G-Glass O-Other P-Poty S-Sterile V-Vial AG V V P C 1:1-100 mL 2-2.5 gal 3-250 mL 4-300 mL 6-1L 7-VOA 8-2 oz 9-4 oz 10-8 oz 11-Other C 1-0-10-10-10-10-10-10-10-10-10-10-10-10-					
Haboratory Use Only Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Rochic Cassette AG-Amber Glass B-BOD Bottle C-Cubliainer G - Glass O-Other P-Poly S-Sterile V-Vial No. 7 / P / P / P / P / P / P / P / P / P /					
Handrage Glass B-BOD Bottle C-Cubilainer G - Glass O-Other P-Poly S-Sterile V-Vial No. C. C. C. C. C. C. C. C. C. C. C. C. C.			Andrews and the second		
Laboratory Use Only Laboratory Use Only Comments: Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)	ssette 2-2.5	B-BOD Bottle	bitainer G - Glass O-Other P-Poty 6-11 7-VOA 8-2-2-2 6-40-2 40	tile V-Vial N. C V	
Laboratory Use Only Comments: H.S. °C Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)	3.42	4-HN03	- 1	Acid 12-Other	
Laboratory Use Only Comments: Please specify "Other" preservative and conta A, S ° C (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time)			1 -	5	
Comments: Please specify "Other" preservative and conta		٨	B		
F. (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)	ler Present:			ecify "Other" preservative and containe	ers types in this space
(Signature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)	4.5				
Egighature, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)	Relynquished by: (Signature, Date & Time)				ceived By: (Signature, Date & Time)
Keighafure, Date & Time) Received By: (Signature, Date & Time) Relinquished By: (Signature, Date & Time)		- N	ν,	10 17 17:05	- Zloln 1149
		Received By:	+		ceived By: (Signature, Date & Time)

Invoice

Date	Invoice #
11/18/2016	12432

Sold To: CDW CONSULTANTS, INC.

Mr. William J Betters 40 Speen Street Suite 301 Framingham, MA 01701 Ship To:

CDW CONSULTANTS, INC.

Mr. William J Betters 40 Speen Street Suite 301

Framingham, MA 01701

P.O. # Terms

Qty Item Description Unit Price Total Amount 2 EPH VPH Sextractable Petroleum Hydrocarbons Volatile Petroleum Hydrocarbons 90.00 180.00 NEC ID: 611232-611233
180.00 g0.00 180.00

Total Amount Due

\$470.00

1.5% Service Charge on invoices over 30 days

611232 - 611233 Chain of Custody Record CPW Cense Herrits Project Name & Number: Fernald School Proj 1616 Collected by: B. Betterz Sample Information **Analyses Required** C-G-611232 G 10/24/6 61123 3 **New England** 11/14/16 8:30 ChromaChem, Inc 6 Nichols Street Salem, MA 01970 (978) 744-6600 Preservations: 1 = Chilled at 4 degrees C 2 = Preserved at pH < 2 with HCI (VOC's) 3 = Preserved at pH<2 with HNO₃ (Metals) 4 = Preserved at pH between 5 & 9 (PCB's Method 608) 5 = Preserved at pH <2 with HCl or H₂SO₄ (FOG Method 1664)

6 = Lab to preserve 7 = CH₃OH (solid VOC's) 8= Ascorbic Acid 9 = No₂S2O₃ (Sodium Thiosulfate) 10= NH4CI (Ammonium Chloride)

New England ChromaChem, Inc. 6 Nichols Street Salem, MA 01970

Laboratory Certification Number: MA-072

Analytical Report Package

Prepared For: CDW CONSULTANTS, INC

Mr. William Betters 40 Speen St. Suite 301 Framingham, MA 01701

Date Received: 11/18/2016

Project ID/Location 1616 Fernald School **NEC ID#'s:**611232 611233

611232	611233		

This Analytical Report Package Includes:

- ▶ MA DEP MCP Response Action Analytical Report Certification Form
- ▶ Sample Receipt Report attesting to the validity of the information on the Chain of Custody
- ► Case Narrative in support of the Analytical Report Certification Form
- ▶ Copy of the original Chain of Custody, cross referencing laboratory and field identifications
- ► Analytical Data Reports

Please contact us if you have any questions or if you require any further information on the analyses performed.

Bruce Bornstein Quality Control Coordinator

New England ChromaChem, Inc. 6 Nichols Street

Salem, MA 01970

Laboratory Certification Number: MA-072

Client:	Client: CDW CONSULTANTS, INC		Project	t Name:	1616 Fei	rnald Schoo	/
NEC Sar	mple ID:	611232	611233				

Sample Receipt Information Report

Date Received: 11/18/16 Received By: Evan D'Avolio

Sample Temperature Upon Receipt: 4 ° C

Sample Preservations: Verified Preserved for Analytical Methods Requested

Sample Condition: Acceptable for Analytical Methods Requested

Custody Seals: Absent

For container type, and cross listing of field and laboratory ID's, Please see Chain of Custody included with this report

Percent Solid (if applicable)

	Percent Solid
611232	87%
611233	93%

Reviewed & Signed Electronically By:	Bruce Bornstein	Date:	11/22/16
Quality Control Coordinator			

New England ChromaChem, Inc. 6 Nichols Street Salem, MA 01970

Laboratory Certification Number: MA-072

Date	Reco	ivod
$\nu a \iota c$	//CLC	IVEU.

11/18/16

Client:

CDW CONSULTANTS, INC

Project Name:

1616 Fernald School

NEC Sample ID#'s:

611232	611233		
<u> </u>			~~~
L			

Case Narrative

Method Blanks: No Detectable Analytes were observed in any of the Method Blanks performed for this project.

Reviewed & Signed Electronically By: Quality Control Coordinator

Bruce Bornstein

Date:

11/22/16

MassDEP Analytical Protocol Certification Form							
Lab	oratory Na	ame: New England	Chromachem, Inc		Project #: 1616		
Proj	ect Locati	on: Fernald Schoo	l		RTN:		
This 6112	This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): 611232-611233						
Matri	Matrices: Groundwater/Surface Water [] Soil/Sediment [X] Drinking Water [] Air [] Other:						
CAN	l Protoc	ol (check all that a	pply below):				
8260 CAM	VOC II A []	7470/7471 Hg CAM III B []	MassDEP VPH CAM IV A [X]	8081 Pesticides CAM V B []	7196 Hex Cr CAM VI B []	MassDEP APH CAM ix A []	
	SVOC IIB[]	7010 Metals CAM III C []	MassDEP EPH CAM IV B [X]	8151 Herbicides CAM V C []	8330 Explosives CAM VIII A []	TO-15 VOC CAM IX B[]	
	Metals III A []	6020 Metals CAM III D []	8082 PCB CAM V A []	9014 Total Cyanide/PAC CAM VI A []	6860 Perchlorate CAM VIII B []		
,	Affirmativ	e Responses to (Questions A throu	ıgh F are required t	or "Presumptive Certa	ainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of-					[X] Yes No[]	
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?					[X] Yes No[]	
С	Were all required corrective actions and analytical response actions specified in the select ed CAM protocol(s) implemented for all identified performance standard non-conformances?					[X] Yes No[]	
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the A cquisition and Reporting of Analytical Data"?					[X] Yes No[]	
E	VPH, EPH, APH, and TO-15 only: a. VPH, EPH, and APH Methods ony: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications). b. APH and TO-15 Methods only: Was the complete analyte list reported for each method?					[X] Yes No[]	
F	Were all and evalu	applicable CAM pro lated in a laboratory	tocol QC and perfor narrative (including a	mance standard non- all "No" responses to C	conformances identified questions A through E)?	[X] Yes No[]	
Res					mptive Certainty" state	us	
G	Were the protocol(s	reporting limits at or s)?	below all CAM repor	rting limits specified in	the selected CAM	[X] Yes No ¹ []	
Data User Note: Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.							
Н						[X] Yes No1 []	
ı							
¹ All n	egative re	sponses must be a	ddressed in an attac	ched laboratory narra	tive.	[X] Yes No1 []	
respon and be	¹ All negative responses must be addressed in an attached laboratory narrative. I, the undersigned, attest under the pains and penalties of pe rjury that, based upon my personal inquiry of th ose responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.						
Signa	ature: 🔏	Run L. Borni		Position	: Laboratory Director		
Printe	Printed Name: Bruce A. Bornstein Date: 11/22/16						

New England ChromaChem 6 Nichols Street Salem, MA 01970

MA DEP EPH Laboratory Control Sample Report

 Laboratory ID:
 P111816
 Laboratory ID:
 P1118162

 Acquired On:
 11/18/16
 Acquired On:
 11/18/16

Target Compounds	% Recovery	Target Compounds	% Recovery
Naphthalene	96	Naphthalene	100
Acenaphthylene	93	Acenaphthylene	75
Acenaphthene	91	Acenaphthene	99
Fluorene	105	Fluorene	90
Anthracene	84	Anthracene	89
Phenanthrene	85	Phenanthrene	83
Carbazole	78	Carbazole	84
Fluoranthene	103	Fluoranthene	76
Pyrene	77	Pyrene	93
Benzo-a-anthracene	80	Benzo-a-anthracene	101
Chrysene	103	Chrysene	91
Benzo(k)fluoranthene	95	Benzo(k)fluoranthene	72
Benzo(b)fluoranthene	73	Benzo(b)fluoranthene	93
Benzo(a)pyrene	84	Benzo(a)pyrene	92
Dibenzo(a,h)anthracene	72	Dibenzo(a,h)anthracene	104
Indeno(1,2,3-cd)pyrene	99	Indeno(1,2,3-cd)pyrene	88
Benzo(g,h,i)perylene	101	Benzo(g,h,i)perylene	84

New England ChromaChem 6 Nichols Street Salem, MA 01970

MA DEP EPH Method Blank Report

 Lab ID:
 B111816

 Date Extracted:
 11/18/16

 Date Analyzed:
 11/18/16

Range/Target Ana	lyte	RL	Units	Results
Unadjusted C11-0	C22 Aromatics ¹	0.1	mg/L	ND
	Naphthalene	0.002	mg/L	ND
Diesel PAH	2-Methylnaphthalene	0.002	mg/L	ND
Analytes	Phenanthrene	0.002	mg/L	ND
	Acenaphthene	0.002	mg/L	ND
	Acenaphthalene	0.002	mg/L	ND
	Anthracene	0.002	mg/L	ND
	Benzo(A)Anthracene	0.002	mg/L	ND
	Benzo(A)Pyrene	0.002	mg/L	ND
	Benzo(B)Fluoranthene	0.002	mg/L	ND
	Benzo(G,H,I)Perylene	0.002	mg/L	ND
Other Benzo(K)Fluoranther		0.002	mg/L	ND
Target PAH	Chrysene	0.002	mg/L	ND
Analytes	Dibenzo(A,H)Anthracene	0.002	mg/L	ND
	Fluoranthene	0.002	mg/L	ND
	Fluorene	0.002	mg/L	ND
	Indeno(1,2,3-cd)Pyrene	0.002	mg/L	ND
	Pyrene	0.002	mg/L	ND
C9-C18 Aliphatic Hydrocarbons ¹		0.5	mg/L	ND
C19-C36 Aliphatic Hydrocarbons ¹		2	mg/L	ND
C11-C22 Aromatic	Hydrocarbons ^{1,2}	0.1	mg/L	ND

New England ChromaChem 6 Nichols Street Salem, MA 01970

MA DEP VPH QA/QC DATA

Laboratory Blank ID:	B111816]			
Date Acquired:	11/18/16				
Target Compounds		Results			
MTBE		ND			
Benzene		ND			
Toluene		ND			
Ethylbenzene		ND			
M&P Xylene		ND			
O-Xylene		ND			
1,2,4-Trimethylbenzene		ND			
Naphthalene		ND			

Laboratory LCS ID:	S111816				
Date Acquired:	11/18/16				
Target Compounds	% Recove	% Recovery			
MTBE	96				
Benzene	87				
Toluene	97				
Ethylbenzene	92				
M&P Xylene	98				
O-Xylene	95				
1,2,4-Trimethylbenzene	112				
Naphthalene	83				

Laboratory LCS Duplicate ID:	S1118162
Date Acquired:	11/18/16
Target Compounds	
MTBE	87
Benzene	81
Toluene	92
Ethylbenzene	86
M&P Xylene	90
O-Xylene	86
1,2,4-Trimethylbenzene	99
Naphthalene	94

Date:

11/21/16

This report has been reviewed and electronically signed by:

Analyst: Mr. Evan D'Avolio

Laboratory Director: Mr. Bruce Bornstein

New England ChromaChem, Inc. MA DEP EPH Analytical Report

SAMPLE INFORMATION				Miscellaneous Sample Information			
Matrix	☐ Aqueous ☒ Soil ☐ Sec	Project:	1616				
Containers	■ Satisfactory □ Bro	Location:	Fernald School				
Aqueous Pre	servatives □ N/A 図 pH < 2 □				······································		
Temperature	☑ Received on ice ☑ F	Received at 4° C	☐ Other	-	****		
					······································		
	TICAL RESULTS		Client:	CDW CONSUI	TANTS, INC.		
Method for F	Ranges: MA DEP EPH		Client ID:		B-11, S8	T T	1
Method for T	i Solid		Lab ID:		611233	<u> </u>	
		Da	Date Collected:		10/28/16		<u> </u>
EPH Surrog			ate Thawed:	N/A	N/A		
Aliphatic: ch	loro-octadecane (COD)	Da	Date Received:		11/18/16	1	
Aromatic: or	tho-terphenyl (OTP)	Date	Extracted:	11/18/16	11/18/16		
EPH Fractio	onation Surrogates	Date	Analyzed:	11/18/16	11/18/16		
1. 2-Fluorob	iphenyl		ne Analyzed:	14:10	15:12		
2. 2-Bromon	aphthalene	Di	lution Factor:	1	1		
		9,	% Solid(soil) :		93%		
Range/Targe	et Analyte	RL(mg/Kg)	Units				
Unadjusted	C11-C22 Aromatics ¹	20	mg/Kg	118	3810		
	Naphthalene	0.200	mg/Kg	ND	8.27		
Diesel PAH	2-Methylnaphthalene	0.200	mg/Kg	ND	16.7		
Analytes	Phenanthrene	0.200	mg/Kg	ND	ND		
	Acenaphthene	0.200	mg/Kg	ND	ND		
	Acenaphthylene	0.200	mg/Kg	ND	ND		
	Anthracene	0.200	mg/Kg	ND	ND		
	Benzo(A)Anthracene	0.200	mg/Kg	ND	ND		
	Benzo(A)Pyrene	0.200	mg/Kg	ND	ND		
	Benzo(B)Fluoranthene	0.200	mg/Kg	ND	ND		
	Benzo(G,H,I)Perylene	0.200	mg/Kg	ND	ND		
Other	Benzo(K)Fluoranthene	0.200	mg/Kg	ND	ND		
Target PAH		0.200	mg/Kg	ND	ND		
Analytes	Dibenzo(A,H)Anthracene	0.200	mg/Kg	ND	ND		
	Fluoranthene	0.200	mg/Kg	ND	ND		
	Fluorene	0.200	mg/Kg	ND	ND		
	Indeno(1,2,3-cd)Pyrene	0.200	mg/Kg	ND	ND		
·····	Pyrene	0.200	mg/Kg	ND	ND		
	natic Hydrocarbons ¹	20	mg/Kg	105	16500		
C19-C36 Alip	hatic Hydrocarbons ¹	20	mg/Kg	74.0	5430		
C11-C22 Aro	matic Hydrocarbons ^{1,2}	20	mg/Kg	118	3790		
Aliphatic Surrogate % Recovery				72%	66%		
Aromatic Surrogate % Recovery				67%	81%		
Sample Surrogate Acceptance Range				40-140%	40-140%	40-140%	40-140%
ractionation Surrogate (1) % Recovery				70%	75%		<u> </u>
ractionation Surrogate (2) % Recovery				74%	68%		
	ractionation Surrogate Acceptance Range				40-140%	40-140%	40-140%
	anne data exclude area counts of any su			40-140%		10 1 10 /0	70 1 70 70

DATE: 11/22/16

MA does not offer certification for this method.

¹Hydocarbon Range data exclude area counts of any surrogate(s) and/or internal standards eluting in that range

 $^{^2\}text{C}_{11}.\text{C}_{22}\text{Aromatic Hydrocarbons exclude the concentration of Target PAH Analytes}$

New England ChromaChem, Inc. MA DEP VPH Analytical Report

SAMPLE INFORMATION			Miscellan	eous Sample	Information					
Matrix	☐ Aqueous ☒ Soil ☐ Sediment ☐ Other:			Project #	1616					
Containers	☑ Satisfactory ☐ Broken ☐ Leaking			Location:	Fernald Scho	ol				
					□ N/A □ pH < 2 □ pH > 2 Comment:					
Sample				■ N/A □ p	H ≤ 11 □ pl	H > 11 Comme	nt:	ml MeOH		
Preservatives		□ N/A □	Samples NO	T preserved in	MeOH or air-	tight containers		☑ 1:1+25%	***************************************	
	Sediment	🗵 Samples re	ceived in MeO	H 🗵 Covering:	soil/sediment	□ Not covering	g soil/sediment	☐ Other		
Temperature ☑ Received on ice ☑ Received at 4° C ± 2° C ☐ Other: °C										
VPH ANALYTICAL RESULTS Client: CDW CONSULTANTS, INC.										
Method for R					Client ID:	B-6, S2	B-11, \$8			
Method for Ta	arget Analyte	es: MA DEP	VPH		Lab ID:	611232	611233			
	_			Date	Collected:	10/28/16	10/28/16			
VPH Surroga				Date	Received:	11/18/16	11/18/16			
PID: 1,2- Dic				Date P	reserved: 4	10/28/16	10/28/16			
FID: Bromofit	uorobenzene	:		Date Analyzed:		11/18/16	11/18/16			
				Dilution Factor:		1	1		İ	
				% Solid:	87%	93%				
			Elut. Range	RL (mg/Kg)	Units					
		N/A	5	mg/Kg	ND	13.1				
Unadjusted C ₉ -C ₁₂ Aliphatics ¹		N/A	5	mg/Kg	ND	888				
		C5-C8 Aliph	0.050	mg/Kg	ND	ND				
		C9-C12 Aliph	0.050	mg/Kg	ND	0.726				
Methyl-tert-bu	utyl ether		C5-C8 Aliph	0.050	mg/Kg	ND	ND			
Naphthalene			N/A	0.050	mg/Kg	ND	7.55			
Toluene			C5-C8 Aliph	0.050	mg/Kg	ND	ND			
M&P Xylene			C9-C12 Aliph	0.050	mg/Kg	ND	1.10			
O-Xylene	***************************************		C9-C12 Aliph	0.050	mg/Kg	ND	0.946			
C ₅ -C ₈ Aliphati			N/A	5	mg/Kg	ND	13.1			
C ₉ -C ₁₂ Alipha			N/A	5	mg/Kg	ND	888			
C ₉ -C ₁₀ Aroma			N/A	5	mg/Kg	ND	12.7			
BFB Surrogate % Recovery				102	91					
1,4-DCB-d ₄ Surrogate % Recovery				107	93					
Surrogate Acceptance Range					70-130%	70-130%				

MA does not offer certification for this method.

Electronically signed and approved by: Mr. Bruce A. Bornstein, Lab Director DATE: 11/22/16

¹Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.

²C₅.C₈ Aliphatic Hydrocarbons exclude concentrations of Target Analytes eluting in that range

³C₉.C₁₂ Aliphatic Hydrocarbons exclude concentrations of Target Analytes and C₉.C₁₀ Aromatic Hydrocarbons eluting in that range ⁴Only applies to samples collected in air-tight containers